用户名: 密码: 验证码:
人脸画像—照片的合成与识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人脸画像-照片识别是指以所提供的画像为示例在照片库中进行检索,确定待识别人的身份信息,在刑侦破案、反恐追逃和动漫设计中具有广泛的应用。在感兴趣目标照片缺失的情况下,该研究将为实现人脸识别提供有效的途径。画像是由画家根据其主观理解绘制而成,它利用线条的粗细、疏密来表达人脸的形状和纹理信息,而照片是通过光学成像设备或其它传感器获得的客观图像,它记录了图像的灰度或颜色信息。不同的产生机理和信息表达方式使得两者之间存在较大的形状结构及纹理灰度差异,即使同一个人的画像和照片具有相似的几何形状,但也一定有相差甚远的纹理信息。这使得现有的人脸识别算法很难在画像-照片识别中得以直接推广和应用。因此,以最低代价实现高性能的画像-照片转换成为本文研究的重点;将其中一种媒体的表达模式转化为另一种使其在同一特征模式空间实现相互识别,从而为跨媒体的信息检索和模式识别探索新的途径。
     本文针对画像-照片识别的基本问题,探索画像-照片不同信息表达模式之间的映射关系,在构建该映射关系模型的基础上提出画像-照片合成方法,从而将画像-照片识别转变为同一模式下的人脸识别,为提高画像-照片识别性能提供必要的前提条件。与此同时,融合人脸图像结构和纹理信息,提出了用于转换后特征空间的人脸识别方法。主要工作概括如下:
     1.提出了基于机器学习的伪照片合成方法。本文对现有的伪照片/伪画像合成方法进行了综合分析和实验,在此基础上,提出了基于嵌入式隐马尔可夫模型和分块策略的伪照片合成方法。该方法利用嵌入式隐马尔可夫模型对训练画像-照片块的映射关系建模,从而将画像转变到照片域表达模式下。通过理论分析和相关实验,证明了该方法只需要较少的训练样本就可以得到较精确的伪照片,克服了基于统计的方法无法用较少的训练样本获得伪照片的不足。
     2.确定了人脸照片/画像合成中的分块缝合策略。现有的基于局部策略的伪照片/伪画像合成方法均通过平均化分块重叠区域合并伪照片块/伪画像块,导致生成的伪照片/伪画像存在模糊和分块效应。针对这一问题,本文提出利用图像缝合思想将合成伪照片块/伪画像块进行拼接,该方法根据两个分块重叠区域中对应像素的差异,在重叠区域上搜索最短路径作为缝合线。实验结果表明了基于分块缝合策略的方法可以合成更高质量的人脸伪照片/伪画像,并给出了理论分析。
     3.探索了合成图像的质量评价方法。现有的图像质量评价方法主要针对噪声和人为因素造成的图像降质,鉴于合成伪照片和伪画像必须与原始图像具有相似的鉴别信息,我们阐述了一种新的图像质量评价测度,从图像本身的质量以及合成图像与原始图像的相似程度两方面来评估合成伪照片/伪画像的质量。同时,利用画像-照片识别的性能分析了该图像质量评价测度的有效性。
     4.验证了本文所提出的画像-照片合成方法可以有效提高画像-照片识别率。画像-照片被转换到同一特征空间后,利用主成分分析、独立成分分析、核主成分分析、保局投影、张量子空间分析和离线张量分析等无监督子空间学习算法在画像域和照片图像域进行人脸识别。实验结果表明,本文提出的画像-照片合成方法可以有效地提高画像-照片识别的正确率。
     5.构建了融合结构和纹理信息的双模人脸识别方法。本文主要研究的是不含有任何主观因素的写实素描画,其中每个人的画像和照片具有较为相似的形状结构信息和差异较大的纹理信息。通过两种特征空间的相互转换,在减弱其纹理信息差异的同时,保持了形状结构信息相似性,故而本文提出了融合人脸图像纹理和结构模型的双模人脸识别方法,通过在识别过程中加强结构模型相似性的比重进一步减弱纹理模型差异对正确鉴别人物身份的影响。实验结果表明,该识别方法对于人脸图像的光照、表情和尺度变化都具有较好的鲁棒性,为后续实现多因素影响下的画像-照片识别提供了有效的技术手段。同时,提出了两种度量结构模型相似性的图编辑距离算法,这两种算法独立于代价函数定义,具有执行效率高、对图像聚类分类准确率高、通用性强等优点。
     6.建立了具有自主知识产权的人脸照片-画像数据库和实验测试平台。现有的照片-画像库中画像的绘画风格单一,为了研究对不同绘画风格的画像具有鲁棒性的画像-照片识别算法,并为后续研究提供用于检验算法性能的通用数据库,我们从标准人脸库中选取照片,邀请多位画家创作了相应的素描画,尝试进行素描画画像数据库的构建。通过现有画像-照片识别算法的检验,初步验证了绘制的素描画是合格的。由于多位画家绘画风格不同,对应于同一幅照片的多幅画像存在差异,从而为基于机器学习的方法研究绘画风格对画像-照片识别算法性能产生的影响奠定了数据基础。
Face sketch-photo recognition aims to determine the person’s identity by retrieving in the photo database using simulated sketches automatically. It is applied extensively to criminal investigation, anti-terrorism, animation design, etc.When the photos of the person in question are absent, we have to fall back on simulated sketches and then face recognition is performed by matching the sketches and photos in database. Sketches are produced by artists according to their subjective understanding, in which the thickness and density of lines are used to convey shape and texture information. Photos are obtained with optical imaging equipments or other sensors objectively, which record grayscale or color information of images. Different mechanism for generating and expressing sketches and photos leads to geometrical deformations and very different texture between them. Even though the sketch and photo of a person may be similar in geometry, their texture is always very different, which makes most of the existing significant achievements for face recognition inactive for sketch-photo recognition. Consequently, this paper delves into the perfect conversion of sketches and photos with the least cost. One of the above-mentioned two expression modalities is converted into the other and face recognition is performed in the same modality, which explores novel ways to conduct cross-media information retrieval and pattern recognition.
     In this dissertation, in view of essential problems of sketch-photo recognition, the mapping relationship between sketches and photos is explored, based on which sketch-photo conversion algorithms are proposed so as to transform sketch-photo recognition into the face recognition in the same modality. They are necessary preconditions to improve the sketch-photo recognition performance. Furthermore, the face recognition algorithm applied in the converted feature space is proposed, in which structure and texture informations are combined to express face images. The main contributions of this dissertation are summarized as follows:
     1. Machine learning based pseudo-photo synthesis algorithm is proposed. The existing sketch / photo synthesis algorithms are summarized and analyzed in this dissertation. Based on this, we propose a photo synthesis algorithm based on local strategy and embedded hidden Markov model. The embedded hidden Markov model is used to learn the mapping relationship of training sketch patch-photo patch pair, so that pseudo-photos are produced in terms of sketches. Theoretical comparison and experimental results show that the proposed algorithm derives high quality pseudo-photos with less training samples, and consequently overcomes the problem that statistics based methods require a large set of training samples to generate pseudo-photos.
     2. Image quilting is introduced in the synthesis of pseudo-photo / pseudo-sketch. In the existing local strategy based pseudo-photo/pseudo-sketch synthesis methods, pseudo-photo patches / pseudo-sketch patches are combined by averaging the overlapping regions, which leads to the synthesized sketches/photos with blurring effect and noticeable block edges. Aiming at this problem, pseudo-photo patches / pseudo-sketch patches are stitched into a pseudo-photo / pseudo-sketch with image quilting in this dissertation. According to the different values of corresponding elements in the overlapping areas of two patches, the minimum cost path through the overlapping area is searched for and serves as quilting edge of two overlapping patches, which combines these two patches smoothly. Experimental results show that image quilting based methods may derive pseudo-photos / pseudo-sketches with higher quality, and theoretical analysis is performed.
     3. Image quality assessment of the synthesized images is explored. The existing image quality assessment algorithms mainly aim at quality degradation caused by noise and artifacts. Because the synthesized sketches/photos should preserve discrimination information as the original images, a novel image quality metric is expounded. The quality of the synthesized sketches / photos is evaluated from two aspects that are visual quality of the synthesized images themselves, and the similarity of the synthesized image and original image. The effectiveness of the proposed image quality assessment metric is analysed with the performance of sketch-photo recognition.
     4. It is proved that the performance of sketch-photo recognition is enhanced effectively with the proposed sketch-photo synthesis algorithms. After sketches and photos are transformed into the same modality, unsupervised subspace learning methods, such as principal components analysis, independent component analysis, kernel principal component analysis, locality preserving projection, tensor subspace analysis and offline tensor analysis, are adopted for face recognition in photo space and sketch space. It is proved experimentally that the proposed sketch-photo synthesis algorithms are effective to achieve promising results of sketch-photo recognition.
     5. The biview face recognition algorithm is constructed by integrating texture information with shape information. In this dissertation, the sketches are realistic and affected slightly by subjective factors. The sketch and photo of a person are similar in geometry and very different in their texture. The difference of their texture is weakened and the similarity of their structure is preserved by the transformation of two feature spaces. So biview face recognition algorithm which relies on the cooperation of texture model and structure model of face images is proposed. The influence of texture difference on face recognition is further weakened by strengthening the structure similarity in recognition. Experimental results show that the proposed face recognition algorithm is robust against variation of illumination, expression and scale, which provides sketch-photo recognition under many variations with effective ways. Besides that, two graph edit distance algorithms are proposed for measuring similarity of structure models. These two algorithms are completely independent on cost function definition, and they have the virtue of high efficiency, generability and correct rat of clustering and classifying images.
     6. A new face photo-sketch database and experiment testing platform are constructed with independent intellectual property rights. Drawing style of sketches in the existing photo-sketch database is simplex. Aiming at sketch-photo recognition algorithms robust to sketches with different drawing style and a universal database for examining the performance of sketch-photo recognition algorithms in the further research, a new photo-sketch database is constructed. Photos are selected from standard face databases, according to which some artists are invited to produce sketches. The eligibility of the produced photo-sketch pairs is validated by the existing sketch-photo recognition algorithms. Because of different drawing styles, sketches corresponding to a photo are distinct,which is the foundation of performing machine learning based researches on the influence of different drawing styles on sketch-photo recognition.
引文
[1] R. Chellappa, C. L. Wilson and S. Sirohey. Human and machine recognition of faces: a survey, Proc. IEEE 83 (5) (1995) 705-741.
    [2] W. Zhao, R. Chellappa, P. J. Phillips, et al.. Face recognition: a literature survey, ACM Computing Surveys 35 (4) (2003) 399-458.
    [3] P. J. Phillips, P. J. Flynn, T. Scruggs, et al.. Overview of the face recognition grand challenge, Proc. IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20-25 June 2005, pp. 947-954.
    [4] B. Moghaddam, T. Jebara and A. Pentland. Bayesian face recognition, Pattern Recognition 33 (11) (2000) 1771-1782.
    [5]彭进业,王大凯,俞卞章,李楠.基于小波分解系数的贝叶斯人脸识别方法,光子学报30 (10) (2001) 1263-1269.
    [6] A. V. Nefian. Embedded bayesian networks for face recognition, Proc. IEEE International Conference on Multimedia and Expo, Lausanne, Switzerland, 2002, 2, pp. 133 -136.
    [7]於东军,杨静宇.基于神经网络的人脸特征提取及识别,计算机工程与应用38 (11) (2002) 33-34,47.
    [8]方宁,李景治,贺贵明.基于DCT和神经网络的人脸识别,计算机工程30 (16) (2004) 53-56.
    [9]王洪波,武妍.基于小波变换和BP神经网络的人脸识别方法,计算机工程与应用40 (24) (2004) 51-53.
    [10]黎奎,宋宇,邓建奇等.基于Eigenfaces和BP神经网络的人脸识别,计算机应用研究22 (6) (2005) 236-237,248.
    [11] L. H. Koh, S. Ranganath and Y. V. Venkatesh. An integrated automatic face detection and recognition system, Pattern Recognition 35 (6) (2002) 1259-1273.
    [12] M. J. Er, S. Q. Wu and J. W. Lu. Face recognition using radial basis function (RBF) neural networks, Proc. IEEE Conference on Decision and Control, Phoenix, Arizona, USA, 7-10 December 1999, pp. 2162-2167.
    [13]金明曦,武妍.基于对向传播神经网络的人脸识别方法,电子科技大学学报33 (5) (2004) 573-576.
    [14] R. Hecht-Nielsen. Applications of counterpropagation networks, Neural Networks 1 (2) (1988) 131-139.
    [15] M. J. Aitkenhead, A. J. S. McDonald. A neural network face recognition system, Engineering Applications of Artificial Intelligece 16 (3) (2003) 167-176.
    [16]陈蕾,张道强,周鹏,陈松灿.基于SWA的核自联想记忆模型及其在人脸中的应用,应用科学学报23 (5) (2005) 497-501.
    [17] V. N. Vapnik. Statistical learning theory. John Wiley&Sons, New York,1998.
    [18] P. J. Phillips. Support vector machines applied to face recognition, Proc. Conference on Advances in Neural Information Processing Systems II, Denver, Colorado, USA, 30 November -5 December 1998, pp. 803-809.
    [19] B. Heisele, P. Ho, T. Poggio. Face Recognition with support vector machines: global versus component-based approach, Proc IEEE International Conference on Computer Vision, Vancouver, British Columbia, Canada, 7-14 July 2001, pp. 688–694.
    [20] G. Guo, S. Z. Li, K. Chan. Face recognition by support vector machines, Image and visioncomputting 19 (9-10) (2001) 631-638.
    [21]沈荻帆,滕晓龙,刘重庆.基于Gabor小波和支持向量机的人脸识别方法,红外与激光工程33 (6) (2004) 600-602.
    [22] F. Samaria, S. Young. HMM based architecture for face identification, Image and Computer Vision 12 (8) (1994) 537-583.
    [23] A. V. Nefian, M. H. Hayes III. Face detection and recognition using hidden Markov models, Proc. IEEE International Conference on Image Processing, Chicago, Illinois, USA, 4-7 October 1998, pp. 141-145.
    [24] F. Samaria. Face recognition using hidden Markov models. University of Cambridge, 1994.
    [25] T. M. Mitchell. Machine Learning. McGraw Hill, Maidenhead, 1997.
    [26] A. D. Narasimhalu. CAFFIR: an image based CBR/IR application, Proc. AAAI Spring Symposium, Palo Alto, California, USA, 23-25 March 1993.
    [27] J. W. Shepherd. An interactive computer system for retrieving faces, in: M.Jeeves, F.Newcombe and A.Young (Ed.), Aspects of Face Processing, Selected Pagers, Martinus Nijhoff Publishers, Dorrecht, 1986, pp. 398-409.
    [28] R. G. U. Jr., N. d. V. Lobo. A framework for recognizing a facial image from a police sketch, Proc. IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 18-20 June 1996, pp. 586-593.
    [29] R. G. U. Jr., N. d. V. Lobo and Y. H. Kwon. Recognizing a facial image from a police sketch, Proc. IEEE workshop on Applications of Computer Vision, Sarasota, Florida, USA, 5-7 December 1994, pp. 129-137.
    [30] Y.-h. Li, M. Savvides and V. Bhagavatula. Illumination tolerant face recognition using a novel face from sketch synthesis approach and advanced correlation filters, Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, Toulouse, France, 15-19 May 2006, pp. 357-360.
    [31] W. Liu, X. Tang and J. Liu. Bayesian tensor inference for sketch-based facial photo hallucination, Proc. International Joint Conference on Artificial Intelligence, Hyderabad, India, 6-12 January 2007, pp. 2141-2146.
    [32] X. Tang, X. Wang. Face photo recognition using sketch, Proc. IEEE International Conference. on Image Processing, Rochester, New York, USA, 22-25 September 2002, pp. 257-260.
    [33] X. Tang, X. Wang. Face sketch synthesis and recognition, Proc. IEEE International Conference on Computer Vision, Nice, France, 14-17 October 2003, pp. 687-694.
    [34] X. Tang, X. Wang. Face sketch recognition, IEEE Transactions on Circuits and Systems for Video Technology 14 (1) (2004) 50-57.
    [35] Q. Liu, X. Tang, H. Jin, et al.. A nonlinear approach for face sketch synthesis and recognition, Proc. IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20-25 June 2005, pp. 1005-1010.
    [36] X. B. Gao, J. J. Zhong and C. N. Tian. Face sketch synthesis algorithm based on machinelearning, IEEE Transactions on Circuits and Systems for Video Technology 18 (4) (2008) 487-496.
    [37] J. J. Zhong, X. B. Gao and C. N. Tian. Face sketch synthesis using E-HMM and selective ensemble, Proc. IEEE International Conference on on Acoustics, Speech, and Signal Processing, Honolulu, Hawaii, USA, 15-20 April 2007, pp. 485-488.
    [38] X. B. Gao, J. J. Zhong, D. C. Tao, et al.. Local face sketch synthesis learning, Neurocomputing 71 (10-12) (2008) 1921-1930.
    [1] X. Tang, X. Wang. Face photo recognition using sketch, Proc. IEEE International Conference on Image Processing, Rochester, New York, USA, 22-25 September 2002, pp. 257-260.
    [2] X. Tang, X. Wang. Face sketch synthesis and recognition, Proc. IEEE International Conference on Computer Vision, Nice, France, 14-17 October 2003, pp. 687-694.
    [3] X. Tang, X. Wang. Face sketch recognition, IEEE Transactions on Circuits and Systems for Video Technology 14 (1) (2004) 50-57.
    [4] Q. Liu, X. Tang, H. Jin, et al.. A nonlinear approach for face sketch synthesis and recognition, Proc. IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20-25 June 2005, pp. 1005-1010.
    [5] X. B. Gao, J. J. Zhong and C. N. Tian. Face sketch synthesis algorithm based on machine learning, IEEE Transactions on Circuits and Systems for Video Technology 18 (4) (2008) 487-496.
    [6] J. J. Zhong, X. B. Gao and C. N. Tian. Face sketch synthesis using E-HMM and selective ensemble, Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, Honolulu, Hawaii, USA, 15-20 April 2007, pp. 485 -488.
    [7] X. B. Gao, J. J. Zhong, D. C. Tao and X. L. Li. Local face sketch synthesis learning, Neurocomputing 71 (10-12) (2008) 1921-1930.
    [8] Y.-h. Li, M. Savvides and V. Bhagavatula. Illumination tolerant face recognition using a novel face from sketch synthesis approach and advanced correlation filters, Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, Toulouse, France, 15-19 May 2006, pp. 357-360.
    [9] W. Liu, X. Tang and J. Liu. Bayesian tensor inference for sketch-based facial photo hallucination, Proc. International Joint Conference on Artificial Intelligence, Hyderabad, India, 6-12 January 2007, pp. 2141-2146.
    [10] F. Samaria. Face recognition using hidden Markov models, PhD. Thesis, Engineering Department, University of Cambridge, 1994.
    [11] H. Othman, T. Aboulnasr. A separable low complexity 2D HMM with application to face recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence 25 (10) (2003) 1229-1238.
    [12] A. Nefian, M. Hayes. Face recognition using an embedded HMM, Proc. International Conference on Audio- and Video-based Biometric Person Authentication, Washington, DC, USA, 22-23 March 1999, pp. 19-24.
    [13] T. Nagai, T. Nguyen. Appearance model based face-to-face transform, Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, Quebec, Canada, 17-21 May 2004, pp. 749-752.
    [14] B. Xiao, X. B. Gao, D. C. Tao and X. L. Li. A new approach for face recognition by sketches in photos, Signal Processing 89 (8) (2009) 1576-1588.
    [15] G. Mclachlan, D. Peel. Finite mixture models, John Wiley&Sons, New York, 2000.
    [16] L. Baum, T. Petrie, G. Soules, et al.. A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains, Annals of Mathematical Statistics 41 (1) (1970) 164-171.
    [17] A. Nefian, M. H. Hayes III. Maximum likelihood training of the embedded HMM for face detection and recognition, Proc. IEEE International Conference on Image Processing, Vancouver, BC, Canada, 10-13 September 2000, pp. 33-36.
    [18] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society, Series B 39 (1) (1977) 1-38.
    [19] J. Bilmes. A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models, Technical Report, ICSI TR-97-021, International computer science institute, University of California, Berkeley, USA, April 1998.
    [20] A. Nefian. A hidden Markov model-based approach for face detection and recognition, PhD. Thesis, Georgia Institute of Technology, 1999.
    [21] A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm, IEEE Transactions on Information Theory 13 (2) (1967) 260-269.
    [22] S. Kuo, O. Agazzi. Keyword spotting in poorly printed documents using pseudo 2-D hidden Markov models, IEEE Transactions on Pattern Analysis and Machine Intelligence 16 (8) (1994) 842-848.
    [23] http://ie.cuhk.edu.hk/mmlab
    [1] X. B. Gao, J. J. Zhong, D. C. Tao and X. L. Li. Local face sketch synthesis learning, Neurocomputing 71 (10-12) (2008) 1921-1930.
    [2] B. Xiao, X. B. Gao, D. C. Tao and X. L. Li. A new approach for face recognition by sketches in photos, Signal Processing 89 (8) (2009) 1576-1588.
    [3] Bela Julesz. Visual pattern discrimination, IRE Transactions on Information Theory 8 (2) (1962) 84-92.
    [4] D. J. Heeger, J. R. Bergen. Pyramid-based texture analysis/synthesis, Proc. ACM SIGGRAPH, Los Angeles, California, USA, 6-11 August 1995, pp. 229-238.
    [5] E. P. Simoncelli, J. Portilla. Texture characterization via joint statistics of wavelet coefficient magnitudes, Proc. IEEE International Conference on Image Processing, Chicago, Illinois, USA, 4-7 October 1998, pp.62-66.
    [6] J. Portilla, E. P. Simoncelli. Texture modeling and synthesis is using joint statistics of complex wavelet coefficients, Proc. IEEE Workshop on Statistical and Computational Theories of Vision, Fort Collins, Colorado, USA, 22 June 1999, pp.22-23.
    [7] J. Portilla, E. P. Simoncelli. A parametric texture model based on joint statistics of complex wavelet coefficients, International Journal of Computer Vision 40 (1) (2000) 49-71.
    [8] J. S. De Bonet. Multiresolution sampling procedure for analysis and synthesis of texture images, Proc. ACM SIGGRAPH, Los Angeles, California, USA, 3-8 August 1997, pp.361-368.
    [9] A. A. Efros, T. K. Leung. Texture synthesis by non-parametric sampling, Proc. International Conference on Computer Vision, Kerkyra, Corfu, Greece, 20-25 September 1999, pp. 1033-1038.
    [10] L. Y. Wei, M. Levoy. Fast texture synthesis using tree-structured vector quantization, Proc. ACM SIGGRAPH, New Orleans, Louisiana, USA, 23-28 July 2000, pp. 479-488.
    [11] M. Ashikhmin. Synthesizing natural textures, Proc. ACM Symposium on Interactive 3D Graphics, North Carolina, USA, 19-21 March 2001, pp. 217-226.
    [12] Y. Xu, B. Guo, and H.-Y. Shum. Chaos mosaic: fast and memory efficient texture synthesis, Technical Report MSR-TR-2000-32, Microsoft Research, April 2000.
    [13] L. Liang, C. Liu, Y. Q. Xu, et al.. Real-time texture synthesis by patch-based sampling, ACM Transactions on Graphics 20 (3) (2001) 127-150.
    [14] R. Szeliski, H. Y. Shum. Creating full view panoramic mosaics and environment maps, Proc. ACM SIGGRAPH , Los Angeles, California, USA, 3-8 August 1997, pp.251-258.
    [15] A. A. Efros, W. T. Freeman. Image quilting for texture synthesis and transfer, Proc. ACM Conference on Computer Graphics and Interactive Techniques, Los Angeles, California, USA, 12-17 August 2001, pp. 341-346.
    [16]张岩,李文辉,孟宇等.应用PSO的快速纹理合成算法,计算机研究与发展42 (3) (2005) 424-430.
    [17]张蓬,彭思龙.基于结构的纹理合成,计算机辅助设计与图形学学报16 (3) (2004) 290-296.
    [18]张岩,孙正兴,李文辉.基于方向经验模型分解的纹理合成,计算机辅助设计与图形学学报19(4) (2007) 515-520.
    [19] B. Xiao, X. B. Gao, D. C. Tao, et al. Photo-sketch synthesis and recognition based on subspace learning, Neurocomputing 73 (4-6) (2010) 840-852.
    [20] E. W. Dijkstra. A note on two problems in connexion with graphs, Numerische Mathematik 1 (1) (1959) 269-271.
    [21] Q. Liu, X. Tang, H. Jin, et al. A nonlinear approach for face sketch synthesis and recognition, Proc. IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20-25 June 2005, pp. 1005-1010.
    [1] E. Abodou, N. J. Dusaussoy. Survey of image quality measurements, Proc. ACM Fall joint computer conference , Dallas, Texas, USA, 2-6 November 1986, pp. 71-78.
    [2] Z. Wang, A. C. Bovik. Modern image quality assessment, Morgan and Claypool Publishing Company, New York, 2006.
    [3] W. S. Lin. Gauging image and video quality in industrial applications, in Advances of Computational Intelligence in Industrial Systems, eds. Y. Liu, et al, Springer-Verlag, Heidelberg, 116: 117-137, 2008.
    [4] I. Avcibas, B. Sankur, and K. Sayood. Statistical evaluation of image quality measures, Journal of Electronic Imaging 11 (2) (2002) 206-213.
    [5] R. J. Safranek, J. D. Johnston. A perceptually tuned subband image coder with image dependent quantization and post-quantization data compression, Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, Glasgow, Scotland, U.K., 22-25 May 1989, pp. 1945-1948.
    [6] M. Miyahara, K. Kotani, and R .V. Algazi. Objective picture quality scale for image coding, IEEE Transactions on Communications 46 (9) (1998) 1215-1225.
    [7] N. Damera-Venkata, T. D. Kite, W. S. Geisler, et al.. Image quality assessment based on a degradation model, IEEE Transactions on Image Processing 4 (4) (2000) 636-650.
    [8] A. Shnayderman, A. Gusev and A. M. Eskicioglu. An SVD-based grayscale image quality measure for local and global assessment, IEEE Transactions on Image Processing 15 (2) (2006) 422-429.
    [9] D. M. Chandler, S. S. Hemami. A wavelet-based visual signal-to-noise ratio for natural images, IEEE Transactions on Image Processing 16 (9) (2007) 2284-2298.
    [10] H. R. Sheikh, A. C. Bovik and G. D. Veciana. An information fidelity criterion for image quality assessment using natural scene statistics, IEEE Transactions on Image Processing 14 (12) (2005) 2117-2128.
    [11] H. R. Sheikh, A. C. Bovik. Image information and visual quality, IEEE Transactions on Image Processing 15 (2) (2006) 430-444.
    [12] Z. Wang, A. C. Bovik, H. R. Sheikh, et al.. Image quality assessment: from error visibility to structural similarity, IEEE Transactions on Image Processing 13 (4) (2004) 600-612.
    [13] X. B. Gao, T. Wang and J. Li. A content-based image quality metric, Proc. International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, Regina, Canada, 31 August-3 September 2005, pp. 231-240.
    [14] X. L. Li, W. Lu, D. C.Tao and X. B. Gao. An image quality assessment based on wavelet structure, Proc. IEEE International Conference on Systems, Man, and Cybernetics, Suntec, Singapore, 12-15 October 2008, pp. 2246-2251.
    [15] W. Lu, D. C. Tao, X. B. Gao and X. L. Li. A new image quality assessment metrics based on human visual system, Proc. IEEE International Workshop on Multimedia Analysis and Processing, St. Thomas, US Virgin Island, USA, 4-7 August 2008.
    [16] Z. Wang, A. C. Bovik. Modern image quality assessment, Morgan and Claypool Publishing Company, New York, 2006.
    [17]路文.基于视觉感知的影像质量评价方法研究.博士学位论文,西安电子科技大学, 2009.
    [18] T. M. Kusuma, H. J. Zepernick. A reduced-reference perceptual quality metric for in-service image quality assessment, Proc. Joint First Workshop on Mobile Future and IEEE Symposium on Trends in Communications, Bratislava, Slovakia, October 2003, pp. 71-74.
    [19] M. Carnec, P. L. Callet and D. Barba. Objective quality assessment of color images based on a generic perceptual reduced reference, Image Communication 23 (4) (2008) 239-256.
    [20] I. P. Gunawan, M. Ghanbari. Image quality assessment based on harmonics gain/loss information, Proc. IEEE International Conference on Image Processing, Genoa, Italy, 11-14 September 2005, pp. 29-32.
    [21] I. P. Gunawan, M. Ghanbari. Reduced-reference video quality assessment using discriminative local harmonic strength with motion consideration, IEEE Transactions on Circuits and System for Video Technology 18 (1) (2008) 71-83.
    [22] Z. Wang, E. P. Simoncelli. Reduced-reference image quality assessment using a wavelet-domain natural image statistic model, Proc. SPIE’s 17th Annual Symposium on Electronic Imaging, San Jose, California, USA, 17-20 January 2005, pp. 149-159.
    [23] Z. Wang, G. X. Wu, H. R. Sheikh, et al.. Quality-aware images, IEEE Transactions on Image Processing 15 (6) (2006) 1680-1689.
    [24] S. Wang, D. Zheng, J. Y. Zhao, et al.. An image quality evaluation method based on digital watermarking, IEEE Transactions on Circuits and Systems for Video Technology 17 (1) (2007) 98-105.
    [25] Z. Wang, H. R. Sheikh and A. C. Bovik. No-reference perceptual quality assessment of JPEG compressed images, Proc. IEEE International Conference on Image Processing, Rochester, New York, USA, 22-25 September 2002, pp. 477-480.
    [26] A. C. Bovik, L. Shizhong. DCT-domain blind measurement of blocking artifacts in DCT-coded images, Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, Utah, USA, 7-11 May 2001, pp. 1725-1728.
    [27] Y. W. Yu, Z. D. Lu, H. F. Ling, et al.. No-reference perceptual quality assessment of JPEG images using general regression neural network, Proc. Third International Symposium on Neural Networks, Chengdu, China, 28 May-1 June 2006, pp. 638-645.
    [28] R. V. Babu, A. Perkis. An HVS-based no-reference perceptual quality assessment of JPEG coded images using neural networks, Proc. IEEE International Conference on Image Processing, Genoa, Italy, 11-14 September 2005, pp. 433-436.
    [29] H. R. Sheikh, A. C. Bovik and L. Cormack. No-reference quality assessment using natural scene statistics: JPEG 2000, IEEE Transactions on Image Processing 14 (11) (2005) 1918-1927.
    [30] H. H. Tong, M. J. Li. H. J. Zhang, et al.. No-reference quality assessment for JPEG2000 compressed images, Proc. IEEE International Conference on Image Processing, Singapore, 24-27 October 2004, pp. 3539-3542.
    [31] P. Marziliano, F. Dufaux, S. Winkler, et al.. Perceptual blur and ringing metrics: application to JPEG2000, Signal Processing: Image Communication 19 (2) (2004) 163-172.
    [32] Z. Wang, A. Bovik. A universal image quality index, IEEE Signal Processing Letters 9 (3)(2002) 81-84.
    [33] S. Saha, R. Vemuri. An analysis on the effect of image activity on lossy coding Performance, Proc. IEEE International Symposium on Circuits and Systems, Geneva, Switzerland, 28-31 May 2000, pp. 295-298.
    [34] B. Xiao, X. B. Gao, D. C. Tao and X. L. Li. A new approach for face recognition by sketches in photos, Signal Processing 89 (8) (2009) 1576-1588.
    [35] X. B. Gao, J. J. Zhong, D. C. Tao and X. L. Li. Local face sketch synthesis learning, Neurocomputing 71 (10-12) (2008) 1921-1930.
    [36] B. Xiao, X. B. Gao, D. C. Tao, et al.. Photo-sketch synthesis and recognition based on subspace learning, Neurocomputing 73 (4-6) (2010) 840-852.
    [37] Q. Liu, X. Tang, H. Jin, et al.. A nonlinear approach for face sketch synthesis and recognition, Proc. IEEE Conf. on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20-25 June 2005, pp. 1005-1010.
    [38] Video Quality Experts Group. Final report from the video quality experts group on the validation of objective models of video quality assessment, http://www.vqeg.org/, 2000, 3.
    [39] T. Ko, R. Krishnan. Monitoring and reporting of fingerprint image quality and match accuracy for a large user application, Proc. 33rd Applied Image Pattern Recognition Workshop, Emerging Technologies and Applications for Imagery Pattern Recognition, Washington, DC, USA, 13-15 October 2004, pp. 159-164.
    [40] P. Grother, E. Tabassi. Performance of biometric quality measures, IEEE transactions on pattern analysis and machine intelligence 29 (4) (2007) 531-543.
    [41] http://www.itl.nist.gov/iad/894.03/ quality/workshop/ presentations.html.
    [42] M. A. Turk, A. P. Pentland. Eigenfaces for recognition, Journal of Cognitive Neuroscience 3 (1) (1991) 71-86.
    [1] P. N. Belhumeur, J. P. Hespanha and D. J. Kriegman. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection, IEEE Transactions on Pattern Analysis and Machine Intelligence 19 (7) (1997) 711-720.
    [2] K. Pearson. On lines and planes of closest fit to systems of points in space, Philosophical Magazine 2(6) (1901) 559-572.
    [3] M. S. Bartlett, J. R. Movellan and T. J. Sejnowski. Face recognition by independent component analysis, IEEE Transactions on Neural Networks 13 (6) (2002) 1450-1464.
    [4] A. Hyv?rinen, E. Oja. Independent component analysis: algorithms and applications, Neural Networks 13 (4-5) (2000) 411-430.
    [5] K. I. Kim, K. Jung and H. J. Kim. Face recognition using kernel principal component analysis, IEEE Signal Processing Letters 9 (2) (2002) 40-42.
    [6] B. Scholkopf, A. Smola and K. R. Muller. Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation 10 (5) (1998) 1299-1319.
    [7] X. He, P. Niyogi. Locality preserving projections, Proc. 17th Annual Conference on Neural Information Processing Systems, Vancouver and Whistler, British Columbia, Canada, 8-13 December 2003, pp. 153-160.
    [8] J. Sun, D. Tao, S. Papadimitriou, et al.. Incremental tensor analysis: theory and applications, ACM Transactions on Knowledge Discovery from Data 2 (3) (2008) 1-37.
    [9] P. N. Belhumeur, J. P. Hespanha and D. J. Kriegman. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection, IEEE Transactions on Pattern Analysis and Machine Intelligence 19 (7) (1997) 711-720.
    [10] M. A. Turk, A. P. Pentland. Eigenfaces for recognition, Journal of Cognitive Neuroscience 3 (1) (1991) 71-86.
    [11] X. He, S. Yan, Y. Hu, et al.. Face recognition using laplacianfaces, IEEE Transactions on Pattern Analysis and Machine Intelligence 27 (3) (2005) 1-13.
    [12] X. He, D. Cai and P. Niyogi. Tensor subspace analysis, Proc. 19th Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, 5-8 December 2005.
    [13] D. Tao, X. Li, X. Wu, et al.. General tensor discriminant analysis and gabor features for gait recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence 29 (10) (2007) 1700-1715.
    [14] L. D. Lathauwer, B. DeMoor and J. Vandewalle. On the best rank-1 and rank-(r1,r2,. ..,rn) approximation of higher-order tensors, SIAM Journal On Matrix Analysis And Applications 21 (4) (2000) 1324-1342.
    [15] B. Xiao, X. B. Gao, D. C. Tao, et al. Photo-sketch synthesis and recognition based on subspace learning, Neurocomputing 73 (4-6) (2010) 840-852.
    [16] X. B. Gao, J. J. Zhong, D. C. Tao and X. L. Li. Local face sketch synthesis learning, Neurocomputing 71 (10-12) (2008) 1921-1930.
    [17] B. Xiao, X. B. Gao, D. C. Tao and X. L. Li. A new approach for face recognition by sketches in photos, Signal Processing 89 (8) (2009) 1576-1588.
    [18] Q. Liu, X. Tang, H. Jin, et al. A nonlinear approach for face sketch synthesis and recognition, Proc. IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20-25 June 2005, pp. 1005-1010.
    [1] H. Bunke. Recent developments in graph matching, Proc. IEEE International Conference on Pattern Recognition, Barcelona, Spain, 3-8 September 2000, pp. 117-124.
    [2] T. Caelli, S. Kosinov. An eigenspace projection clustering method for inexact graph matching, IEEE Transactions on Pattern Analysis and Machine Intelligence 26 (4) (2004) 515-519.
    [3] A. D. J. Cross, R. C. Wilson and E. R. Hancock. Inexact graph matching using genetic search, Pattern Recognition 30 (7) (1997) 953-970.
    [4] S. Umeyama. An eigendecomposition approach to weighted graph matching problems, IEEE Transactions on Pattern Analysis and Machine Intelligence 10 (5) (1988) 695-703.
    [5] R. A. Wagner, M. J. Fischer. The string-to-string correction problem, Journal of the ACM 21 (1) (1974) 168-173.
    [6] A. Sanfeliu, K. S. Fu. A distance measure between attributed relational graphs for pattern recognition, IEEE Transactions on Systems, Man, and Cybernetics 13 (3) (1983) 353-362.
    [7] B. T. Messmer, H. Bunke. Efficient error-tolerant subgraph isomorphism detection, Shape, Structure, and Pattern Recognition (1994) 231-240.
    [8] B. T. Messmer, H. Bunke. A new algorithm for error-tolerant subgraph isomorphism detection, IEEE Transactions on Pattern Analysis and Machine Intelligence 20 (5) (1998) 493-504.
    [9] H. Bunke. On a relation between graph edit distance and maximum common subgraph, Pattern Recognition Letters 18 (8) (1997) 689-694.
    [10] H. Bunke. Error correcting graph matching: on the influence of the underlying cost function, IEEE Transactions on Pattern Analysis and Machine Intelligence 21 (9) (1999) 917-922.
    [11] V. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals, Soviet Physics-Doklady 10 (8) (1966) 707-710.
    [12] R. Myers, R. C. Wilson and E. R. Hancock. Bayesian graph edit distance, IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (6) (2000) 628-635.
    [13] D. Shasha, K. Zhang. Simple fast algorithms for the editing distance between trees and related problems, SIAM Journal on Computing 18 (6) (1989) 1245-1262.
    [14] K. Zhang. A constrained edit distance between unordered labeled trees, Algorithmica 15 (3) (1996) 205-222.
    [15] A. Marzal, E. Vidal. Computation of normalized edit distance and applications, IEEE Transactions on Pattern Analysis and Machine Intelligence 15 (9) (1993) 926-932.
    [16] R. Myers, R. C. Wilson and E. R. Hancock. Efficient relational matching with local edit distance, Proc. IEEE International Conference on Pattern Recognition, Brisbane, Queensland, Australia, 17-20 August 1998, pp. 1711-1714.
    [17] R. C. Wilson, E. R. Hancock. Structural matching by discrete relaxation, IEEE Transactions on Pattern Analysis and Machine Intelligence 19 (6) (1997) 634-648.
    [18] X. B. Gao, B. Xiao, D. C. Tao and X. L. Li. A survey of graph edit distance, Pattern Analysis and Applications, Vol.13, No.1, pp.113-129, January, 2010.
    [19] X. B. Gao, B. Xiao, D. C. Tao and X. L. Li. Image categorization: graph edit distance + edge direction histogram, Pattern Recognition 41 (10) (2008) 3179-3191.
    [20] B. Xiao, X. B. Gao, D. C. Tao and X. L. Li. HMM-based graph edit distance for Image Indexing, International Journal of Imaging Systems and Technology 18 (2-3) (2008) 209-218.
    [21] A. K. Jain, A. Vailaya. Image retrieval using color and shape, Pattern Recognition 29 (8) (1996) 1233-1244.
    [22] F. Mahmoudi, J. Shanbehzadeh. Image retrieval based on shape similarity by edge orientationautocorrelogram, Pattern Recognition 36 (8) (2003) 1725-1736.
    [23] D. C. Tao, X. L. Li and S. Maybank. Negative samples analysis in relevance feedback, IEEE Transactions on Knowledge and Data Engineering 19 (4) (2007) 568-580.
    [24] D. Tao, X. Tang and X. Li. Which components are important for interactive image searching? IEEE Transactions on Circuits and Systems for Video Technology 18 (1) (2008) 3-11.
    [25] D. Tao, X. Tang, X. Li, et al.. Asymmetric bagging and random subspace for support vector machine-based relevance feedback in image retrieval, IEEE Transactions on Pattern Analysis and Machine Intelligence 28 (7) (2006) 1088-1099.
    [26] A. Vailaya, A. Jain, H. J. Zhang. On Image Classification: City vs. Landscape, Proc. Workshop in Content-Based Access to Image and Video Libraries, Santa Barbara, California, USA, 1998, pp. 3-8.
    [27] G. H. Chen, C. L. Yang, L. M. Po, et al.. Edge-based structural similarity for image quality assessment, Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, Toulouse, France, 14-19 May 2006, pp. 933-936.
    [28] Y. W. Kim, I. S. Oh. Watermarking text document images using edge direction histograms, Pattern Recognition Letters 25 (11) (2004) 1243-1251.
    [29] L. Zhang, N. M. Allinson. Automatic shoeprint retrieval system for use in forensic investigations, Proc. The 5th Annual UK Workshop on Computational Intelligence, London, U.K., 5-7 September 2005.
    [30] Y. Rubner, C. Tomasi and L. J. Guibas. The earth mover's distance as a metric for image retrieval, International Journal of Computer Vision 40 (2) (2000) 99-121.
    [31] M. J. Swain, D. H. Ballard. Color indexing, International Journal of Computer Vision 7 (1) (1991) 11-32.
    [32] S. Kullback. Information Theory and Statistics, Dover, New York, 1968.
    [33] Y. Rubner, C. Tomasi and L. J. Guibas. A metric for distributions with applications to image databases, Proc. IEEE International Conference on Computer Vision, Bombay, India, 4-7 January 1998, pp. 59-66.
    [34] S. Cabello, P. Giannopoulos, C. Knauer, et al.. Matching point sets with respect to the earth mover's distance, Proc. 13th Annual European Symposium on Algorithms, Mallorca, Spain, 3-6 October 2005, pp. 520-531.
    [35] D. H. Kim, I. D. Yun and S. U. Lee. A new attributed relational graph matching algorithm using the nested structure of earth mover's distance, Proc. IEEE International Conference on Pattern Recognition, Cambridge, U.K., 23-26 August 2004, pp. 48-51.
    [36] F. A. Al-Omari, M. A. Al-Jarrah. Query by image and video content: a coloredbased stochastic model approach, Data & Knowledge Engineering 52 (3) (2005) 313-332.
    [37] F. S. Samaria. Face recognition using hidden Markov models, PhD. Thesis, University of Cambridge, Cambridge, UK, 1994.
    [38] J. B. MacQueen. Some methods for classification and analysis of multivariate observations, Proc. 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, California, USA, 1967, pp. 281-297.
    [39] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition, Proc. IEEE, 77(2) (1989) 257-286.
    [40] M. A. T. Figueiredo, A. K. Jain. Unsupervised learning of finite mixture models, IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (3) (2002) 381-396.
    [41] J. J. Oliver, D. J. Hand. Introduction to minimum encoding inference, Report No. Tech. Rep. TR 205, Melbourne, Australia: Department of Computer Science, Monash University, 1994.
    [42] J. J. Oliver, R. A. Baxter. MML and bayesianism: similarities and differences, Report No. Tech. Rep. TR 206, Melbourne, Australia: Department of Computer Science, Monash University, 1994.
    [43] R. A. Baxter, J. J. Oliver. MDL and MML: similarities and differences, Report No. TR 207, Melbourne, Australia: Department of Computer Science, Monash University, 1994.
    [44] H. Qian. Relative Entropy: Free energy associated with equilibrium fluctuations and nonequilibrium deviations, Physical Review E 63 (4) (2001) 042103/1-042103/4.
    [45] T. M. Cover, J. A. Thomas. Elements of information theory, Wiley Interscience, New York, 1991.
    [46] M. N. Do. Fast Approximation of Kullback-Leibler distance for dependence trees and hidden Markov models, IEEE Signal Processing Letters 10 (4) (2003) 115-118.
    [47] A. Robles-Kelly, E.R. Hancock. Graph edit distance from spectral seriation, IEEE Transactions on Pattern Analysis and Machine Intelligence 27 (3) (2005) 365-378.
    [48] INRIA-MOVI houses, http://www.inria.fr/recherche/equipes/movi.en. html.
    [49] Vision and Autonomous Systems Center's Image Database, http://vasc.ri. cmu.edu//idb/html/ motion/house/index.html.
    [50] C. Harris, M. Stephens. A combined corner and edge detector, Proc. the 4th Alvey Vision Conference, Manchester, UK, 1988, pp. 147-151.
    [51] H. Freeman, L. S. Davis. A corner-finding algorithm for chain-coded curves, IEEE Transactions on Computers 26 (1-6) (1977) 297-303.
    [52] J. S. Lee, Y. N. Sun, C. H. Chen. Boundary-based corner detection using wavelet transform, Proc. IEEE International Conference on Systems, Man and Cybernetics, Le Touquet, France, 17-20 October 1993, pp. 513-516.
    [53] S. M. Smith, J. M. Brady. SUSAN-a new approach to low level image processing, International Journal of Computer Vision 23 (1) (1997) 45-78.
    [54] H. Moravec. Obstacle avoidance and navigation in the real world by a seeing robot rover, Technical Report CMU-RI-TR-3, Robotics Institute, Carnegie Mellon University and Doctoral Dissertation, Stanford University, 1980.
    [55] S. Fortune. Voronoi diagrams and delaunay triangulations, Lecture Notes Series on Computing 1 (1992) 193-233.
    [56] C. L. Lawson. Software for C1 surface interpolation, Proc. a Symposium Conducted by the Mathematics Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA, 28-30 March 1977, pp. 161-194.
    [57] M. Tuceryan, T. Chorzempa. Relative sensitivity of a family of closest-point graphs in computer visionapplications, Pattern Recognition 24 (5) (1991) 361-373.
    [58] H. Zimmer. Voronoi and Delaunay techniques, Proc. lecture notes, Computer Sciences VIII, RWTH Aachen, 30 July 2005.
    [59] T. M. Mitchell. Machine Learning, McGraw Hill, Maidenhead, 1997.
    [60] T. Hofmann, J .M. Buhmann. Multidimensional scaling and data clustering, Proc. Conference on Advances in Neural Information Processing Systems, Denver, Colorado, USA, 28 November-3 December 1994, pp. 459-466.
    [61] S. M. Schiffman, L. Reynolds and F. W. Young. Introduction to Multidimensional Scaling, Academic Press, New York, 1981.
    [62] B. Xiao, X. B. Gao,? D. C. Tao and X. L. Li. Biview Face Recognition, IEEE Multimedia. Submitted.
    [63] M. A. Turk, A. P. Pentland. Eigenfaces for recognition, Journal of Cognitive Neuroscience 3 (1) (1991) 71-86.
    [64] T. F. Cootes, G. J. Edwards and C. J. Taylor. Active appearance models, IEEE Transactions on Pattern Analysis and Machine Intelligence 23 (6) (2001) 681-685.
    [65] X. B. Gao, Y. Su, X. L. Li and D. C. Tao. Gabor texture in active appearance models, Neurocomputing 72 (13-15) (2009) 3174-3181.
    [66] M. S. Bartlett, J. R. Movellan and T. J. Sejnowski. Face recognition by independent component analysis, IEEE Transactions on Neural Networks 13 (6) (2002) 1450-1464.
    [67] K. I. Kim, K. Jung and H. J. Kim. Face recognition using kernel principal component analysis, IEEE Signal Processing Letters 9 (2) (2002) 40-42.
    [68] X. He, S. Yan, Y. Hu, et al.. Face recognition using laplacianfaces, IEEE Transactions on Pattern Analysis and Machine Intelligence 27 (3) (2005) 1-13.
    [1] W. Liu, X. Tang and J. Liu. Bayesian tensor inference for sketch-based facial photo hallucina-tion, Proc. International Joint Conference on Artificial Intelligence, Hyderabad, India, 6-12 January 2007, pp. 2141-2146.
    [2] X. Tang, X. Wang. Face photo recognition using sketch, Proc. IEEE International Conferenceon Image Processing, Rochester, New York, USA, 22-25 September 2002, pp. 257-260.
    [3] X. Tang, X. Wang. Face sketch synthesis and recognition, Proc. IEEE International Conference on Computer Vision, Nice, France, 14-17 October 2003, pp. 687-694.
    [4] X. Tang, X. Wang. Face sketch recognition, IEEE Transactions on Circuits and Systems for Video Technology 14 (1) (2004) 50-57.
    [5] Q. Liu, X. Tang, H. Jin, et al.. A nonlinear approach for face sketch synthesis and rec-ognition, Proc. IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20-25 June 2005, pp. 1005-1010.
    [6] X. B. Gao, J. J. Zhong and C. N. Tian. Face sketch synthesis algorithm based on machine learning, IEEE Transactions on Circuits and Systems for Video Technology 18 (4) (2008) 487-496.
    [7] J. J. Zhong, X. B. Gao and C. N. Tian. Face sketch synthesis using E-HMM and selective ensemble, Proc. IEEE International Conference on on Acoustics, Speech, and Signal Processing, Honolulu, Hawaii, USA, 15-20 April 2007, pp. 485-488.
    [8] X. B. Gao, J. J. Zhong, D. C. Tao, et al.. Local face sketch synthesis learning, Neurocomputing 71 (10-12) (2008) 1921-1930.
    [9] http://rvl1.ecn.purdue.edu/~aleix/aleix_face.
    [10] http://www.ee.surrey.ac.uk/CVSSP/xm2vtsdb/.
    [11] http://www.nist.gov/srd/.
    [12] http://www.frav.es/.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700