用户名: 密码: 验证码:
真三轴条件下黄土的结构性参数及结构性本构关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构性是天然岩土材料的基本属性,其定性和定量上的复杂性致使土结构性的研究仍处于一个“百花齐放”的探索阶段。本文在总结土结构性及其力学效应研究成果的基础上,借助新开发的真三轴仪,在综合结构势理论的框架内,进一步深入认识了土结构性的变化规律,并探讨分析了结构性土的强度变形本构关系。主要的研究成果有:
     第一,调试和完善了西安理工大学自主研发的新型真三轴仪。解决了该仪器系统存在的几个关键技术问题,如液压囊漏水问题、排水控制问题、仪器系统误差分析、附属设备的设计等。同时,对试验方法进行翔实的总结,并提出了仪器系统尚存在的问题。
     第二,通过真三轴仪,研究了原状黄土、重塑黄土和饱和黄土的应力应变和体变特性。提出了一个可全面反映剪应力和球应力共同作用的结构性参数——应力比结构性参数,实现了应力空间内任意应力路径下对土结构性的描述。通过常规三轴试验和真三轴试验,系统地认识了土结构性的变化规律以及它与剪切变形、含水量、固结压力和应力路径之间的关系,建立了描述结构性变化规律的数学表达式,并揭示了真三轴条件下土样的四种破坏形式。
     第三,建立了土的强度与结构性之间的关系,提出了一个可考虑结构性的抗剪强度公式,分析了强度参数粘聚力和内摩擦角与结构性参数之间的关系。认为结构性参数比与强度比成正比关系,粘聚力与结构性参数符合近似的双曲线关系,当土的结构性遭到彻底破坏时,其粘聚力为0。摩擦角在结构性变化过程中基本不变。
     第四,分析了应力空间内土的强度破坏面,探讨了强度破坏面的大小和形状与结构性之间的关系。认为结构性较强时,粘聚分量对土强度的贡献较大,三轴压缩与三轴挤伸状态时土的强度变化不大,其破坏面可以用Mises准则描述;结构性较弱时,粘聚力贡献较小或近于丧失,土的强度主要受颗粒摩擦特性的控制,其强度破坏面可以用Mohr-coulomb准则描述。随着结构性的增大,强度破坏面逐渐向外扩展。
     第五,分析了结构性土准先期固结压力、压缩曲线直线段斜率和回弹段斜率与结构性参数之间的关系。在剖析等结构性条件下土的临界状态力学特性和剑桥模型的基础上,结合土结构性的变化规律和结构性土的强度变形规律,建立了结构性土的弹塑性模型。模型引入了随结构性变化的压缩特性和临界状态线,能够合理的反映结构性土的变形特性。由分析可知,剑桥模型只是该模型在结构性参数等于1时的特殊情况。
Structure characteristic is the essential property of natural soils. That it is complicated in qualitative and quantitative makes the study in the "each airs his own views" groping moment.In this paper,based on known research of soil structure and its mechanic effect,the change law of structure property and its strength or deformation constitutive relations have been studied by new true tri-axial apparatus in the theory of comprehensive structure potential.The results are as follows:
     Firstly,the new true tri-axial apparatus has been debugged and perfected that it was developed by xi'an university of technology. Some key technical problems have been amended,for example, leakage of hydraulic pressure bursa, control of drainage,analysis of apparatus system error, design of accessorial equipments,and so on.In the mean time,the test methods have been summarized detailedly and the limitation of true tri-axial apparatus has been put forward.
     Secondly,the stress-strain characteristic of intact loess,remolded loess,saturated loess have been researched by tri-axial apparatus.A new structure parameter which is stress ratio structure parameter was proposed that it can reflect the coupling action of shear stress and mean spherical stress.The change law of structure property has been analysed and the relationships between structure parameter and shear deformation,water content, consolidation pressure, stress path have been recognized systemically. The four kinds of failure formation of sample was advanced in true tri-axial condition.
     Thirdly, based on the relation between strength and structure property,a new strength criterion that it can consider structure property has been proposed and the relations between cohesion force or internal friction angle and structure parameter have been established. It is shown that the structure parameter ratio is in direct proportion to strength ratio.The relation between structure parameter and cohesion can be described as hyperbola.When the soil structure have been destroyed completely,the cohesion is equal to O.The internal friction angle is invariable.
     Fourthly, The relations between the size or shape of failure surface and structure property have been discussed.The stronger the structure property is, the more the contribution of cohesion force to strength is.So,the strength is equivalent in the condition of tri-axial compress and extrusion.The strength failure surface can be described by Mises criterion for strong structure property soils.When the structure property is weak, the contribution of cohesion force to strength is small and the strength failure surface can be described by Mohr-coulomb criterion.The strength failure surface would be expanded as the increasing of structure parameter.
     Fifthly,Some new relations have been proposed that it includes qusi-pre-consolidation pressure,the linear moment and rebound slopes of condensation curves with structure parameter.The elastic-plastic models of structured soils have been established combining the change law of strength and deformation based on the analysis of the critical state property for structured soils under the condition of same structure parameter and Cambridge Clay model. The new models introduced a critical state line which moves based on structure parameter,and which can reflect deformation characteristic of structure soils rationally.The Cambridge Clay model is special one of the new model when structure parameter is equal to 1.
     The research was supported by china natural science fund "Research on Strength and Deformation Theory of Structured Soils Based on Comprehensive Structure Potential" (No.10872161).
引文
[1]Mitchell,J.K.Fundamentals of soil behavior,2nd Ed.,1993,Wiley,New York.
    [2]Soga,K.Mechanical behavior and constitutive modeling of natural structured soils. Ph.D. thesis, Dept. of Civil and Environmental Engineering, Univ. of California, Berkeley, Calif.1994.
    [3]太沙基(Terzaghi).理论土力学(中译本).中国地质出版社,1960.
    [4]Mitchell, J. K. Shearing resistance of soil as a rate process[J]. J.Soil Mech. and Found. Div.,1964,90 (1), 29-61.
    [5]Lambe, T. W. The engineering behavior of compacted clay[J]. J.Soil Mech. and Found. Div.,1958a,84 (2): 1-35.
    [6]Lambe, T. W. The structure of compacted clays[J].J. Soil Mech.and Found. Div.,1958b,84 (2):1-34.
    [7]Seed, H. B. and Chan, C. K. Structure and strength characteristics of compacted clays[J]. J. Soil Mech. and Found. Div.1959,85(5):87-128.
    [8]Olson, R. E. and Mesri, G. Mechanisms controlling the compressibility of clay[J]. J. Soil Mech. and Found. Div.,1970,96(6):1863-1878.
    [9]Levoueil S, Vaughan P R. The general and congruent effects of structure in natural soil and weak rock[J]. Geotechnique,1990,40(3):467~488
    [10]谢定义,姚仰平,党发宁.高等土力学[M].高等教育出版社,2008.
    [11]李广信.高等土力学[M].清华大学出版社,2004.
    [12]沈珠江.土体结构性的数学模型——21世纪土力学的核心问题[J].岩土工程学报,1996,18(1):95~97.
    [13]谢定义.试论我国黄土力学研究中的若干新趋向[J].岩土工程学报,2001,23(1):1~13.
    [14]沈珠江土力学论文选集[M].清华大学出版社.2005.
    [15]蒋明镜,沈珠江,邢素英.结构性粘土研究综述[J].水利水电科技进展.1999,19(1):26~30.
    [16]谢定义,齐吉林.土的结构性及其定量化参数研究的新途径[J].岩土工程学报,1999,21(6):651-656
    [17]骆亚生,张爱军.黄土结构性的研究成果及其新发展[J].水力发电学报,2004,23(6):66~69.
    [18]刘恩龙,沈珠江,范文.结构性粘土研究进展[J].岩土力学,2005,26(supp):1~8.
    [19]DESAI C S. A consistent finite element technique for work-softening behavior[C] Proceedings of the International Conference on Computation Methods in Nolinear Mechanics,Austin,1974.
    [20]沈珠江,陈铁林.岩土破损力学:基本概念,目标和任务[A].中国岩石力学与工程学会第七届学术大会论文集[C].北京:中国科学技术出版社,2002.9~12.
    [21]M.D.Liu and J.P.Carter.Volumetric Deformation of Natural Clays[J].International Journal of Geomechanics.2003,2(3):236~252.
    [22]Desai C S.Mechanics of materials and interfaces-the disturbed state concept[M].CRC press,2001.
    [23]Desa.i C. S, Ma.Y.. Modelling of joints and interfaces using the disturbed state concept[J]. Int. J. Numer. Analyt. Meth. Geo-mech.,1992,16,623~653.
    [24]Armaleh. S.H, Desai C. S.Modeling and testing of cohesion-less material using disturbed state concept[J]. Journal of theMechanicalBehavior ofMaterials,1994,279~295.
    [25]SurajitPAL, WathugalaG.WIJE. Disturbed statemodel for sand-geosynthetic interfaces and application to pull-out tests[J].Internation Journal of Numerical and Analytical Methods in Geo-mechanics,1999, (23): 1873-1892.
    [26]Katt.i D.R and Desa.i C. S. Modeling and testing of cohesive soilu-sing disturbed state concept[J].J.Engng. Mech.,1995,121(5):648-658.
    [27]Ma. Y. Constitutive modeling of joints and interfaces by usingdisturbed state concept[D]. Ph.D Disertation, TheUniversity ofArizona, Tucson, Arizona,1992.
    [28]Fakharian.K, Evgin.E. Elasto-plasticmodeling ofstress-path-dependent behavior of interfaces[J]. Int. J. Numer. Ana.lMech. Geomech.,2000, (24):183~199.
    [29]王国欣,肖树芳,黄宏伟,等.基于扰动状态概念的结构性粘土本构模型研究[J].固体力学学报,2004,25(2):191~197.
    [30]周成,沈珠江,陈生水,等.结构性土的次塑性扰动状态模型[J].岩土工程学报,2004,26(4):435-439.
    [31]郑建业,葛修润,孙红.硬化模型描述软化响应扰动状态理论合理性细观分析[J].岩土力学2007,28(1):127~131.
    [32]M.D.Liu, J.P.Carter and C.S.Desai.Modeling Compression Behavior of Structured Geomaterials[J]. International Journal of Geomechanics.2003,3(2):191~204.
    [33]吴刚,金剑,潘建华.扰动状态概念及其研究现状[A].见:中国岩石力学与工程学会编.中国岩石力学与工程学会第六次学术大会论文集[C].北京:中国科学技术出版社,2000,40~43
    [34]吴刚.工程材料的扰动状态本构模型(Ⅰ)——扰动状态概念及其理论基础[J].岩石力学与工程学报,2002,21(6):759~765.
    [35]吴刚.工程材料的扰动状态本构模型(Ⅱ)——基于扰动状态概念的有限元数值模拟[J].岩石力学与工程学报,2002,21(8):1107~1110.
    [36]苗天德.黄土湿陷变形机理的研究现状[C].中国工程建设标准化协会湿陷性黄土委员会全国黄土学术会议论文集,科学出版社,2001,73-82.
    [37]张向东,荚颖,于崇,等.土结构性研究进展[C].第九届全国岩石力学与工程学术大会论文集,2006,63-96.
    [38]邵生俊,周飞飞,龙吉勇.原状黄土结构性及其定量化参数研究[J].岩土工程学报,2004,26(4):531~536.
    [39]骆亚生,谢定义,邵生俊,等.复杂应力条件下的土结构性参数[J].岩石力学与工程学报,2004,23(24):4248~4251.
    [40]冯志焱.非饱和黄土结构性定量化参数与结构性本构关系研究[D].西安:西安理工大学,2008.
    [41]夏旺民.黄土弹塑性损伤本构模型及工程应用研究[博士学位论文][D].西安:西安理工大学,2005.
    [42]陈存礼,高鹏,何军芳.考虑结构性影响的原状黄土等效线性模型[J].岩土工程学报,2007,29(9):1330~1336.
    [43]陈存礼,胡再强,高鹏.原状黄土的结构性及其与变形特性关系研究[J].岩土力学,2006,27(11):1891~1896
    [44]陈存礼,高鹏,胡再强.黄土的增湿变形特性及其与结构性的关系[J].岩石力学与工程学报,2006,25(7):1352~1360.
    [45]谢定义,齐吉林,朱元琳.土的结构性参数及其与变形-强度的关系[J].水利学报,1999,(10):1~6.
    [46]邵生俊,邓国华.原状黄土的结构性强度特性及其在黄土隧道围岩压力分析中的应用[J].土木工程学报,2008.41(11):93~98.
    [47]邵生俊,龙吉勇,于清高,等.湿陷性黄土结构性变形特性分析[J].岩土力学,2006,27(10):1668~1672.
    [48]骆亚生,胡仲有,张爱军.非饱和黄土结构性参数与其强度指标关系初探[J].第九届全国岩石力学与工程学术大会论文集,重庆大学出版社,2007:342~347.
    [49]邵生俊,李彦兴,周飞飞.湿陷性黄土结构损伤演化特性[J].岩石力学与工程学报,2004,23(24):4161-4165.
    [50]谢定义,齐吉林,张振中.考虑土结构性的本构关系[J].土木工程学报,2000,33(4):35~41.
    [51]邵生俊,龙吉勇,于清高,等.湿陷性黄土的结构性参数本构模型[J].水利学报,2006,39(11):1315~1322.
    [52]饶为国,赵成刚,王哲,等.一个可考虑结构性影响的土体本构模型[J].固体力学学报,2002,23(1):34~39
    [53]骆亚生.非饱和黄土在动、静复杂应力条件下的结构变化特性及结构性本构关系研究[D].西安:西安理工大学,2003.
    [54]邓国华,邵生俊.黄土隧道围岩结构性变化特征分析[J].岩土工程学报.2008,30(2):219~224.
    [55]沈珠江.结构性粘土的弹塑性损伤模型[J].岩土工程学报,1993,15(3):1~6
    [56]沈珠江.结构性粘土的非线性损伤力学模型[J].水利水运科学研究,1993(4):247~255
    [57]沈珠江.软土工程特性和软土地基设计[J].岩土工程学报,1998,20(1):100-111
    [58]沈珠江.结构性粘土的堆砌体模型[J]岩土力学,2000,21(1):1~4
    [59]沈珠江.岩土破损力学与双重介质模型[J].水利水运工程学报,2002(4):1~6.
    [60]沈珠江,陈铁林.岩土破损力学——结构类型与荷载分担[J],岩石力学与工程学报2004,23(13):2137~2142.
    [61]沈珠江.岩土破损力学与双重介质模型[J],水利水运工程学报,2002(4):1~6
    [62]沈珠江.岩土破损力学:理想脆弹塑性模型[J].岩土工程学报,2003,25(3):253~257
    [63]沈珠江,胡再强.黄土的二元介质模型[J].水利学报,2003,7:1~6
    [64]沈珠江,邓刚.超固结粘土的二元介质模型[J].岩土力学,2003,25(4):495-499.
    [65]沈珠江.二元介质模型在黄土增湿变形计算分析中的应用[J].水利学报,200.5,36(2):129~134.
    [66]沈珠江,刘恩龙,陈铁林.岩土二元介质模型的一般应力应变关系[J].岩土工程学报,2005,27(5):490-494.
    [67]刘恩龙,沈珠江.结构性土的二元介质模型[J].水利学报,2005,36(4):391~395.
    [68]邓刚,沈珠江.结构性黏土的二元介质渗流模型[J].水利学报,2005,36(12):1414~1419.
    [69]刘恩龙,沈珠江.岩土材料的脆性研究[J].岩石力学与工程学报2005,24(19):3449~3453.
    [70]刘恩龙,沈珠江.岩土材料不同应力路径下脆性变化的二元介质模拟[J].岩土力学2006,27(2):261~267.
    [71]刘恩龙,沈珠江.结构性土的强度准则[J].岩土工程学报,2005,27(5):490~494.
    [72]刘恩龙,沈珠江,陈铁林.棱柱状结构体试件破损过程的试验研究[J].岩土力学,2006,28(10):1248~1252.
    [73]李建红,沈珠江.结构性土的微观破损机理研究[J].岩土力学2007,28(8):1525~1532.
    [74]Liu, M.D,Carter,J.P. Virgin compression of structured Soils[J].Geotechnique,1999,49(1),43~57.
    [75]Liu,M.D,Carter,J.P. On the volumetric deformation of reconstituted soils[J]. Int. J. Numer. Analyt. Meth. Geomech.2000,24(2):101~133.
    [76]Liu,M.D,Carter.J.P.Modeling the destructuring of soils during virgin compression. Geotechnique, 2000,50(4):479~483.
    [77]M.D.Liu,J.P.Carter. General Strength Criterion for Geomaterials[J]. International Journal of Geomechanics.2003,3(2):253~259.
    [78]黄文熙.土的工程性质[M].北京:中国水利水电出版社,1983.
    [79]常宝琦.黄土湿陷性的初步研究[C].中国科学院哈尔滨土木建筑研究所黄土基本性质研究论文集1962.
    [80]林崇义,黄土的结构特性[C].中国科学院哈尔滨土木建筑研究所黄土基本性质研究论文集,1962.
    [81]张宗祜.我国黄土显微结构研究[J].地质学报,1964,44(3):357~364.
    [82]N.K.Tovey. Quantitative analysis of electron micrographs of soil microstructure[C]. Proceedings of the International Symposium on soil structure,1973,50-58.
    [83]R.N.Yong,D.E. Sheeran. Fabric unit interaction and soil behavior[C].Proceedings of the International Symposium on soil structure,1973.
    [84]Yong R.N, Nagaraj T.S. Investigation of fabric and compressibility of Louisviue clay. Canadian Geotechnical Conference.1977:23-25.
    [85]高国瑞.黄土显微结构分类与湿陷性[J].中国科学,1980,12:1203~1208.
    [86]高国瑞.黄土湿陷变形的结构理论[J].岩土工程学报,1990,12:1~9.
    [87]雷祥义等.黄土的孔隙大小与湿陷性[J].水文地质与工程地质,1987,5:
    [88]雷祥义.黄土显微结构类型与物理性质指标之间的关系[J].地质学报,1989,2:182~190.
    [89]杨运来.黄土湿陷机理的研究[J].中国科学,1998,7:756-765.
    [90]吴义祥.工程粘性土微观结构的定量评价[J].地球学报,1991,23:143-150.
    [91]吴义祥.工程粘性土微观结构的定量研究[D].中国地质科学院,1988.
    [92]刘松玉.试论粘土粒度分布的分析结构[J].工程勘察,1992(2):1-4
    [93]胡瑞林,李向全,官国琳,等.土体微结构力学——概念·观点·核心[J].地球学报,1999,20(2):150~156.
    [94]方祥位,陈正汉,申春妮,等.原状Q_2黄土结构损伤演化的细观试验研究[J].水利学报,2008,39(8):940~946
    [95]施斌.粘土击实过程中微观结构的定量评价[J].岩土工程学报,1996,18(4):57~62
    [96]苗天德,刘忠玉,任九生.湿陷性黄土的变形机理与本构关系[J].岩土工程学报,1999,21(4):383~387.
    [97]党进谦,李靖.非饱和黄土的结构强度与抗剪强度[J].水利学报,2001,(7):79~90
    [98]党进谦,李靖.非饱和黄土的强度特征[J].岩土工程学报.1997.19(2):56~61
    [99]邢义川.黄土力学性质研究的发展和展望[J].水力发电学报.2000,4:54~65
    [100]刘祖典.黄土力学与工程[M].西安:陕西科学技术出版社,1997.
    [101]Pearce,J.A.. A new triaxial apparatus[C].In Proceedings of the Roscoe Memeorial.G.T. Foulis,Henley on Thames,1971,330-339.
    [102]Wood,D.M. Some aspects of the mechanical behaviour of kaolin under truly triaxial conditions of stress and strain[D].PhD thesis,Univ.of Cambridge,U.K.1974.
    [103]Airey,D.W, Wood,D.M.. The Cambridge true triaxial apparatus.Advanced Triaxial Testing of Soil and Rock,ASTM STP997:796-805.1988.
    [104]Matsuoka,H.,Sun,D.A. Extension of spatially mobilized plane(SMP) to frictional and cohesive materials and its application to cemented sands[J].Soils and Foundations.1995,35(4):63-72.
    [105]Matsuoka,H.,Sun,D.A.,Kogane,A.,Fukuzawa,No.,Ichihara,W. Stress-strain behaviour of unsaturated soil in true triaxial tests[J].Can.Geotech.J.2002,39:608-619.
    [106]Bell,J.M. Stress-strain characteristics of cohesionless granular materials subjected to statically applied homogeneous loads in an open system[D].California institute of Technology.1965.
    [107]Ko,H-Y., Scott,R.F. Anew soiltesting apparatus[J].Geotechnique,1967,17(1):40-57.
    [108]Sture,S.,Desai,C.S. Fluid cushion truly triaxial or multi-axial testing device[J]. Geotchnical Testing Journal.1979,2(1):20-33.
    [109]Sivakugan,N.,Chameau,J-L.,Holtz,R.D.,and Altschaeffl,A.G.Serve-controlled cuboidal shear device[J]. Geotechnical Testing Journal,1988,11(2):119-124.
    [110]Reddy,K.R.,Saxena,S.K., Budiman,J.S. Development of a true triaxial testing apparatus [J].Geotechnical Testing Journal,1992,15(2):89-105.
    [111]Mandeville.D.,Penumadu,D. True triaxial testing system for clay with proportional-integral-differential(PID)control[J]. Geotechnical Testing Journal,2004,27(2):1-11.
    [112]Choi,C.,Arduino,P.,and Harney,M.D. Development of a true triaxial apparatus for sands and gravels[J]. Geotechnical Testing Journal,2007,31(1):1-13.
    [113]Prashant,A. and Penumadu,D. Effect of intermediate principal stress on overconsolidated Kaolin clay.Journal of Geotechnical and Geoenvironmental Engineering,ASCE,130(3):284-292.
    [114]Green,GE. Strength and compressibility of granular material under generalized strain conditions.PhD thesis,University of London,UK.1969
    [115]Green,GE. Strength and deformation of sand measured in an independent stress control cell[C]. Stress-Strain Behaviour of soils,Proceeding of the Roscoe Memorial Symposium.GT.Foulis and Co.Ltd,Cambridge,England,1971,285-323.
    [116]Lade,P.V. and Duncan,J.M. Cubical triaxial tests on conhesionless soils.Journal of Soil Mechanics and Foudation Division,1973,99(10):793-812.
    [117]李广信.土的三维本构关系的探讨与模型验证[D].北京:清华大学博士学位论文,1985
    [118]袁聚云.软土各向异性性状的试验研究及其在工程中的应用[D].上海:同济大学博士学位论文,1995
    [119]许东俊.岩石强度随中间主应力的变化规律[J],固体力学学报,1985,01:94-98
    [120]朱俊高,卢海华,殷宗泽.土体侧向变形的真三轴试验研究[J],河海大学学报,1995,23(6):28~33
    [121]邵生俊,罗爱忠,邓国华,等.一种新结构压力室真三轴仪的研制与开发[J],岩土工程学报,2009.(待刊)
    [122]罗爱忠.新型真三轴仪调试及重塑黄土强度变形特性的试验研究等[D].西安:西安理工大学,2008
    [123]周飞飞.湿陷性黄土的增湿结构性非线性本构模型研究及应用[D].西安:西安理工大学,2006.
    [124]邓国华,邵生俊,梁永恒.结构性黄土的压力敏感性研究[J].西安理工大学学报.2008,24(2):139~143
    [125]Lambe T W. A mechanical picture of shear strength in clay[C].Research Conference on Shear Strength of Cohesive Soils.University of Colorado,Boulder,Colorado,1960.555~580.
    [126]Sandler I S, Dinggio F L and Baiadi G Y. Generalized Cap Model for Geological Materials[J] Journal of Geotechnical Engineering Division,1976,102(GT7):683~699.
    [127]魏汝龙.正常压密粘土的本构定律[J].岩土工程学报,1981,3(3):10~18
    [128]Banerjee P K,Stipho A S. Associated and Non-as-sociated Constitutive Relations for Undrained Behaviour of Isotropic Soft Clays[J].International Journal for Numerical and Analytical Methods in Geomechanics, 1978,2(1):35~56.
    [129]Newson.Validation of A Non—associated Critical State Model[J].Computers and Geotechnics,1998,23(4): 277~287.
    [130]Masin D. A Hypoplastic Constitutive Model for Clays[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2005,29(4):311~336.
    [131]Yatomic, Yashima A, Itzxuki A, etal. General Theory of Shear Bands Formation by A Non-coaxial Cam-clay Model[J].Soils and Foundations,1989,29(3):41~53.
    [132]徐舜华,徐光黎,程瑶.土的剑桥模型发展综述[J].长江科学院院报,2007,24(3):27~32.
    [133]Hsieh H S,Kavazanlian E,Borja R I.Double-yield surface Cam-Clay Plasticity Model,I:Theory[J]. Journal of Geotechnical Engineering,1990,116(9):1381~1401.
    [134]孙德安,姚仰平,殷宗泽.初始应力各向异性土的弹塑性模型[J].岩土力学,2000,21(3):222~226.
    [135]Hirai H. Elastoplastic Constitutive Model for Cyclic Behavior of Sands[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1987,11(5):503~520.
    [136]Matsuoka H,Yao Y P,Sun D A. The Cam-clay Models Revised by SMP Criterion[J].Soils and Foundations,1999,39(1):81~95.
    [137]孙德安,姚仰平.状材料的一个实用弹塑性模型[J].岩石力学与工程学报,2002,21(8):1147~1152.
    [138]Robinet J C,Pakzad M,Jullien A.General Modelling of Expansive and Non-expansive Clays[J]. International Journal for Numerical and Amlytical Methods in Geomechanics,1999,23(12):1319—1335.
    [139]Been K,Jefferies M G. A State Parameter Interpretation[J].Geotechnique.1985.35(2):99—102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700