用户名: 密码: 验证码:
骨架—密实型水泥稳定级配碎石抗裂特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国公路建设过程中,半刚性基层沥青路面作为主流结构形式,发挥了积极的重要作用。然而,其强度、刚度的衰减与开裂问题,成为制约半刚性基层沥青路面结构长期耐久性的重要因素。因此,以莫尔—库伦强度理论为基础,充分重视半刚性材料中碎石的结构组成及其结构特性,采用骨架—密实型水泥稳定级配碎石的设计理念,综合协调半刚性基层力学特性与抗裂特性,以系统的试验研究为主要手段,以针对具体问题的理论分析为辅,全面研究这种半刚性基层材料设计方法、指标体系与路用特性,从而为完善半刚性基层沥青路面技术体系、延长路面结构使用寿命、提高路面使用品质,奠定坚实的基础。对于提高交通运输的综合效益,具有重要的现实意义。
     首先开展高等级公路沥青路面的横向开裂调查,分析产生开裂的主要原因与技术对策。具体针对性能差异最显著的柔性基层与半刚性基层进行对比,结合哈尔滨西环绕城高速公路逐年调查资料,分析低温开裂的演化规律,从而明确当前沥青路面开裂研究的重点之一在于基层的抗裂特性及基于抗裂性能要求的半刚性材料设计。
     进而,提出碎石级配体积设计方法框架、流程与基本原则,比选级配碎石成型方法,确定适宜的参数组合,实现材料—工艺一体化设计。通过设计典型骨架、比选细集料组成,以填充系数为技术指标,深入分析该指标对级配碎石结构组成特征的影响,从而提炼基于力学特性的设计原则。以静三轴试验、动三轴试验和循环加载试验为方法,分别评价级配碎石的结构性,并以结构可变性、结构可稳性、综合结构性指标反馈指导级配碎石设计,明确设计指标及其技术标准。
     在此基础上,采用振动成型方法,通过大量的试验,系统研究—骨架密实型水泥稳定级配碎石的干缩与温缩特性,在分析主要影响因素的基础上,明确填充系数与干缩的关系,指导材料设计与施工工艺组织。
     以弹塑性损伤理论为基础,应用ABAQUS有限元软件,进行路面结构温度场与干缩场的耦合分析,明确养生期出现开裂破坏的具体条件,以指导现场施工组织。
     在上述研究基础上,整合水泥稳定级配碎石结构性、强度衰减、干缩特性及温缩特性研究成果,提出填充系数的合适范围,提炼设计原则,构建完善的体积设计方法,以指导工程应用。最终将主要成果应用于“齐泰”高速公路,以检验此套技术的适用性及其实际效果,作为后续完善技术体系的基础。通过理论与工程实践的相互结合,初步实现半刚性基层的性能设计与优化,构建水泥稳定级配碎石成套技术。
The semi-rigid base asphalt pavement, as a main-stream structure type, plays an important role in our country’s road construction. However, the problems such as cracking and its decline of strength and rigid become an important ingredient which confine the long term durability of the semi-rigid base asphalt pavement structure. Thus, based on the Mohr-Coulomb strength theory, much attention was paid to the structure constitute and characters of the gravels in semi-rigid materials. Utilizing the design theory of the frame-densed cement stabilized graded crushed stone, the mechanical character of the semi-rigid base layer and the character of the anti-cracking was co-ordinated. Taking systematic experimental researches as a main method and assisted by the theoretical analysis concentrating on specific problems, the design method, index system and pavement performance of this kind of semi-rigid base materials were studied. So that, a solid foundation was set for the improvement of the technical system of the semi-rigid base asphalt pavement, the elongation of the pavement structure using life and the enhancement of the using quality. It has a vital significance for the improvement of the comprehensive benefit of the traffic transportation.
     First of all, based on the north-east areas, surveys are made on the transverse cracks of the high-grade highway asphalt pavement and analyzed main reasons of cracking and technical countermeasures. For example, since the flexible base and semi-rigid base has the most obvious performance differences, with the survey results of the western-ring highway of Harbin in the past years the developing discipline of the cracking in a low temperature was analyzed. So that, it is clear that one important point in cracking researches is anti-cracking character of the base layer and the semi-rigid material design according to the anti-cracking requirement.
     Furthermore, the frame, flow path and basic principles of the crushed stone gradation volume method are put forward. Forming methods of the graded crushed stone were compared and a proper parameters’combination was determined. Then, the material-technique integrated design method was realized. Through the typical frame design and the comparison of fine aggregate constitute, taking the filling parameter as a technical index, the influence of this index to the structure constitution characteristics of the graded crushed stone was deeply analyzed, from which the design method based on the mechanical characteristics was concluded. With the static tri-axial tests, dynamic tri-axial tests and the MTS cycling loading tests, the structure of the graded crushed stone was evaluated, and the structural variability, stability and integrated structure was used to guide the design of the graded crushed stone and to determine the design index and its technical criteria.
     On this basis, with the vibration forming methods and lots of experiments, the dry and temperature shrinkage of frame-densed structure cement stabilized graded crushed stone was systematically studied. Besides, based on the analysis of main factors, the relationship between the filling parameter and the dry shrinkage was understood, which could guide the material design and the construction operation.
     Based on the elastic-plastic damage theory, using the ABAQUS finite element software, coupling analysis between the pavement structure temperature field and the dry shrinkage field was made, and the specific conditions that would appear cracks in the curing period was found, which could guide the field construction organization.
     Based on the above researches, the research results of cement stabilized graded crushed stone was integrated, the decline of the strength, the character of dry shrinkage and the character of the temperature shrinkage. Then, a proper range of the filling parameter was put forward and the design principles were deduced. What’s more, an improved volume design method was proposed to guide the construction application. In the end, the main results into the Qitai highway construction were applied to validate the application and effects of this technology, as a foundation for the following improved technology system. Through the combination of theory and construction practice, a performance design and optimization of the semi-rigid base layer was primarily realized, and a series of cement stabilized graded crushed stone technology was set up.
引文
1沙庆林.高速公路沥青路面早期破坏现象及预防.人民交通出版社.2001:125~138
    2 De Beer M. The Evaluation, Analysis and Rehabilitation Design of Roads. Report Nr IR93/296, Department of Transport, Pretoria, South Africa, 1994. South African Roads Board
    3 U.S.Department of Transportation Federal Highway Administration. Distress identification Manual for the Long-Term Pavement Performance Program. Washington D.C. 1993: 2~13
    4郑健龙,周志刚,张起森.沥青路面抗裂设计理论与方法.人民交通出版社.2002:56~78
    5张登良.沥青路面工程手册.人民交通出版社,2004:263~268
    6 Gerritsen, A. H., C. A. P. M. van Gurp, J. P. J. van der Heide, A. A. A. Molenaar, and A. C. Pronk. Prediction and Prevention of Surface Cracking in Asphaltic Pavements. In Proc., Sixth International Conference on Structural Design of Asphalt Pavements, University of Michigan, Ann Arbor, 1987, pp. 378~391
    7 Dauzats, M., and A. Rampal. Mechanism of Surface Cracking in Wearing Courses. In Proc., 6th International Conference on Structural Design of Asphalt Pavements, University of Michigan, Ann Arbor, 1987, pp. 232~247
    8 Matsuno, S., andT. Nishizawa. Mechanisms of Surface-Initiated Longitudinal Wheel Path Cracks in High-Type Bituminous Pavements. In Proc., 7th International Conference on Asphalt Pavements, Vol. 2, University of Nottingham, 1992, pp. 277~291
    9 Meyers, L. A., R. Roque, and B. E. Ruth. Mechanisms of Surface-Initiated Longitudinal Wheel Path Cracks in High-Type Bituminous Pavements. Journal of the Association of Asphalt Paving technologists, Vol. 67, 1998, 401~432
    10 Roque, R., Bjorn Birgisson, Leslie Myers, Zhiwang Zhang, and Christos A. Drakos. Evaluation of Surface- Initiated Longitudinal Wheel Path Cracking: Analytical Evaluation of Surface-Initiated Longitudinal Wheel Path Cracking. Contract No.: C5978. Final Report, Volume 1 of 2. University of Florida, Florida (2006a)
    11 Roque, R., Bjorn Birgisson, Stephen Sedwick, Oscar Garcia, Adam Jajliardo, Jaeseung Kim, and Christos A. Drakos. Evaluation of Surface-Initiated Longitudinal Wheel Path Cracking: Analytical Evaluation of Surface-Initiated Longitudinal Wheel Path Cracking. Contract No.: C5978. Final Report, Volume 2 of 2. University of Florida, Florida (2006b)
    12 Uhlmeyer, J. S., K. Willoughby, L. M. Pierce, and J. P. Mahoney. Top-Down Cracking in Washington State Asphalt Concrete Wearing Courses. In Transportation Research Record: Journal of the Transportation Research Board, No. 1730, TRB, National Research Council,Washington, D.C., 2000, 110~116
    13哈尔滨工业大学道路教研室.沥青路面的使用性能.1998: 319~335
    14同济大学道路与交通工程研究所.半刚性基层沥青路面.人民交通出版社,1991:35~42
    15菅原照雄.沥青混合料力学性能研究论文集.黑龙江省公路学会、哈尔滨建筑工程学院.1982:41~51
    16 Fromm, H,J. and W.A.Phang.Study of Transverse Craking of Bituminous Pavements. Proceedings, Association of Asphalt Paving Technologists, Cleveland, Ohio, 1972.
    17 Hass, R.C.G..Thermal Shrinkage Cracking of Some Ontario Pavements. Ontario Highway Department Report RR-161, 1969.
    18 Hajek, J.J., and R.C.G. Hass. Predicting Low-Temperature Cracking Frequency of Asphalt Concrete Pavements. Highway Research Record 407, Washington D.C. 1972.
    19 Haas, R.C.G.. A Method of Design Asphalt Pavements to Minimize Low-Temperature Shrinkage Cracking. The Asphalt Institute Research Report RR-73-1. Mary1973
    20 Hills, J.F., and D. Brien. The Fracture of Bitumens and Asphalt Mixes by Temperature-Induced Stresses. Proceedings, Association of Asphalt Paving Technologists.1966
    21张肖宁,王哲人,王端宜.计算沥青路面低温缩裂的能量判据及应用.中国公路学报.1990,(3):11~17
    22严作人.层状路面体系的温度场分析.同济大学学报.1984,(3):76~85
    23吴赣昌.层状路面体系温度场分析.中国公路学报.1992,6(4):1~8
    24贾璐,孙立军,黄立葵.沥青路面温度场数值预估模型.同济大学学报(自然科学版).2007,35(8):1039~1043
    25康海贵,郑元勋,蔡迎春.实测沥青路面温度场分布规律的回归分析.中国公路学报.2007,20(6):13~18
    26沙爱民.半刚性路面材料结构与性能.人民交通出版社,1998:24~41
    27杨锡武.粉煤灰混合料半刚性基层的微结构研究.中国公路学报.1994,7(3):36~40
    28秦禄生,许志鸿.一种高弹沥青面层抗反射裂缝能力试验研究.同济大学学报(自然科学版).2008,36(12):1647~1651
    29沙爱民,贾侃,陆剑卿.半刚性基层材料动态模量的衰变规律.中国公路学报.2009,22(3):1~6
    30邓学钧,黄晓明.半刚性路面疲劳性特性的环道试验研究.东南大学学报,1995,25(1):94~99
    31马一平,谈至明,陶宇奋.沥青路面半刚性基层快速修复材料研究.建筑材料学报.2007,10(5):553~556
    32黄宝涛,廖公云,张静芳.半刚性基层沥青路面层间接触临界状态值的计算方法.东南大学学报(自然科学版).2007,37(4):666~670
    33张阳,侯相深,马松林.长寿命半刚性基层沥青路面的计算分析.哈尔滨工业大学学报.2007,39(4):622~626
    34姚占勇,练继建,任宪勇.半刚性路面基层开裂的力学响应.岩土力学.2006,27(12):2250~2254
    35任瑞波,钟岱辉,李海芝.柔性基层改善沥青路面半刚性底基层温度状况分析.哈尔滨工业大学学报.2004,36(9):1280~1284
    36孙兆辉.水泥稳定碎石温缩变形特性试验研究.建筑材料学报.2009,12(2):249~252
    37程箭,许志鸿,张超.水泥稳定碎石设计参数研究.建筑材料学报.2008,11(6):673~677
    38陈甦,彭建忠,韩静云.水泥土强度的试件形状和尺寸效应试验研究.岩土工程学报.2002,24(5):580~583
    39王立峰,朱向荣.纳米硅水泥土弹塑性本构模型研究.浙江大学学报(工学版).2008,42(1):94~98
    40王鹏飞,郭忠印,陈崇驹.基于正交法的水泥稳定碎石试验及抗裂性能研究.建筑材料学报.2007,10(5):616~621
    41李淑明,许志鸿.水泥稳定碎石基层的最低劈裂强度和抗压强度.建筑材料学报.2007,10(2):177~182
    42孙兆辉.水泥稳定碎石基层材料的集料级配优化.建筑材料学报.2006,9(6):675~680
    43杨英姿,邓宏卫,高小建.粉煤灰陶粒混凝土的抗盐冻性能.材料科学与工艺.2009,17(2):239~243
    44黄煜镔,吕伟民,徐建达.减水剂对水泥稳定碎石物理力学性能的影响.建筑材料学报.2005,8(3):311~315
    45吉青克,姚祖康.多孔水泥稳定碎石组成设计.同济大学学报(自然科学版).2003,31(2):161~165
    46姜爱锋,张易谦.石灰—粉煤灰稳定碎石基层的物理力学性能.同济大学学报(自然科学版).1997,25(6):656~662
    47凌天清,梁富权.水泥稳定土抗弯拉强度结构系数的研究.中国公路学报.1992,5(3):7~13
    48凌建明,谢华昌,庄少勤.水泥—石灰土水稳性的实验研究.同济大学学报(自然科学版).2001,29(6):733~737
    49沙爱民,张登良,许永明.无机结合料稳定级配砂砾的疲劳特性研究.土木工程学报.1993,26(1):68~73
    50童小东,龚晓南,蒋永生.水泥加固土的弹塑性损伤模型.工程力学.2002,19(6):33~38
    51庄少勤,谢华昌,凌建明.水泥—石灰土的路用性能研究.建筑材料学报.2001,4(2):180~183
    52贾侃.半刚性基层材料的疲劳特性研究.长安大学工学博士学位论文.2007:35~39
    53 Dar-Hao Chen, Feng Hong, and Fujie Zhou. Premature Cracking from the Cement Treated Base and the Treatment to Mitigate Its Effect. Journal of Performance of Constructed Facilities.2010,(8):1~31
    54 Frank G. Collins ,Jay G. Sanjayan. Capillary Shape: Influence on Water Transport within Unsaturated Alkali Activated Slag Concrete. Journal of Materials in Civil Engineering.2010, 22(3):260~266
    55 Keun-Hyeok Yang, Hey-Zoo Hwang, Seol Lee. Effects of Water-Binder Ratio and Fine Aggregate-Total Aggregate Ratio on the Properties of Hwangtoh-Based Alkali-Activated Concrete. Journal of Materials in Civil Engineering 2010,1:1~46
    56 Ying Chen , Pizhong Qiao. Crack Growth Resistance of Hybrid Fiber Reinforced Cement Matrix Composites Journal of Aerospace Engineering.2010,30:1~34
    57 Mohammed Sonebi, Abdulkadir Cevik. Prediction of Fresh and Hardened Properties of Self-Consolidating Concrete Using Neurofuzzy Approach. Journal of Materials in Civil Engineering.2009,.21(11):672~679
    58 Nilo Cesar Consoli, António Viana da Fonseca, Rodrigo Caberlon Cruz, and Karla Salvagni Heineck. Fundamental Parameters for the Stiffness and Strength Control of Artificially Cemented Sand.
    59 Lianzhen Xiao, Zongjin Li. New Understanding of Cement Hydration Mechanism through Electrical Resistivity Measurement and Microstructure Investigations. Journal of Materials in Civil Engineering.2009,.21(8):368~373
    60 Jun Zhang, Kun Qi, and Yu Huang. Calculation of Moisture Distribution in Early-Age Concrete. J. Engrg. Mech. 2009, 135(8): 871~880
    61 Nilo Cesar Consoli, Luizmar da Silva Lopes, Jr., and Karla Salvagni Heineck. Key Parameters for the Strength Control of Lime Stabilized Soils. Journal of Materials in Civil Engineering.2009,.21(5):210~216
    62黄学文,张正锋,王旭东.HF-Ⅱ缓凝减水阻裂剂在水泥稳定碎石基层中的应用研究.公路.2001,(4):59~62
    63 Soleymani, Hamid-Reza. Viscoelastic characterization of blended binders for asphalt pavement recycling. The University of Saskatchewan (Canada). Ph.D.1998
    64 Chou, Katie Fang-Ju. Application of fracture mechanics to assess reflective cracking potential in airfield pavements. University of Illinois at Urbana-Champaign. Ph.D. 2004
    65 NCHRP.2002 Design Guide:Design of New and Rehabilitation Pavements Structures(Draft Final Document).2003, August.
    66沙庆林.高等级半刚性基层沥青路面.人民交通出版社,1999:284~290
    67 P.Paris, F.Erdogen. a Critical Ansalysis of Crack Propagation Laws. Transactions of the American Association of Mechanical Engineers Journal of Basic Engineering Series D85, No.4 Dec.1963,P528-534
    68 A.A.A.Molenaar.Structure Performance and Design of Flexible Pavements and Asphalt Concrete Overlays. Dissertation Faculty of Civil Engineering, DelftUniversity of Technology, Delft,1983
    69 Schapery, R.A. A Theory of Crack Growth in Viscoelastic Media. Report NN-2764-73-1, Mechanics and Materials Research Center. Teaxs A&M University,1973
    70 Schapery, R.A. Models for Damage Growth and Fracture in Nonlinear Viscoelastic Particulate Composites. Procedings of 9th US Congres of Applied Mechanics. American Society of Mechanical Engineerings, Book No. HOO228.1982
    71 Rawlings R E Drying shrinkage of cement treated paving materials, 1988, 11(4): 245-252
    72张登良,郑南翔.半刚性基层材料收缩抗裂性能研究.中国公路学报.1991,4(1):16~22
    73张洪华.半刚性基层混合料收缩性能研究.公路交通科技.1990,7(4):5~13
    74杨锡武,粱富权.养生条件对半剧性路面基层收缩特性的影响研究.重庆交通学院学报.1995,14(3):53~56
    75申爱琴,李祝龙,王江帅等.稳定砂土类半刚性材料温缩性能研究.公路.2000,(3):68~73
    76朱云升,郭忠印,陈崇驹等.半刚性基层材料干缩和温缩特性试验研究.公路,2002(6):145~148
    77杨红辉,唐娴,郝培文.半刚性基层材料抗裂性评价方法.长安大学学报(自然科学版).2002(7):13~15
    78王金昌.广义荷载作用下道路与软基共同作用研究.浙江大学博士学位论文,2003:26~31
    79蒋应军.重载交通水泥混凝土路面材料与结构研究.长安大学博士学位论文,2005:66~69
    80胡力群.半刚性基层结构类型与组成设计研究.长安大学博士学位论文,2004:101~105
    81杨文丁.半刚性基层材料收缩性能研究.长安大学工学硕士学位论文.2004:41~46
    82张嘎吱.考虑抗裂性的水泥稳定类材料配合比设计方法研究.长安大学工学硕士学位论文,2001:77~85
    83张肖宁,郭祖辛等.按体积法设计沥青混合料.哈尔滨建筑大学学报.1995,28(2):28~36
    84谭忆秋,张肖宁等.用体积法设计SMA混合料的配合比.哈尔滨建筑大学学报.1999,32(3):105~110
    85沈珠江.土体结构性的数学模型-21世纪土力学的核心问题.岩土工程学报.1996,(1):95~97
    86齐吉琳.土结构性的研究方法及现状.西北地震学报.2001,(1):99~103
    87谢定义.土结构性参数及其与变形-强度的关系.水利学报.1999,(10):1~6
    88殷宗泽.土力学与地基.水利水电出版社,2003:64~72
    89 Brady, N.C., and Weil, R.R. The Nature and Properties of Soils, 13th edition, Prentice-Hall, Inc., Upper Saddle River, NJ, 2002
    90 Terzaghi K,Peck R B,Mesri G. Soil Mechanics in Engineering Practice.A Wiley-Interscience Publication. Third Edition. John Wiley and Sons, Inc, 1996:127-133
    91胡再强,沈珠江,谢定义.非饱和黄土的结构性研究.岩土工程学报.2000,(11):775~779
    92胡再强,沈珠江,谢定义.结构性黄土的变形特性.岩石力学与工程学报.2004,(12):4142~4146
    93陈存礼,胡再强,谢定义.赤泥的变形-强度特性与结构性关系的研究.岩土力学.2004,25(12):1862~1866
    94谢定义,齐吉琳.土结构性及其定量化参数研究的新途径.岩土工程学报.1999,21(6):651-656
    95骆亚生,谢定义,邵生俊.非饱和黄土的结构变化特性.西北农林科技大学学报.2004,(8):115~119
    96解晓光,王哲人.沥青碎石混合料动力变形特性的研究.中国公路学报.2006,(2): 7-11
    97吴超凡,申爱琴.半刚性基层材料的干缩性能研究.公路.2007,(10):184~189
    98丛林,郭忠印.半刚性基层材料性能参数的实验研究.建筑材料学报.2001,(4):385~390
    99黄煜镔,吕伟民,徐建达.水泥稳定碎石基层收缩裂缝综合防治试验.重庆大学学报(自然科学版).2006,29(11):154~159
    100于新,黄晓明.低剂量水泥稳定碎石基层干缩温缩性能研究.公路交通科技.2007,24(7):52~53
    101孙兆辉,许志鸿.水泥稳定碎石基层材料干缩变形特性的试验研究.公路交通科技.2006,(4):27~32
    102 Finn Thogersen, Christian Busch, Anders Henrichsen. Mechanistic Design of Semi-Rigid Pavements - An Incremental Approach. Road Directorate, Danish Road Institute. 2004
    103 Cho, Y.H., Lee, K.W., and Ryu, S.W. Development of cement-treated base material for reducing shrinkage cracks. Transportation Research Record, 1952, 134~143, 2006
    104 De Bondt, A.H. Anti-Reflective Cracking Design of (Reinforced) Asphaltic Overlays. PhDThesis. Delft: Delft University of Technology, 1999
    105 Pu, B. Analysis of the Performance of Pavements with a Cement Treated Base. MSc Thesis. Delft: Delft University of Technology, 2007
    106 AASTHO. Guide for Mechanistic-Empirical Design. NCHRP Project 1-37A. U.S.A, 2004
    107 Consiglio Nazionale delle Ricerce CNR. Catalogo delle pavimentazioni stradali, C.N.R.-B.U. n.178/95. Italy, 1995
    108 Huang,Y.H. Pavement analysis and design. Englewood Cliffs: Prentice Hall, 1993
    109 Luisiana Department of Transportation and Development DOTD. Report about Louisiana PavementConference. October 6&7. Baton Rouge, La Masood Rasoulian, P.E, 2004
    110 Dowson, D. History of Tribology. London: Longman Ltd, 2003
    111 Lytton, R.L. An Integrated Model of the Climatic Effects on Pavements. Austin: Texas Transportation Institute & Texas A & M University, 1990
    112 Majdzadeh, K. & Ramsamooj, D.V. Laboratory Studies and design considerations. Reflection cracking analysis 49: 286–313, 1980
    113 Monismith, C.L. & Coetzee, N.F. Reflecting cracking: analyses, laboratory studise, and design considerations. Proceedings of the Association of Asphalt Paving Technologist 49: 268–313, 1982
    114 Paris, P.C. & Erdogen, F.A. Critical analysis of crack propagation laws. Journal of Basic Engineering Trans. ASME Series D. 85(3): 528–55, 1963
    115 Sun, T.B. & Cong, L. A study on drying shrinkage procedure of semi-rigid basecoarse during construction. Highway 712(3): 111–115, 2003
    116郭朝阳,何兆益.水泥稳定碎石温缩性能试验研究及工程应用.路面机械与施工技术.2007,10(22):22~24
    117王艳,倪富健,李再新.水泥稳定碎石基层温缩性能试验及预估控制.东南大学学报.2008,38(2):261~262
    118曹育红.水稳类基层温缩开裂的原因及预防措施.山西建筑.2007,33(11):352~353
    119陈拴发,高蕾,董小坤.高性能混凝土配合比设计参数对温缩系数的影响.长安大学学报.2005,25(4):1~2
    120岳红宇,陈加富.水泥稳定碎石基层成型早期内部温度场解析与温缩裂缝控制.公路交通科技.2008,25(7):32~33
    121王宏畅,黄晓明.半刚性基层材料路用性能的试验研究.公路交通科技.2005,22(11):45~49
    122光同文.半刚性基层温缩裂缝控制措施的研究.合肥工业大学学报.2003,26(1):127~128
    123 Shi, W.M. & Jiang, Z.S. Research on the calculation method of temperature stress of cement treated crushed stone base and the method of controlling temperature shrinkage crack. Journal of Highway and Transportation Research and Development 21(4): 23–27, 2004
    124 Wang, H.C. Study on two-stage design of semi-rigid base asphalt pavement. Nanjing: Southeast university, 1996
    125 Wu, G.C. & Zhang, G.S. Thermal stress intensity factor analysis for asphalt concrete pavement. China Journal of Highway and Transport 9(1): 37–44, 2005
    126 Xu, H. Research on performance and design method of porous asphalt mixture. Nanjing: Southeast university, 2005
    127 Ren, Ruibo Li, Hiwen; Wang, Zheren.Theoretical analysis of design parameters on semi-rigid asphalt pavement with flexible base. the 9th International Conference of Chinese Transportation Professionals, ICCTP 2009
    128 Hu, Chunhua, Sun, Lijun. Structural modulus of semi-rigid base course for asphalt pavement. International Conference on Transportation Engineering 2007, ICTE 2007, p 669-672, 2007
    129 Wong, W.G, Qun, Yang, Wang, Kelvin C.P. Performances of asphalt-treated base and semi-rigid base. Transactions Hong Kong Institution of Engineers, Vol. 10,No. 3, p54-58, September 2003
    130田莳.金属物理性能.第二版.航空工业出版社,1994:48~89
    131朱伯芳.有限单元法原理与应用.中国水利水电出版社,2003:35~42
    132谢和平.岩石混凝土损伤力学.中国矿业大学出版社,1990:95~102
    133刘西军.大体积混凝土温度场温度应力仿真分析.浙江大学博士学位论文,2005:61~68
    134王润富,陈国荣.温度场和温度应力.科学出版社,2005:46~52
    135余天庆,钱济成.损伤理论及其应用.国防工业出版社,1993:33~54
    136庄茁,蒋持平.工程断裂与损伤.机械工业出版社,2004:101~110
    137赵爱红,虞吉林.准脆性材料的细观损伤演化模型.清华大学学报.2000,40(5):88~91
    138徐菁,吴子燕.混凝土材料细观结构断裂数值模拟.西北工业大学学报.2003,21(5):556~559
    139陈书宇.动态荷载下的混凝土本构关系及有限元实现.辽宁工学院学报.2003,23(1):5~7
    140陈永强,郑小平,姚振汉.非均匀材料的应变软化及层叠复合材料破坏过程的数值模拟.计算物理.2003,20(1):14~20
    141 George H, Dimitri B, Dimitrios T et al. A simple concrete damage model for dynamic FEM applications. International Journal of Computational Engineering Science, 2001,2(2):267~287
    142 Lee, J., G.L.Fenves, Plastic~Damage Model for Cyclic Loading of Concrete Structures, Journal of Engineering Mechanics, vol. 124, no.8, pp. 892–900,1998
    143庄茁,张帆,岑松.ABAQUS非线性有限元分析与实例.科学出版社,2005:111~116
    144庄茁.ABAQUS有限元软件6.4版入门指南.清华大学出版社,2004:56~70
    145石亦平,周玉蓉.ABAQUS有限元分析实例详解.机械工业出版社,2006:34~52
    146王金昌,陈页开.ABAQUS在土木工程中的应用.浙江大学出版社,2006:88~100
    147庄茁.ABAQUS/Standard有限元软件入门指南.清华大学出版社,1999:74~90
    148 Hibbitt, Karlsson, Sorensen. ABAQUS/Standard Theory Manual, Inc. 2002
    149 Hibbitt, Karlsson, Sorensen. ABAQUS/Standard User’s Manual, Inc. 2002
    150敖道朝.低剂量水泥稳定碎石在渝湛高速公路中的应用.公路.2006,(7):52~56
    151张嘎吱,沙爱民,郝建波等.水泥粉煤灰稳定碎石基层材料的级配范围.长安大学学报(自然科学版).2003,23(4):1~5
    152梅传江,牛朋.水泥稳定碎石基层路用性能研究.公路交通科技.2002,(3):35~37
    153潘兆平,黄晓明.水泥稳定碎石路面基层材料水泥剂量范围试验.南京建筑工程学院学报,1998,47:21~26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700