用户名: 密码: 验证码:
大气激光通信中圆偏振调制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线激光通信具可靠性高、容量大、保密性好等特点,在通信和军事方面具有很高的应用价值。针对现有无线光通信系统可靠性低,同时为降低大气湍流和通信终端相对运动对通信系统性能的影响,本文利用偏振调制技术改善系统的性能,提出了采用圆偏振光编码调制方式,设计了相应的激光通信系统,对偏振光在大气传输过程中的性能和激光通信系统性能进行了分析,并开展了简单验证实验,取得了一定的研究成果。主要内容具体如下:
     首先在偏振光学的基础上的,对偏振移位键控的编码原理进行了分析,提出采用以圆偏振态进行编码的圆偏振键控编码技术(CPolSK)。激光的圆偏振特性在大气传输过程中变化很小,且圆偏振态具有旋转对称的特性,使系统的性能不受两通信终端相对运动的影响,降低了技术的实现难度,具有很高的可靠性,特别适用于作为移动平台的通信终端。CPolSK系统是利用两个圆偏振态进行组合编码,单通道传递信息。基于圆偏振态在大气传输中的优势,同时为提高通信量,提出圆偏振复用编码原理(CPolDM),不仅可保证通信的可靠性,又成倍地提高了系统容量。同时,从原理上推导了线偏振态和圆偏振态之间的转换过程,为圆偏振调制的编码解码提供理论基础。
     其次,根据大气激光通信系统的要求,提出了两种圆偏振调制的具体实现方案,同时结合两种调制原理,设计了圆偏振调制激光通信的实验验证系统。根据通信系统的功能模块,分别设计了发射系统、接收系统和光学天线。其中包括激光器选取、光束准直整形系统的设计以及调制解调电路,并根据系统要求设计了发射接收光学天线等光机系统。该通信系统可验证两种圆偏振编码方式,且结构简单,实现方便,非常适用于作为星载通信终端。
     第三,论述了激光在传输过程中受到大气散射、折射、湍流等各种效应的影响,重点分析了大气信道对光信号的偏振度和偏振态造成的影响,推导了大气散射对偏振光的退偏效应。以部分相干电磁厄米-高斯光束为模型,推导了部分相干激光的偏振特性在大气湍流传输过程中的变化规律,并推导出了激光在传输过程中的偏振不变性,可用于圆偏振调制系统的性能优化。根据圆偏振调制的特性,通过把大气等效为一个线性延迟器,来分析测量圆偏振光在大气中总的双折射量,不仅可测定圆偏振态的改变量,还可以估算系统的功率的衰减,评判系统的功率是否满足要求。
     最后,为验证圆偏振编码原理,对圆偏振激光通信系统的性能进行分析。首先通过对几种调制方式的各项性能进行对比,结果表明圆偏振调制虽然平均功率高,但带宽需求小且误码率低,可通过偏振复用技术提高容量,是一种性能优良的调制方式。并通过软件模拟仿真了圆偏振调制通信系统,通过仿真结果对比,证明差分接收圆偏振调制系统具有优良的性能。其后,分析了实际的圆偏振通信系统,进行了简单的圆偏振编码通信实验,实现了数据的发送与接收,证明了圆偏振编码的可行性和通信系统设计的合理性,尤其是在湍流扰动情况下,CPolSK具有较低的误码率。为完善圆偏振通信系统系统,分析了光学元件对通信性能的影响,并提出采用相干接收技术等措施来提高系统的接收灵敏度、误码性能以及抗大气扰动的能力。
Wireless laser communication has advantages of low power consumption. high reliability, high level of security, high data-rata capacity and so on, so it has a high application value in communication and military aspects. In order to improve the reliability of the optical communication system, and reduce the impact of atmosphere disturbance and communication terminal relative motion to the performance of communication system, a new polarization modulation method is introduced which uses circular polarization to express the information. The corresponding laser communication system is designed, the performance of the polarized light propagating in atmosphere and the communication system is analyzed. The simple verification experiment is carried out, obtained some achievements in the dissertation. The main research contents are as follows.
     First, based on the polarization optics and the polarization shift keying, the circular polarization shift keying (CPolSK) modulation is proposed which uses the two kinds of circular polarization to denote the data states of the information. The circular polarization modulation has high reliability since the polarization properties of laser change relatively small while propagating through the atmosphere. Because of the rotational symmetry of circular polarization, the system performance is unaffected by the relative motion of the two terminals, and is especially suitable for mobile communications terminal, and can work well. The CPolSK system is the use of the two circular polarization states for the combination of coding and single-channel transmission of information. Based on the advantages of circular polarization in the atmospheric transmission, and to improve information capacity, we again propose the circular polarization multiplexing (CPolDM) modulation method. The CPolDM not only ensures the reliability of the communication, but also doubly increases information capacity of system. The conversion process between linear polarization and circular polarization provides a theoretical basis for the circular polarization modulation encoding and decoding.
     Secondly, according to the requirements of laser communication in the atmospheric, combined with two kinds of circular polarization modulation method, communication system of circular polarization modulation is designed. According to the function of communication system, the transmitter, receiver and optical antenna are designed. The communication system includes laser alignment straight shaping system, the circuit of modulation and demodulation, the opto-mechanical system of transmitting and receiving optical antenna. Two modulation schemes can be verified in the same system. The laser communication system is very simple and convenient, which could be used in space borne communication terminal.
     Thirdly, this dissertation introduces the infection to laser communications by the atmospheric absorption, refraction, scattering and turbulence, which particularly analyses variances of the state of polarization (SOP) and degree of polarization (DOP) of signal light during laser beam propagating in the atmosphere, and discusses the depolarization caused by the atmospheric scattering. Based on the specific analysis of each parameter which changes in the SOP of laser beam, we introduce various measures to improve the performance and reliability of the system. Base on the Electromagnetic Hermite-Gaussian(EHG) beam model, the change process of polarization properties of partially coherent light laser propagating in the turbulent atmosphere is deduced, and derived the condition for circular polarization to keep polarization property unchanged, which can be used for optimizing the performance of circular polarization modulation system. According to the circular polarization modulation characteristics, the atmosphere is regarded as a linear delay retardant. Based on the analysis of the birefringence of circular polarization in the atmosphere, it not only can be used to test circular polarization state change quantity, but also estimate the power attenuation and the availability of the FSO system.
     Finally, in order to verify the performance of circular polarization modulation, the performance of the communication system is analysed. Compared circular polarization modulation with several modulations, the results show that circular polarization modulation has the lowest bandwidth request and the smallest BER, but with the highest average power. Polarization modulation can also improve the channel capacity by polarization multiplexing, so it is an excellent modulation scheme. Through simulating and analyzing the polarization modulation system in the software, it shows that the dual differential receiver polarization modulation system has the best performance. Subsequently, base on the analysis of the actual circular polarization communication system, which is verified simply experiments, completing the transmitting and receiving of data to prove the feasibility of the circular polarization modulation and the rationality of the system design, especially CPolSK has very low BER in the turbulence. To improve the performance of the communication systems, the impact on the communication performance of optical components is analyzed in the paper, and the technology of coherent detection is adopted, which effectively can improve the receiving sensitivity, BER performance and the ability of anti-atmospheric disturbance.
引文
[1]姜会林,佟守峰,张立中.空间激光通信技术与系统[M].北京:国防工业出版社,2010
    [2]H. Hemmati.Deep space optical communications[M]. California:Wiley Interscience,2006
    [3]柯熙政,席晓莉.无线激光通信概论[M].北京:北京邮电大学出版社,2004
    [4]F. E. Goodwin. A review of operational laser communication systems[J]. IEEE, 1970,58(10):1746-1752
    [5]李睿,赵洪利,曾德贤.空间激光通信及其关键技术[J].应用光学.,2006.27(2):152-154
    [6]杜安源,柯熙政大气信道对激光PPM信号的影响的研究[J].激光杂志.2006.27(1):73-74
    [7]谢木军,付承毓,马佳光.自由空间激光通信及其关键技术[J].光电工程,1999,26(Sup):23-28
    [8]曾华,陈晓天,韩天愈.激光大气通信系统的关键技术研究[J].集成电路与元器件,2004,8:71-72
    [9]A. K. Majumdar,J. C. Ricklin.Free-space laser communications:principlesand advances[M]. New York:Springer,2008
    [10]Lesh J R.Deep-space optical communications:a program update[J].SPIE, 1990,1218:530-541
    [11]胡渝,刘华.空间激光通信技术及其发展[J].电子科学技大学学报,1998,27(5):453-456
    [12]J. N. Pelton,A. U. M. Rae.Global satellite communications technology and systems an overview [J].Journal Space Communications,2000,16(8):55-69
    [13]谭立英,马晶,林维秋.国际卫星光通信技术发展[J].激光技术,1999,23(5):99-303
    [14]Z. Sodnik, B. Furch, and H. Lutz. Free-space laser communication activities in Europe:SILEX and beyond[C].19th Annual Meeting of the IEEE Lasers and Electro-Optics Society,2006:78-79
    [15]刘华,胡渝.欧洲卫星空间光通信发展现状[J].电子科学技大学学报,1998,27(5):552-556
    [16]尹道素,皮德忠.日本空间光通信技术的发展状况[J].电子科学技大学学报,1998,27(5):546-551
    [17]R. R. Iniguez, S. M. Idrus, and Z. Sun.Optical wireless communications-IR for wireless connectivity[M]. London:Taylor & Francis Group,2007
    [18]王佳,俞信.自由空间光通信技术的研究现状和发展方向综述[J].光学技术,2003,31(2):259-262
    [19]蔡燕民,陈刚,董作人.155Mbits/s大气传输光通信系统及其测试[J].中国激光,2000,27(11):1040-1044
    [20]S. Betti, G. D. Marchis. Coherent optical communications systems[M]. New York:John Wiley & Son, Inc.,1995
    [21]柯熙政,殷致云.无线激光通信系统中的编码理论[M].北京:科学出版社,2009
    [22]Z. X. Wang, W. D. Zhong, S. N. Fu.Performance comparison of different modulation formats over free-space optical (FSO) turbulence links with space diversity reception technique[J].IEEE Photonics Journal,2009, 1(12):277-285
    [23]W. Niblack and E.Wolf.Polarization Modulation and Demodulation of Light[J]. Applied Optics,1964,3(2):277-277
    [24]Smolyanino v II,Wasiczko L,Cho K.Longdistance 1.2 Gbit/s optical wireless communication link at 1550nm[J].Proc.SPIE,2002,4489:241-250
    [25]S. Benedetto, P. Poggiolini. Theory of Polarization Shift Keying Modulation[J]. IEEE Transactions on Communications.1992,40(4):708-721
    [26]S. Benedetto, Senior Member. Performance of Coherent ODtical Polarization Shift Keying Modulation ik the Presence of Phase Noise[C]. IEEE transactiongs on communications,1995,43(2):1603-1612
    [27]N. Chi, L. Yu, S. Yu, P. Jeppesen. Generation and Transmission Performance of 40Gbit/s Polarisation Shift Keying Signal[J]. Electronics Letters.2005,41(9): 547-549
    [28]A. M. Saleh. An investigation of laser wave depolarization due to atmospheric transmission[J]. IEEE,1967,3:256-260
    [29]S. Betti, G. D. Marchis, E. Iannone.Polarization modulated direct detection optical transmission systems[J] Journal of Lightwave Technology,1992,vol. 10(12):1985-1997
    [30]S. Benedetto, R. Gaudino and P. Poggiolini. Direct-Detection of Optical Digital Transmission Based on Polarization Shift Keying Modulation[J]. IEEE Journal on Selected Areas in Communications,1995,13(3):531-542
    [31]A. S. Siddiqui, S. G. Edirisinghe, J. J. Lepley, J. G. Ellison and S. D. Walker.Dispersion-tolerant Transmission Using a Duobinary Polarization-shift Keying Transmission Scheme[J]. IEEE Photonics Technology Letters.2002, 14(2):158-160
    [32]S. Hu, H. Yu-Li, S. Katsuhiro.4-Level Direct-Detection Polarization Shift-Keying (DD-PolSK) System with Phase Modulators[C]. Optical Fiber Communication Conference and Exposition,2003,vol.2:647-649
    [33]M. Midrio, P. Franco, M. Crivellari. Polarization Shift Keying for High-bit-rate Multilevel Soliton Transmissions[J]. Journal of the Optical Society of America B:Optical Physics.1996,13(7):1526-1535
    [34]K. Iversen, D. Junghanns. On the Combination of Optical CDMA and PolSK[J]. Journal of Optical Communications.1995,16(4):126-130
    [35]王陆唐,方捻,王颖.基于SOA全光偏振调制的双信道PolSK光传输系统[J].光学学报,2009,29(1):138-144
    [36]杨秀丽.偏振移位键控技术和光混沌保密通信系统的研究[D].上海大学硕士论文,2005
    [37]方捻,王陆唐,郭淑琴,黄肇明.偏振态移位键控光混沌通信系统的保密性[J].光学学报,2006,26(06):812-817
    [38]S. Trisno, C. C. Davis. Performance of Free Space Optical Communication Systems Using Polarization Shift Keying Modulation[J]. Free-Space Laser Communications VI, San Diego, CA, USA, SPIE,2006:63040-63049
    [39]X. Tang, Z. Ghassemlooy.Free-space optical communication employing polarisation shift keying coherent modulation in atmospheric turbulence channel[C]. CSNDSP Networks and Digital Signal Processing,2010:663-668
    [40]X. Tang, Z. Ghassemlooy, S. Rajbhandari.Coherent optical binary polarisation shift keying heterodyne system in the freespace optical turbulence channel [J]. IET Microwaves, Antennas & Propagation,2011,5(9):1031-1038
    [41]朱钧,张书练.圆偏振光偏振复用激光通讯系统[J].激光与红外.2005,35(2):78-79
    [42]林日钊,傅忠谦,李永亮.圆偏振移位键控的星地激光通信误码率研究[J].中国激光,2011,38(11):1105007
    [43]刘丹,刘智,王璞瑶.一种大气激光通信系统抗干扰调制/解调技术[J].中国激光,2012,39(7):0705004
    [44]赵新辉,姚勇,孙云旭,刘超.一种新的自由空间光通信调制方式-偏振位移键控[J].光学学报,2008,28(2):223-226
    [45]X.H. Zhao, Y. Yao, Y. X. Sun.Circle Polarization Shift Keying With Direct Detection for Free-Space Optical Communication[J].Journal of Optical Communications and Networking,2009,1(4):307-312
    [46]Mario Martinelli, Silvia Maria. Polarization stabilization in optical communications systems[J]. Journal of lightwave technology,2006,24(11): 4172-4183
    [47]姚启钧.光学教程[M].北京:高等教育出版社,2002
    [48]廖廷彪.偏振光学[M].北京:科学出版社,2003
    [49]梁铨廷.物理光学[M].北京:电子工业出版社,2008
    [50]新谷隆一,范爱英,康昌鹤.偏振光[M].北京:原子能出版社,1994
    [51]Max Born,Emil Wolf.Principles of Optics[M].London:Cambridge University Press,1999
    [52]陈卫斌,顾培夫.偏振光的Stokes列矩阵表示及应用[J].光学仪器,2004,26(2):42-47
    [53]罗英达,陈哲.偏振光斯托克斯参量测量原理与测量[J].激光与光电子学进展[J],2009,46(6):54-58
    [54]Collett, Edward.Polarized Light:Fundamentals and Applications[M].New York: Marcel Dekker,1993
    [55]Jay N. Damask. Polarization Optics in Telecommunications[M]. New York: Springer Science and Business Media,2005
    [56]罗璠,方捻,郭小丹.基于混沌映射的偏振移位键控光通信系统[J].中国激光,2008,35(12):1894-1899
    [57]崔殿栋.无线激光通信中偏振调制系统的研究[D].哈尔滨工业大学硕士论文,2009
    [58]张小培.四进制差分偏振移位键控发射机设计[D].上海大学硕士硕士论文,2008
    [59]范嘉煜.偏振移位键控(PolSK)技术的研究[D].上海大学硕士论文,2004
    [60]范嘉煜,黄肇明,王陆唐.偏振移位键位(PolSK)技术的研究与应用[C].中国通信学会第三届中国光通信技术与市场研讨会,2003
    [61]赵新辉.无线光通信中旋光调制技术及偏振传输理论的研究[D].哈尔滨工业大学博士论文,2011
    [62]陈延如,王家旺.圆偏振光和线偏振光散射特性分析与比较[J].量子电子学报,1997,14(06):551-557
    [63]Arnold D. Kim,Miguel Moscoso. Backscattering of circularly polarized pulses [J].Opt. Lett.,2002,27(18):1589-1591.
    [64]王翔,赵尚弘,李勇军.复用技术在空间光通信中的应用研究[J].半导体光电,2011,32(3):392-396
    [65]吴婷.80G光纤通信系统偏振复用技术研究[D].华中科技大学硕士论文,2009
    [66]Paul M. Hill, P.M., Olshansky.Optical polarization division multiplexing at 4Gb/s[J].IEEE Photon. Technol. Lett.,1992,4(5):500-502
    [67]Krzystof Perlicji.3×2.5 Gbit/s polarization division multiplexing transmission [C].12th WSEAS Internationa] Conference on communication,2008,263-265.
    [68]Guodong Xie,Fangxiang Wang, Anhong Dang. A Novel Polarization Multiplexing System for Free Space Optical Links[J]. IEEE Photonics Technology Letters,2011,23(20):1484-1486
    [69]杨鹏,艾华.圆偏振调制激光通信系统设计[J].中国激光,2012,39(9):0916002
    [70]崔准,陈名松.光通信系统中圆偏振光的应用研究[J].光通信技术,2006,30(4):49-51
    [71]Alda J. Laser and Gaussian beam propagation and transformation[J]. Encyclopedia of Optical Engineering,2003,4(3):999-1013
    [72]周睿.空间光通信高精度激光束准直系统设计[D].西安电子科技大学硕士论文,2007
    [73]J. C. Brandenburg, J. Q. Liu.Optical signal detection in the turbulent atmosphere using p-i-n photodiodes[J]. IEEE Journal on Selected Areas in Communications, 2009,27(12):564-1571
    [74]杨华军.空间光通信中高精度激光束准直和光学天线设计与实现[D].电子科技大学博士论文,2007
    [75]萧泽新,安连生.工程光学设计[M].北京:电子工业出版社,2003
    [76]张登臣,郁道银.实用光学设计方法与现代光学系统[M].北京:机械工业出版社,1999.
    [77]尹治国.空间光通信信号光发射模块的研究与设计[D].电子科技大学硕士论文,2005
    [78]张杰.无线大气激光通信损耗特性研究[D].东南大学硕士论文,2004
    [79]Fante R. Eleetromagnetie Beam PropagationinTurbulent media[J].Proc IEEE,1975,63(12):1669-1692
    [80]X. Zhu and J. M. Kahn. Free-space optical communication through atmospheric turbulence channels[J].IEEE Transactions on Communications,2002,50(8): 1293-1300
    [81]杨利红,柯熙政,马冬冬.偏振激光在大气传输中的退偏研究[J].光电工程,2008,35(11):62-67
    [82]徐娟.大气的光散射特性及大气对散射光偏振态的影响[D].南京信息工程大学硕士论文,2005
    [83]H. C. van de Hulst. Light Scattering by Small Particles[M]. New York:Dover Publications,1957
    [84]陈延如,王家旺.线性偏振光被微粒子场散射的特性研究[J].量子电子学报,1997,14(2):150-156
    [85]Cheung R L-T, Ishimaru A. Transmission, backscattering, and Depolarization of waves in randomly distributed spherical particles[J]. Applied Optics,1982,21: 3792-3798
    [86]Carswell A I, Pal S R.Polarization anisotropy in lidar multiple scattering from atmospheric clouds. Applied Optics,1985,24:3464-3471.
    [87]吴良海.大气散射光线的偏振特性研究[D].合肥工业大学硕士学位论文,2007
    [88]T. Shirai, A. Dogariu, E. Wolf. Mode analysis of spreading of partially coherent beams propagation through atmospheric turbulence. J.Opt.Soc.Am.A,2003, Vol. 20:1094-1102
    [89]Jennifer C. Ricklin. Free-space laser communication using a partially coherent source beam[D]. Johns Hopkins University,2002.
    [90]E. Wolf. Unified Theory of Coherence and Polarization of Random Electromagnetic Beams[J]. Physics Letters A.2003,312(5-6):263-267
    [91]E. Wolf and E. Collett. Partially Coherent Sources which Produce the Same Far-field Intensity Distribution as a Laser[J]. Optics Communications,1978, 25(3):293-296
    [92]Jixiong Pu. Invariance of spectrum and polarization of elect romagnetic Gaussian Schell model beams propagating in free space[J]. China.Opt. Lett., 2006,4(4):196-198
    [93]季小玲,陈森会,李晓庆.部分相干电磁厄米-高斯光束通过湍流大气传输的偏振特性[J].中国激光,2008,35(1):67-72
    [94]Emil Wolf. Polarization invariance in beam propagation[J]. OPTICS LETTERS, 2007,32(23):3400-3401
    [95]O. Korotkova, M. Salem, E. Wolf.The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence[J]. Opt. Commun.,2004,233:225-230
    [96]Xinhui Zhao, Yong Yao,Yunxu Sun.Condition for Gaussian Schell-model beam to maintain the state of polarization on the propagation in free space[J]. OPTICS EXPRESS,2009,17(20):17888-17894
    [97]M. Salem, O. Korotkova, A. Dogariu, and E. Wolf.Polarization changes in partially coherent electromagnetic beams propagating through turbulent atmosphere[J]. Waves Random Media,2004,14:513-523
    [98]Larry C. Andrews, Ronald L. Phillips. Laser Beam Propagation through Random Media[M]. Bellingham,Washington:SPIE Press,1998
    [99]O. Korotkova, E. Wolf. Changes in the state of polarization of a random electromagnetic beam on propagation[J]. Opt. Commun.,2005,246:35-43
    [100]石丽芬,蒲继雄,陈子阳.部分相干电磁光束在湍流介质中传输的偏振变化[J].强激光与粒子束,2006,18(8):1271-1275
    [101]Xinhui Zhao, Yong Yao, Yunxu Sun.Condition of Keeping Polarization Property Unchanged in the Circle Polarization Shift Keying System[J].Journal of Optical Communications and Networking,2010,2(8):570-575
    [102]W. Lu, L. Liu, J. Sun, Q. Yang and Y. Zhu. Change in Degree of Coherence of Partially Coherent Electromagnetic Beams Propagating through Atmospheric Turbulence[J]. Optics Communications.2007,271(1):1-8
    [103]汪清泉.部分相干激光通信性能受大气湍流影响的分析[D].西安电子科技大学硕士论文,2011
    [104]张方成.部分相干光在湍流大气中传输的偏振度变化研究[D].西安理工大学 硕士论文,2008
    [105]王海霞,丁超亮,张永涛.部分空间相干部分光谱相干厄米-高斯脉冲电磁光束的偏振特性[J].光学学报,2011,31(3):0326001
    [106]Fernando Trevio Martinez. Birefringence assessment of single-mode optical fibers[J]. Opt. Exp.,2005,13(7):2556-2563
    [107]D. S. Kliger, J. W. Lewis, C, E. Randall. Polarized Light in Optics and Spectroscopy[M].San Diego:Academic Press,1990
    [108]S.C. Rashleigh.Origins and control of polarization effects in single-mode fibers[J] J. Lightwave Technol.,1983,LT-1:312-331
    [109]W.J. Tabor, F. S. Chen.Electromagnetic propagation through materiales possessing both Faraday rotatio and birrefringence:experiments with ytterbium orthoferrite[J]. J. of Appl. Phys.,1969,40(7):2760-2765
    [110]R. C. Jones.A new calculus for the treatment of optical systems[J].Opt. Soc. Am.,1941,31(8):488-493
    [111]Z. B. Ren.Polarization multiplexing applied to a fiber current sensor[J].Opt. Lett.,1989,14(21):1228-1230
    [112]G. I. Chandler.Fiber optic heterodyne phase-shift measurement of plasma current[J].Appl.Opt.,1986,25(11):1770-1774
    [113]B. Culshaw.Optical fibre sensing and signal processing[M]. London:Peter Peregrinus,1984
    [114]Z. B. Ren.Linear birefringence measurement in single-mode optical fibre with circularly polarized input light[J] J. Phys. E. Sci. Instrum.,1984,18:859-862
    [115]Azzam R M A,Bashara N M.Ellipsometry andPolarized Light[M].Amsterdam: North-Holland,1979
    [116]Floerez S.A.J. Circular polarization and availability in free space optics (FSO) communication systems[C]. Proc. of IEEE Latin-American Conference, Bogota, 2010:1-6
    [117]T. Imai, Optical polarization control utilizing an optical heterodyne detection scheme[J]. Electron. Lett.,1985,21(2):52-53
    [118]T. Okoshi, New polarization-control scheme for optical heterodyne receiver using two Faraday rotations[J].Electron. Lett.,1985,21(18):787-788
    [119]A. Prokes y V. Skorpil.Estimation of free space optics systems availability based on meteorological visibility[C] IEEE Latin American Conference on Communication, LATINCOM, Medellin, Colombia,2009
    [120]B. Culshaw, Optical fibre sensing and signal processing[M]. London:Peter Peregrinus,1984
    [121]I. Kimy E. Korevar.Availability of free space optics (FSO) and hybrid FSO/RF systems[J].Proc. of SPIE,2001,4530:84-95
    [122]A. Khatoon, W. G. Cowley, N. Letzepis. Channel measurement and estimation for free space optical communications[C]. Australian Communications Theory Workshop,2011,112-117
    [123]A. Prokes.Atmospheric effects on availability of free space optics systems[J]. Optical Engineering,2009,48(6),066001
    [124]M. A. Naboulsi and H. Sizun[J].Fog attenuation prediction for optical and infraredwaves[J] Optical Engineering,2004,23(2):319-329
    [125]T. Kamalakis, T. Sphicopoulos. Estimation of the power probability density function in free-space optical links by use of multicanonical Monte Carlo sampling[J].Optics Letters,2006,31(11):3077-3079
    [126]D. Divsalar, R. M. Gagliardi, J. H. Yuen.PPM Performance for Reed-Solomon Decoding over an Optical-RF Relay Link[J].IEEE Transactions on Communications,1984,COM-32:302-305
    [127]D. Zwillinger.Differential PPM has a Higher Throughput than PPM for the Band-Limited and Average-Power-Limited Optical Channel[J].IEEE Transactions on Information Theory,1988,34:1269-1273
    [128]Y. M. Kabanov.The Capacity of a Channel of the Poisson Type [J].Theory Probab. Appl.,1978,23:143-147
    [129]Z. Xiaomai, X. Zhaofei, and H. Tiexin.On Evaluating the Performance of Error-Correcting Codes in Lasercom PPM Systems with Direct Detection [J].IEEE TENCON, Beijing, China,1993,489-491
    [130]A. R. Hayes, Z. Ghassemlooy, N. L. Seed. Baseline Wander Effects on Systems Employing Digital Pulse Interval Modulation[J]. IEEE Proc. Optoelectuon.2000, 147(4):295-300
    [131]Chao Liu, Xuelian Yu, Yong Yao. Analysis of quantitative differences in large-aperture size for freespace optical communication systems with circle polarization shift keying and on-off keying in atmospheric turbulence channels[J]. Proc. of SPIE,2010,7854:78543M
    [132]X. Tang, Z. Ghassemlooy, S. Rajbhandari.Coherent polarisation shift keying modulated free space optical links over a gamma-gamma turbulence channel[J]. Am. J. Engg. & Applied Sci.,2011,vol.4(4):520-530
    [133]S. V. Kartalopoulos. Optical bit error rate:an estimation methodology[M]. United States of America:Wiley-IEEE Press,2004
    [134]Sugianto Trisno, Igor I. Smolyaninov, Stuart D. Milner. Characterization of time delayed diversity to mitigate fading in atmospheric turbulence channels[J]. Proc.SPIE,2005,Vol.5892:589215
    [135]刘式达.大气湍流[M].北京:北京大学出版社,2008
    [136]X. Zhu and J. M. Kahn.Free-space optical communication through atmospheric turbulence channels [J]. IEEE Transactions on Communications,2002,vol.50: 1293-1300
    [137]J. Grosinger.Investigation of polarization modulation in optical free space communications through the atmosphere[D]. Technical University ofVienna, 2008
    [138]X. Tang, Z.Ghassemlooy. Performance of the coherent optical binary polarization shift keying heterodyne system in FSO communication using a lognormal atmospheric turbulence model[C]:Mosharaka International Conference on Communications,2010,30-35
    [139]C. Liu, Y. Sun, Y. Yao, and X. Zhao. Analysis of direct detection and coherent detection in wireless optical communication with polarization shift keying[C]. CLEO/PACIFIC RIM,2009:1-2
    [140]S. Betti, G. D. Marchis, E. Iannone. Coherent optical communications systems[M]. New York:John Wiley & Son, Inc.,1995
    [141]J. G. Proakis. Digital communications 4th-ed[M]. New York:McGraw-Hill Series In Electrical and Computer Engineering,2001
    [142]X. Tang, Z. Ghassemlooy.Differential Circular Polarization Shift Keying with Heterodyne Detection for Free Space Optical Links with Turbulence Channel [C].16th European optical links with turbulence channel Networks and ptical ComunicationsConferenre,2011,149-152
    [143]Z. Ghassemlooy, S. Rajbhandari. Optical Wireless Communications:System and Channel Modelling with MATLAB[M].London:CRC Press,2012
    [144]S. Trisno, I.I. Smolyaninov.Characterization of time delayed diversity to mitigate fading in atmospheric turbulence channels [J].Proc. SPIE,2005, Vol.5892:388-397

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700