用户名: 密码: 验证码:
红外人体目标检测和跟踪方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与可见光成像相比,红外成像(特别是远红外成像)具有显著的优点。由于红外图像是热成像,可不依赖于外界光线条件。即使在黑暗和烟雾环境,也可获得在可见光波段无法成像的感兴趣的目标。
     由于人体目标是场景中最活跃和最有价值的要素,对场景中人体目标进行检测和跟踪一直以来是大家比较关心的问题。基于红外成像的人体目标检测和跟踪系统几乎可以在任何环境下进行全天候工作,而且在很多应用场合具有不可替代的作用,具有良好的应用前景。
     从技术角度,红外图像中的人体目标的检测和跟踪是一个具有挑战性的课题,内容涉及红外图像分割,人体目标的特征提取、特征描述和分类识别,非刚体复杂目标的运动跟踪等问题。要面对的主要困难有:(1)由于成像设备差异和环境因素变化造成的红外图像本身分辨率低,动态范围小,成像质量差等特点使得图像分割算法鲁棒性差;(2)由于红外图像是灰度图像,无色彩信息可用,并且成像模糊,纹理细节少,而人体目标是非刚体目标,姿态复杂多变,目标大小不一,因此如何有效地提取和描述红外图像中人体目标的特征,对目标和干扰进行分类识别困难很大;(3)人体目标的运动主观随意性强,无固定规律,并且目标的运动伴随着姿态和状态的改变,刚体目标的跟踪方法不适于人体目标的跟踪,同时由于红外人体目标用于跟踪的有效特征较少,可见光图像中一些优秀的基于颜色和纹理特征的人体目标跟踪方法不能直接使用。
     在对现有红外及可见光人体目标检测跟踪方法和红外图像中人体目标的成像特征进行分析后,本文提出了一套解决方案:
     (1)对于一般的红外图像,从红外成像的机理出发,提出了基于直方图多聚类分析的图像分割阈值选取方法,使用K-均值聚类中心分析法实现阈值快速选取;对于极性反转的红外图像采取传统的Mean Shift方法进行图像分割;对于发生互相遮挡粘连的人体目标,提出一种基于模板图像空间相对位置Mean Shift聚类分析的分割方法,后续的目标跟踪方法中采用了与这个算法类似的思想。
     (2)图像分割结束后根据得到目标的二值化模板特征选取候选目标。对因目标红外成像特征不一致而造成的目标模板缺损破碎现象,提出一种增强型的候选目标选取方法。初次候选目标选取完成后对剩余的模板图像使用图像距离变换,根据距离约束特征重新选取可能存在的目标区域并结合二次阈值选取算法,分割出潜在的候选目标。
     (3)对于候选目标,提出了基于网格划分的局部特征提取和特征描述方案。具体包括两个方法:局部梯度方向直方图描述方法和局部最大方向能量直方图描述方法。使用RBF—SVM分类器对候选目标进行分类识别,判断其是否为人体目标。
     (4)对人体目标的跟踪,提出了一种基于粒子Mean Shift迁移的跟踪方法,实现了对人体目标任意复杂运动形态的可靠跟踪。设计跟踪系统时采用面向对象的方法,对目标的特征进行封装,突出了跟踪问题本身。引入目标的有限状态机,结合目标检测算法,完成对新目标产生,目标隐藏、遮挡、消失等目标状况的处理。
     作者对方案各环节提出的算法进行了技术实现和实验验证,通过系统集成,设计了“红外人体目标检测系统”和“面向对象的红外人体目标跟踪系统”,在实际测试中取得了较为满意的结果。
Infrared-image, especially the far-infrared image has prominent advantage comparing with the visible-image. As a result of thermal based imaging, infrared image is independent of external luminous qualification and is able to see the objects we interested in through darkness and frog, while the visible optical imaging is incapable to do this.
     Human detection and tracking are very important issues we concern with all along for humans are the most active and the most valuable factors in many occasions. Human detection and tracking system based on infrared imaging can almost work in any environment and all-weather conditions. It is irreplaceable in some situations and has vast potential applications in many aspects.
     However, this task is very challengeable from the technical viewpoint. It is involved with infrared image segmentation, human features extraction, description and classification, no-rigid complex objects tracking, etc. The main difficulties we have to confront firstly is the robust problem of the image segmentation algorithm which is caused by the drastic fluctuation of infrared image’s performance parameters because of the discrimination of different infrared imaging device , the environment changes and the intrinsic properties of infrared image, such as low resolution, narrow dynamic range and poor image quality. Secondly, because of infrared image is gray image, there are no color information available and some other drawbacks such as image blur, low textures, whereas human are non-rigid objects, their postures and appearances are complicated and changeable and their sizes are various, it is very difficult to extract and descript human features in infrared image effectively and to distinguish them from disturbances. Further more, human’s movements are very subjective and unbending; there are no routines to recapitulate them. Meanwhile, the movements also accompany with human postures and appearances transformation, the tracking methods used in rigid objects are not suitable for human tracking. One misfortune after another, being short of features for tracking, some excellent human tracking algorithms based on color information and textures can’t work efficiently for infrared human tracking.
     After studying on current human detection and tracking methods both in infrared images and visible images and analyzing on human imaging properties, the author presented an integrated solutions described as follows:
     (1) For general infrared images, we proposed a threshold selection method for image segmentation based on image histogram multi-clustering analysis proceeded from the infrared imaging mechanism. Specifically, we used K-means clustering centers algorithm to achieve the fast threshold calculation. For polarity-reversed infrared image segmentation we just adopted the traditional Mean Shift image segmentation algorithm. For occluded human segmentation, we proposed a relative position Mean Shift clustering algorithm in two-dimensional space applied to the object’s binary template, and we used the similar idea of this algorithm in subsequent human tracking system.
     (2) After image segmentation, we verified the valid candidates by the object’s binary template properties. For some half-baked and fragmented templates we proposed an enhanced candidates selection method. Carry out an image distance transform process on the surplus templates after the first candidates choosing process, then using the distance restriction to find the potential candidates corresponding regions. A second threshold calculation algorithm is invoked if necessary.
     (3) The feature extraction and description scheme of candidates are based on local area generated by grid division. There are two methods for doing this: Local Gradient-Orientation Histogram based feature description methods and Local Maximal Oriented Energy Histogram based feature description methods. We adopted RBF-SVM classifiers to predicate whether candidates were human or disturbance.
     (4) For human tracking, we proposed a tracking algorithm based on Particles Mean-Shift Migration algorithm. This algorithm is independent on any complicated movement manner of human. When designing the tracking system, we used the Object Oriented methods to encapsulating human features, the tracking problem’s substance was revealed. By introducing the finite-state machine technology and combining with the human detection method, the problems of new human coming, human hiding, occluding and disappear were handled properly.
     All the algorithms proposed in the scheme have been realized by the author and are validated by experimental results. The“Human Detection System for Infrared Images”and the“Object Oriented Human Tracking System in Infrared Videos”are designed based on the scheme by system integration; the performances of them are encouraging in practical application.
引文
边肇祺,张学工著. 2000.模式识别[M].北京:清华大学出版社.
    常好丽,史忠科. 2006.基于单目视觉的运动行人检测与跟踪方法[J].交通运输工程学报, 2:55-59.
    陈修桥,胡以华,黄友锐. 2005.基于二维最大相关准则的图像阈值分割[J].红外与毫米波学报, 5:397-400.
    邓玉春,姜昱明,张建荣. 2005.视频序列图像中运动对象分割综述[J].计算机应用研究, 1:8-11
    邓正宏等著. 2004.面向对象技术[M].北京:国防工业出版社.
    韩崇昭,朱洪艳,段战胜等著. 2006.多源信息融合[M].北京:清华大学出版社.
    刘正光,林雪燕,车秀阁. 2004.基于二维灰度直方图的模糊熵分割方法[J].天津大学学报,12:1101-1104.
    罗四维等著. 2006.视觉感知系统信息处理理论[M].北京:电子工业出版社.
    倪福川,贺贵明,龙磊. 2005.基于不变矩的人形“头肩像”识别技术[J].计算机工程,10:174-176
    潘锋,王宣银. 2005.基于支持向量机的复杂背景下的人体检测[J].中国图象图形学报, 2:181-186.
    Richard O.Duda, Peter E.Hart, David G.Stock著,李宏东,姚天翔等译. 2003.模式识别[M].北京:机械工业出版社.
    孙庆杰,吴恩华. 2003.基于矩形拟合的人体检测[J].软件学报,8:1388-1393.
    王亮,胡卫明,谭铁牛. 2002.人运动的视觉分析综述[J].计算机学报, 3:225-237.
    魏怡等著. 2005.高等统计理论在形状分析中的应用[M].北京:国防工业出版社.
    杨烜,裴继红,谢维信. 2005.红外热图像序列中基于人体模型的目标头部定位方法[J].激光与红外, 2:126-129.
    章毓晋著. 2005.图像工程(中册)——图像分析[M].北京:清华大学出版社.
    A. Broggi, M. Bertozzi, A. Fascioli, and M.A.S.M. Sechi. 2000. Shape-based pedestrian detection[A]. Proceedings of the Intelligent Vehicles Symposium, 2000. IV 2000. [C]. IEEE, 215-220.
    A. Leykin and R. Hammoud. 2006. Robust Multi-Pedestrian Tracking in Thermal-Visible Surveillance Videos[A]. Conference on Computer Vision and Pattern Recognition Workshop, 2006 [C]. IEEE, 136-136.
    A. Lima, H. Zen, Y. Nankaku, C. Miyajima, K. Tokuda, and T. Kitamura. 2004. On the Use of Kernel PCA for Feature Extraction in Speech Recognition(Speech and Hearing)[J]. IEICE transactions on information and systems, 87(12): 2802-2811.
    A.S. Sekmen, M. Wilkes, and K. Kawamura. 2002. An application of passive human-robot interaction: human tracking based on attention distraction [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A, 32(2): 248-259.
    A. Treptow, G. Cielniak, and T. Duckett. 2005. Active people recognition using thermal and grey images on a mobile security robot[A]. International Conference on Intelligent Robots and Systems, 2005. (IROS 2005)[C]. IEEE/RSJ, 2103-2108.
    B. Leibe, E. Seemann, and B. Schiele. 2005. Pedestrian detection in crowded scenes[A]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005 [C]. 1: 878-885.
    B.W. Silverman. 1986.Density Estimation for Statistics and Data Analysis[M], New York: Chapman and Hall.
    B. Wu and R. Nevatia. 2007. Detection and Tracking of Multiple, Partially Occluded Humans by Bayesian Combination of Edgelet based Part Detectors[J]. International Journal of Computer Vision, 75(2): 247-266.
    C. Beleznai, B. Fruhstuck, and H. Bischof. 2004. Human detection in groups using a fast mean shift procedure[A]. International Conference on Image Processing, 2004. ICIP '04. [C]. 1: 349-352.
    C. Beleznai, B. Fruhstuck, and H. Bischof. 2005. Human tracking by mode seeking[A]. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005. ISPA 2005. [C]. 1-6.
    C. Hong, Z. Nanning, and Q. Junjie. 2005. Pedestrian detection using sparse Gabor filter and support vector machine[A]. Proceedings of Intelligent Vehicles Symposium, 2005[C]. IEEE, 583-587.
    C. Kiam and D.J. Fleet. 2001. People tracking using hybrid Monte Carlo filtering[A]. Proceedings of the Eighth International Conference on Computer Vision, 2001. ICCV 2001 [C]. IEEE,2: 321-328.
    C. Wohler and J.K. Anlauf. 1999. An adaptable time-delay neural-network algorithm for image sequence analysis[J]. IEEE Transactions on Neural Networks, 10(6): 1531-1536
    C. Yizong. 1995. Mean shift, mode seeking, and clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(8): 790-799.
    D. Barash and D. Comaniciu. 2004. A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift[J]. Image and Vision Computing, 22(1): 73-81.
    D. Chen, X.B. Cao, Y.W. Xu, and H.Q.A.-H. Qiao. 2006. An Evolutionary Support Vector Machines Classifier for Pedestrian Detection[A]. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006[C]. 4223-4227.
    D. Comaniciu and P. Meer. 1999. Mean shift analysis and applications[A]. The Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999[C]. 2: 1197-1203.
    D. Comaniciu and V. Ramesh. 2000. Mean shift and optimal prediction for efficient object tracking[A]. Proceedings of International Conference on Image Processing, 2000 [C]. 3: 70-73.
    D. Comaniciu, V. Ramesh, and P. Meer. 2000. Real-time tracking of non-rigid objects using mean shift[A]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2000 [C]. 2: 142-149.
    D. Comaniciu, V. Ramesh, and P. Meer. 2001. The variable bandwidth mean shift and data-driven scale selection[A]. Proceedings of Eighth IEEE International Conference on Computer Vision, 2001. ICCV 2001 [C]. 1: 438-445.
    D. Comaniciu and P. Meer. 2002. Mean shift: a robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5): 603-619.
    D. DeCarlo and D. Metaxas. 2000. Optical Flow Constraints on Deformable Models with Applications to Face Tracking[J]. International Journal of Computer Vision, 38(2): 99-127.
    D. Feng, S. Wenkang, C. Liangzhou, D. Yong, and Z. Zhenfu. 2005. Infrared image segmentation with 2-D maximum entropy method based on particle swarm optimization (PSO)[J]. Pattern Recognition Letters, 26(5): 597-603.
    D. Gabor. 1953. Communication theory and physics[J]. IEEE Transactions on Information Theory , 1(1): 48-59.
    D.G. Lowe. 2004. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 60(2): 91-110.
    D. Kelly and F. Boland. 2006. Motion Model Selection in Tracking Humans[A].Irish Signals and Systems Conference, 2006. IET[C]. 363-368.
    D.M. Gavrila and J. Giebel. 2001. Virtual sample generation for template-based shape matching[A]. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001. CVPR 2001 [C]. 1: I-676-I-681.
    D.M. Gavrila and J. Giebel. 2002. Shape-based pedestrian detection and tracking[A].Intelligent Vehicle Symposium, 2002. IEEE[C]. 1: 8-14.
    D.M. Gavrila, J. Giebel, and S. Munder. 2004. Vision-based pedestrian detection: the PROTECTOR system[A].Intelligent Vehicles Symposium, 2004 IEEE[C]. 13-18.
    D.M. Gavrila and V. Philomin. 1999. Real-time object detection for“smart”vehicles[A]. The Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999 [C]. 1: 87-93.
    D. Roth, P. Doubek, and L.V. Gool. 2005. Bayesian Pixel Classification for Human Tracking[A].IEEE Workshop on Motion and Video Computing, 2005. WACV/MOTIONS '05 [C]. 2: 78-83.
    D. Toth and T. Aach. 2003. Detection and recognition of moving objects using statistical motion detection and Fourier descriptors[A]. Proceedings of the 12th International Conference on Image Analysis and Processing, 2003 [C]. 430-435.
    E. How-Lung, W. Junxian, A.H. Kam, and A.W.-Y.Y. Wei-Yun Yau. 2004. A Bayesian framework for robust human detection and occlusion handling human shape model[A]. Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004 [C]. 2: 257-260.
    E.M. Rounds and G. Sutty. 1980. Segmentation based on second-order statistics [J]. Optical Engineering, 19(6): 936-940.
    F. Jurie and B. Triggs. 2005. Creating efficient codebooks for visual recognition[A]. Proceedings of the IEEE International Conference on Computer Vision[C]. I: 604-610.
    F. Kirac and L. Akarun. 2005. Human hand tracking in image sequence using particle filter[A]. Proceedings of the IEEE 13th Signal Processing and Communications Applications Conference, 2005. [C]. 561-564.
    F. Meyer. 1994. Topographic distance and watershed lines[J]. Signal Processing, 38(1): 113-125.
    F. Suard, A. Rakotomamonjy, A. Bensrhair, and A.A.B.A. Broggi. 2006. Pedestrian Detection using Infrared images and Histograms of Oriented Gradients[A]. IEEE Intelligent Vehicles Symposium, 2006 [C]. 206-212.
    F. Yajun, K. Yamada, Y. Ninomiya, B.K.P.A.H.B.K.P. Horn, and I.A.M.I. Masaki. 2004. A shape-independent method for pedestrian detection with far-infrared images[J]. IEEE Transactions on Vehicular Technology, 53(6): 1679-1697.
    G. Overett and L. Petersson. 2007. Improved Response Modelling on Weak Classifiers for Boosting[A]. IEEE International Conference on Robotics and Automation, 2007 [C]. 3799-3804.
    H. Nanda and L. Davis. 2002. Probabilistic template based pedestrian detection in infrared videos[A]. IEEE Intelligent Vehicle Symposium, 2002 [C]. 1: 15-20.
    H. Sidenbladh. 2004. Detecting human motion with support vector machines[A]. Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.[C]. 2: 188-191.
    H. Sidenbladh and M.J. Black. 2001. Learning image statistics for Bayesian tracking[A]. Proceedings. Eighth IEEE International Conference on Computer Vision, 2001. ICCV 2001[C]. 2: 709-716.
    H.-X. Jia and Y.-J. Zhang. 2007. Fast Human Detection by Boosting Histograms of Oriented Gradients[A]. Fourth International Conference on Image and Graphics, 2007. ICIG 2007[C]. 683-688.
    I. Haritaoglu, D. Harwood, and L.S. Davis. 1998. W4: Who? When? Where? What? A real time system for detecting and tracking people[A]. Proceedings of the Third IEEE International Conference on Automatic Face and Gesture Recognition, 1998[C]. 222-227.
    I.P. Alonso, D.F. Llorca, M.A. Sotelo, L.M.A.B.L.M. Bergasa, A.P.R.d.T. Pedro Revenga de Toro, J.A.N.J. Nuevo, M.A.O.M. Ocana, and M.A.G.A.G.M.A.G. Garrido. 2007. Combination of Feature Extraction Methods for SVM Pedestrian Detection[J]. IEEE Transactions on Intelligent Transportation Systems, 8(2): 292-307.
    J.B.T.M. Roerdink and A. Meijster. 2000. Watershed transform: Definitions, algorithms and parallelization strategies[J]. Fundamenta Informaticae, 41(1): 187-228.
    J. Dong, J. Ge, and Y. Luo. 2007. Nighttime Pedestrian Detection with Near Infrared using Cascaded Classifiers[A]. IEEE International Conference on Image Processing, 2007. ICIP 2007. [C]. 6: VI - 185-VI - 188.
    J.G. Daugman. 1985. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters[J]. J. Opt. Soc. Am. A, 2(7): 1160.
    J.E. Auborn, J.M. Fuller, Jr., and H.M. McCauley. 1993. Target detection by co-occurrence matrix segmentation and its hardware implementation[J]. Optical Engineering, 32(11): 2698-2702.
    J.-H. Ahn, S. Kwak, C. Choi, K. Kim, and H. Byun. 2006. An Integrated Robot Vision System for Multiple Human Tracking and Silhouette Extraction, Advances in Artificial Reality and Tele-Existence,575-583.
    J.W. Davis and V. Sharma. 2004. Robust Background-Subtraction for Person Detection in Thermal Imagery[A]. IEEE Conference on Computer Vision and Pattern Recognition Workshop, 2004 [C]. 128-128.
    J. Wu, J. Li, Y. Qiu, J. Liu, and J. Tian. 2005. Infrared image segmentation based on two-dimensional maximum fuzzy entropy with genetic algorithm[A]. Proceedings of International Society for Optical Engineering, Bellingham[C]. 5640: 549-558.
    K. Fukunaga and L. Hostetler. 1975. The estimation of the gradient of a density function, with applications in pattern recognition[J]. IEEE Transactions on Information Theory, 21(1): 32-40.
    K. Mikolajczyk and C. Schmid. 2005. A performance evaluation of local descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10): 1615-1630.
    L. Andreone, F. Bellotti, A. De Gloria, and R.A.L.R. Lauletta. 2005. SVM-based pedestrian recognition on near-infrared images[A]. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005. ISPA 2005 [C]. 274-278.
    L. Zhao and C.E. Thorpe. 2000. Stereo- and neural network-based pedestrian detection[J]. IEEE Transactions on Intelligent Transportation Systems, 01(3): 148-154.
    M. Bertozzi, A. Broggi, A. Lasagni, and M.D.A.R.M.D. Rose. 2005. Infrared stereo vision-based pedestrian detection[A]. Proceedings of IEEE Intelligent Vehicles Symposium, 2005[C]. 24-29.
    M.C. Morrone and D.C. Burr. 1988. Feature Detection in Human Vision: A Phase-Dependent Energy Model[J]. Proceedings of the Royal Society of London. Series B, Biological Sciences, 235(1280): 221-245.
    M.D. Rodriguez and M. Shah. 2007. Detecting and segmenting humans in crowded scenes[A]. Proceedings of the ACM International Multimedia Conference and Exhibition[C], 353-356.
    M. Oren, C. Papageorgiou, P. Sinha, E.A.O.E. Osuna, and T.A.P.T. Poggio. 1997. Pedestrian detection using wavelet templates[A]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1997 [C]. 193-199.
    M.S. Arulampalam, S. Maskell, N. Gordon, and T.A.C.T. Clapp. 2002. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 50(2): 174-188.
    M. Shin. 2006. A Performance Study of Gaussian Kernel Classifiers for Data Mining Applications[J]. Advanced Data Mining and Applications. 189-196.
    M. Szarvas, A. Yoshizawa, M. Yamamoto, and J.A.O.J. Ogata. 2005. Pedestrian detection with convolutional neural networks[A]. Proceedings of IEEE Intelligent Vehicles Symposium, 2005[C]. 224-229.
    M.W. Lee and I. Cohen. 2003. Human body tracking with auxiliary measurements[A]. IEEE International Workshop on Analysis and Modeling of Faces and Gestures, 2003. AMFG 2003[C], 112-119.
    M. Yasuno, S. Ryousuke, N. Yasuda, and M.A.A.M. Aoki. 2005. Pedestrian detection and tracking in far infrared images[A]. Proceedings of IEEE Intelligent Transportation Systems, 2005[C], 182-187.
    N. Dalai and B. Triggs. 2005. Histograms of oriented gradients for human detection[A]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005[C]. 1: 886-893.
    Otsu N. 1979. A Threshold Selection Method from Gray-Level Histograms[J]. IEEE Transactions on Systems, Man and Cybernetics, 9(1): 62-66.
    O. Tuzel, F. Porikli, and P. Meer. 2007. Human Detection via Classification on Riemannian Manifolds[A]. IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR '07[C]. 1-8.
    P. Lombardi and B. Zavidovique. 2004. A context-dependent vision system for pedestriandetection[A]. IEEE Intelligent Vehicles Symposium, 2004[C]. 578-583.
    P. Viola, M.J. Jones, and D. Snow. 2003. Detecting pedestrians using patterns of motion and appearance[A]. Proceedings of the Ninth IEEE International Conference on Computer Vision, 2003[C]. 2: 734-741.
    R. Poppe and M. Poel. 2006. Comparison of silhouette shape descriptors for example-based human pose recovery[A]. Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition[C]. 541-546.
    R. Schweiger, H. Hamer, and O. Lohlein. 2007. Determining Posterior Probabilities on the Basis of Cascaded Classifiers as used in Pedestrian Detection Systems[A]. IEEE Intelligent Vehicles Symposium, 2007[C]. 1284-1289.
    S. Agarwal, A. Awan, and D. Roth. 2004. Learning to detect objects in images via a sparse, part-based representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(11): 1475-1490.
    S. Belongie, J. Malik, and J. Puzicha. 2002. Shape matching and object recognition using shape contexts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(4): 509-522.
    S. Denman, V. Chandran, and S. Sridharan. 2007. An adaptive optical flow technique for person tracking systems[J]. Pattern Recognition Letters, 28(10): 1232-1239.
    S. Hui, H. Chengying, and L. Yupin. 2004. A multi-stage classifier based algorithm of pedestrian detection in night with a near infrared camera in a moving car[A]. Proceedings of the Third International Conference on Image and Graphics, 2004[C], 120-123.
    S. Munder and D.M. Gavrila. 2006. An experimental study on pedestrian classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(11): 1863-1868.
    S. Schauland, A. Kummert, P. Su-Birm, A.U.I. Uri Iurgel, and A.Y.Z. Yan Zhang. 2006.
    Vision-Based Pedestrian Detection -- Improvement and Verification of Feature Extraction Methods and SVM-Based Classification[A]. IEEE Intelligent Transportation Systems Conference, 2006. ITSC '06[C], 97-102.
    U. Meis, W. Ritter, and H. Neumann. 2003. Detection and classification of obstacles in night vision traffic scenes based on infrared imagery[A]. Proceedings of IEEE Intelligent Transportation Systems, 2003 [C], 2: 1140-1144.
    V. N. Vapnik. 1995. The Nature of Statistical Learning Theory[M]. New York:Springer-Verlag. W. Bo and R. Nevatia. 2005. Detection of multiple, partially occluded humans in a single image by Bayesian combination of edgelet part detectors[A]. The Tenth IEEE International Conference on Computer Vision, 2005. ICCV 2005 [C], 1: 90-97.
    W.T. Freeman and E.H. Adelson. 1991. The design and use of steerable filters[J]. IEEE Transactionson Pattern Analysis and Machine Intelligence, 13(9): 891-906.
    W. Ying, Y. Ting, and H. Gang. 2005. A statistical field model for pedestrian detection[A]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005[C]. 1: 1023-1030 .
    X. Fengliang and F. Kikuo. 2003. Human detection using depth and gray images[A].Proceedings of IEEE Conference on Advanced Video and Signal Based Surveillance, 2003[C], 115-121.
    X. Fengliang, L. Xia, and K. Fujimura. 2005. Pedestrian detection and tracking with night vision[J]. IEEE Transactions on Intelligent Transportation Systems, 6(1): 63-71.
    Y. Changjiang, R. Duraiswami, and L. Davis. 2005. Efficient mean-shift tracking via a new similarity measure[A]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005[C]. 1: 176-183.
    Y. Fang, K. Yamada, Y. Ninomiya, B.A.H.B. Horn, and I.A.M.I. Masaki. 2003. Comparison between infrared-image-based and visible-image-based approaches for pedestrian detection [A]. Proceedings of IEEE Intelligent Vehicles Symposium, 2003[C], 505-510.
    Y. Ke and R. Sukthankar. 2004. PCA-SIFT: A more distinctive representation for local image descriptors[A]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition [C], 2: 506-513.
    Y. Sato, Y. Kobayashi, and H. Koike. 2000. Fast tracking of hands and fingertips in infrared images for augmented desk interface [A]. Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition, 2000[C]. 462-467.
    Y.W. Xu, X.B. Cao, H. Qiao, and F.Y.A.W.F.Y. Wang. 2006. A Cascaded Classifier for Pedestrian Detection[A]. IEEE Intelligent Vehicles Symposium [C], 336-343.
    Z. Bin, T. Qiming, and L. Yupin. 2005. An improved pedestrian detection approach for cluttered background in nighttime[A]. IEEE International Conference on Vehicular Electronics and Safety [C], 143-148.
    Z. Lin, L.S. Davis, D. Doermann, and D.A.D.D. DeMenthon. 2007. Hierarchical Part-Template Matching for Human Detection and Segmentation[A]. IEEE 11th International Conference on Computer Vision, 2007. ICCV 2007 [C], 1-8.
    Z. Shaohua, R. Chellappa, and B. Moghaddam. 2003. Adaptive visual tracking and recognition using particle filters[A]. Proceedings of International Conference on Multimedia and Expo, 2003. ICME '03 [C], 2: 349-352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700