用户名: 密码: 验证码:
基于压缩感知的核磁共振成像重建技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核磁共振成像作为一种极其重要的医学成像技术,具有对病灶诊断精确、对人体安全性高等优点,但是较长的数据采集时间成为其广泛应用的瓶颈。因此,在保证成像质量的前提下,探索一种新的快速成像方法迫在眉睫。压缩感知作为一种全新的信号采样理论,针对稀疏信号或可压缩信号,可以在采样数量远少于传统采样方式的情况下精确地恢复出原始信号,这就为核磁共振图像的快速获取提供了一种新的思路。因此,本文在深入研究了压缩感知、核磁共振成像的相关理论之后,对基于压缩感知的核磁共振成像重建技术进行了研究,主要工作和创新包括以下几个方面:
     (1)针对传统欠采样方式造成的图像混叠伪影问题,研究了几种常用的采样轨迹,考虑到图像的高频部分只包含较少的能量,能量主要集中于低频部分的特点,提出了一种基于变密度的笛卡尔随机采样方式。实验结果表明,该采样方式在基于压缩感知的核磁共振成像中取得了良好的效果,有效地降低了图像的混叠伪影问题。
     (2)针对传统二维小波变换不能对核磁共振图像提供最优表示的问题,研究了基于多尺度几何分析的剪切波理论,提出了一种新的基于离散剪切波变换的核磁共振图像稀疏表示方法。实验验证了离散剪切波变换重建的准确性以及稀疏性;与小波变换相比,离散剪切波变换在保留系数为1%,相同采样率的情况下,重建图像的结构化相似度值平均优于小波变换0.06,具有更高的重建精度,更有利于保留图像的边缘和纹理信息。
     (3)针对信号重建过程中算法复杂度高、不利于实时处理的问题,提出了一种基于FPGA硬件平台的内点法设计。将计算量最大的线性方程组的求解进行了改进,选用内在并行性高的共轭梯度算法完成主要的运算,进而提出了FPGA实现的总体设计和分模块设计方案,并着重设计了并行度高、计算密集的矩阵-向量乘模块。并行化和流水的协处理器有效的利用了算法内在的并行性和FPGA本身的并行结构,提高了整个系统的处理速度。仿真实验证明,该系统资源耗费少,硬件加速比可达21倍。
     (4)针对基于压缩感知理论的核磁共振成像重建算法包含大量的浮点运算,重建所花费的时间要远远大于傅里叶正反变换重建的问题。基于GPU强大的并行处理能力,利用JACKET技术对正交匹配追踪算法进行了并行化设计与实现。实验结果表明,图像大小为10242时,算法移植到GPU平台获得最大的性能加速比,单精度浮点计算和双精度浮点计算分别获得49和24倍的加速。
Magnetic resonance imaging as an extremely important imaging technique in themedical field, has advantages of lesion localization precision and high security for human.But the long data acquisition time become the bottleneck of wide application. It is urgent tofind a fast imaging methods, in the premise of ensuring the quality of imaging. Compressedsensing is a new signal processing method which can abandon the redundant information inthe current information sampling. Under the conditions of sparse or compressible, samplingsignal can accurately reconstruct original signals form a small quantity of measurements.So it improves the speed of sampling. This provides a new way to solve the key issues inmagnetic resonance imaging. Therefore, we apply the compressed sensing to the magneticresonance image reconstruction, in the foundation of the deeper research on many theories.And the major work and innovations in this paper include the following aspects:
     (1) In order to solve the image’s aliasing artifacts caused by the traditionalsub-sampling, it is proposed a way named random variable density sampling. Through thecomparison of several commonly used sampling trajectory, we adopt a kind of mode nameda variable density Cartesian random sampling mode, then we instruction this mode. Theresults show that the variable density Cartesian random sampling mode achieved goodresults based on compressed sensing MRI.
     (2) In order to solve problems of traditional two-dimensional wavelet transform cannot sparsely represent curves and edges. In this paper, we introduce a geometric imagetransform, the shearlet, to overcome this shortage. after discussing the implementation ofthe, reconstruction accuracy and sparsity of the discrete shearlet transform are analyzed.Experimental results shows that, discrete shearlet transform in the retention coefficient of1%, the value of SSIM is better than wavelet transform on average0.06at the samesampling rate. At the same time, discrete shearlet transform can improve quality ofreconstructed image and preserve more information about texture and edge.
     (3) signal reconstruction algorithms based on compressed sensing are high complexity,can not conducive to real-time processing. In view of the above problems, we propose adesign for interior point method that is based on the Field Programmable Gate Array(FPGA)hardware platform. We improvements the primal-dual corrector interior method,make it more suitable for FPGA of parallel processing. The array structure of the conjugategradients algorithm completes the main operations, and the parallel and pipelinecoprocessor effectively take advantage of the inherent parallelism of the algorithm and theparallel structure of FPGA. Thus, it can speedup about21times over the software versionof the same algorithm.
     (4) Sparse MRI image reconstruction algorithm contains a large number of floatingpoint arithmetic based on Compressed Sensing theory. It can be more time-consuming thantraditional inverse Fourier reconstruction. To solve this problem, the existing sparse MRIreconstruction algorithm is made practical by parallelizing it under the framework ofNVIDIA CUDA using GPU. The experimental results show that, based on the GPU, thisplatform provides very fast iterative reconstruction. Reconstruction of10242MRI canobtain speedups of24and49in the double precision floating point calculation and sigleprecision floating point calculation.
引文
[1] Hasse A, Frahm J, Mattaei D, et al. FLASH imaging: Rapid NMR imaging using low flip anglepulses[J]. J Magn Reson,1986,67(2):258-266
    [2] Mansfield P. Multi-planar image formation using NMR spin echoes[J]. J.Phys.C: Solid State Phys,1977,10(3):55-58
    [3] Hutchinson M, Raff U. Fast MRI data acquisition using multiple detectors [J]. Magn Reson Med,1998,6(1):87-91
    [4] Kwait D, Einav S, Navon G. A decoupled coil detector array for fast image acquisition in magneticresonance imaging[J]. Med Phys,1991,18(2):251-265
    [5] Pruessmann K P, Weiger M, Scheidegger M B, et al. SENSE: sensitivity encoding for fast MRI[J].Magnetic resonance in medicine,1999,42(5):952-962
    [6] Sodickson D K, Manning W J. Simultaneous acquisition of spatial harmonics (SMASH): fastimaging with radiofrequency coil arrays[J]. Magnetic Resonance in Medicine,1997,38(4):591-603
    [7] Griswold M A, Jakob P M, Heidemann R M, et al. Generalized autocalibrating partially parallelacquisitions (GRAPPA)[J]. Magnetic Resonance in Medicine,2002,47(6):1202-1210
    [8] Candès E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction fromhighly incomplete frequency information[J]. Information Theory, IEEE Transactions on,2006,52(2):489-509
    [9] Donoho D L. Compressed sensing[J]. Information Theory, IEEE Transactions on,2006,52(4):1289-1306
    [10] Candès E J, Wakin M B. An introduction to compressive sampling[J]. Signal Processing Magazine,IEEE,2008,25(2):21-30
    [11] Candes E J, Romberg J. Quantitative robust uncertainty principles and optimally sparsedecompositions[J]. Foundations of Computational Mathematics,2006,6(2):227-254
    [12] Candes E J, Tao T. Near-optimal signal recovery from random projections: Universal encodingstrategies?[J]. Information Theory, IEEE Transactions on,2006,52(12):5406-5425
    [13] Tsaig Y, Donoho D L. Extensions of compressed sensing[J]. Signal processing,2006,86(3):549-571
    [14] Candes E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccuratemeasurements[J]. Communications on pure and applied mathematics,2006,59(8):1207-1223
    [15] Haupt J, Nowak R. Signal reconstruction from noisy random projections[J]. Information Theory,IEEE Transactions on,2006,52(9):4036-4048
    [16] Rauhut H, Schnass K, Vandergheynst P. Compressed sensing and redundant dictionaries[J].Information Theory, IEEE Transactions on,2008,54(5):2210-2219
    [17] Laska J N, Davenport M A, Baraniuk R G. Exact signal recovery from sparsely corruptedmeasurements through the pursuit of justice[C]//Signals, Systems and Computers,2009ConferenceRecord of the Forty-Third Asilomar Conference on. IEEE,2009:1556-1560
    [18] Temlyakov V N, Zheltov P. On performance of greedy algorithms[J]. Journal of ApproximationTheory,2011,163(9):1134-1145
    [19]练秋生,陈书贞.基于解析轮廓波变换的图像稀疏表示及其在压缩传感中的应用[J].电子学报,2010,38(6):1293-1298
    [20]吴巧玲,倪林,何德龙.基于非下采样contourlet变换的压缩感知图像重建[J].中国科学技术大学学报,2012,42(2):87-91
    [21]侯金曼,何宁,吕科.基于压缩感知的图像快速重建方法[J].计算机工程,2011,37(19):215-217,226
    [22] Peyre G. Best basis compressed sensing[J]. Signal Processing, IEEE Transactions on,2010,58(5):2613-2622
    [23] Aharon M, Elad M, Bruckstein MA. The K-SVD: An algorithm for designing of overcompletedictionaries for sparse representations[J]. IEEE Transactions on Signal Processing,2006,54(11):4311-4322
    [24] Elad M. Optimized projections for compressed sensing[J]. Signal Processing, IEEE Transactions on,2007,55(12):5695-5702
    [25] Herman M A, Strohmer T. General deviants: An analysis of perturbations in compressed sensing[J].Selected Topics in Signal Processing, IEEE Journal of,2010,4(2):342-349
    [26] Applebaum L, Howard S D, Searle S, et al. Chirp sensing codes: Deterministic compressed sensingmeasurements for fast recovery[J]. Applied and Computational Harmonic Analysis,2009,26(2):283-290
    [27] Ma J. Compressed sensing by inverse scale space and curvelet thresholding[J]. AppliedMathematics and Computation,2008,206(2):980-988
    [28] Chrétien S. An Alternating l1approach to the compressed sensing problem[J]. PAMM,2007,7(1):2080003-2080004
    [29] Candes E J, Wakin M B, Boyd S P. Enhancing sparsity by reweighted1minimization[J]. Journalof Fourier Analysis and Applications,2008,14(5-6):877-905
    [30] Jin J, Gu Y, Mei S. A stochastic gradient approach on compressive sensing signal reconstructionbased on adaptive filtering framework[J]. Selected Topics in Signal Processing, IEEE Journal of,2010,4(2):409-420
    [31] Blumensath T, Davies M E. Iterative hard thresholding for compressed sensing[J]. Applied andComputational Harmonic Analysis,2009,27(3):265-274
    [32] Rauhut H, Schnass K, Vandergheynst P. Compressed sensing and redundant dictionaries[J].Information Theory, IEEE Transactions on,2008,54(5):2210-2219
    [33] Candes E J, Eldar Y C, Needell D, et al. Compressed sensing with coherent and redundantdictionaries[J]. Applied and Computational Harmonic Analysis,2011,31(1):59-73
    [34]邬贵名.FPGA矩阵计算并行算法与结构[D].长沙:国防科技大学,2011
    [35] Raginsky M, Willett R M, Harmany Z T, et al. Compressed sensing performance bounds underPoisson noise[J]. Signal Processing, IEEE Transactions on,2010,58(8):3990-4002
    [36] Baraniuk R G, Cevher V, Duarte M F, et al. Model-based compressive sensing[J]. InformationTheory, IEEE Transactions on,2010,56(4):1982-2001
    [37]练秋生,郝鹏鹏.基于压缩传感和代数重建法的CT图像重建[J].光学技术,2009,35(3):422-425
    [38]刘长红,杨扬,陈勇.基于压缩传感的手写字符识别方法[J].计算机应用,2009,23(8):2080-2082
    [39]李波,谢杰镇,王博亮.基于压缩传感理论的数据重建[J].计算机技术与发展,2009,19(5):23-25
    [40]傅迎华.可压缩传感重建算法与近似QR分解[J].计算机应用,2008,28(9):2300-2302
    [41] Yang H R, Zhang C, Ding D W, et al. The theory of compressed sensing and reconstructionalgorithm[J]. Dianzi Xuebao(Acta Electronica Sinica),2011,39(1):142-148
    [42] Kirolos S, Laska J, Wakin M, et al. Analog-to-information conversion via randomdemodulation[C]//Design, Applications, Integration and Software,2006IEEE Dallas/CASWorkshop on. IEEE,2006:71-74
    [43] Lustig M, Donoho D, Pauly J M. Sparse MRI: The application of compressed sensing for rapid MRimaging[J]. Magnetic resonance in medicine,2007,58(6):1182-1195
    [44] ukur T, Lustig M, Saritas E U, et al. Signal compensation and compressed sensing formagnetization-prepared MR angiography[J]. Medical Imaging, IEEE Transactions on,2011,30(5):1017-1027
    [45]郭强,郁松年.基于三变量模型的剪切波去噪方法[J].自动化学报,2010(8):1062-1072
    [46] Lingala S G, Hu Y, DiBella E, et al. Accelerated dynamic MRI exploiting sparsity and low-rankstructure: kt SLR[J]. Medical Imaging, IEEE Transactions on,2011,30(5):1042-1054
    [47] Blumensath T, Davies M E. Iterative hard thresholding for compressed sensing[J]. Applied andComputational Harmonic Analysis,2009,27(3):265-274
    [48] Qu X, Guo D, Chen Z, et al. Compressed sensing MRI based on nonsubsampled contourlettransform[C]//IT in Medicine and Education,2008. ITME2008. IEEE International Symposium on.IEEE,2008:693-696.
    [49] Bushong S C. Magnetic resonance imaging[J].1988
    [50] Haldar J P, Hernando D, Liang Z P. Compressed-sensing MRI with random encoding[J]. MedicalImaging, IEEE Transactions on,2011,30(4):893-903
    [51] Ma S, Yin W, Zhang Y, et al. An efficient algorithm for compressed MR imaging using totalvariation and wavelets[C]//Computer Vision and Pattern Recognition,2008. CVPR2008. IEEEConference on. IEEE,2008:1-8
    [52] Duarte M F, Davenport M A, Takhar D, et al. Single-pixel imaging via compressive sampling[J].Signal Processing Magazine, IEEE,2008,25(2):83-91
    [53] Stone S S, Haldar J P, Tsao S C, et al. Accelerating advanced MRI reconstructions on GPUs[J].Journal of Parallel and Distributed Computing,2008,68(10):1307-1318.
    [54]王艳,练秋生,李凯.基于联合正则化及压缩传感的MRI图像重建[J].光学技术,2010,36(3):350-355
    [55]李本星,曹宝香,马建华.迫近算子在MR图像快速重建中的应用研究[J].电子学报,2010,38(12):2827-2831
    [56]李红,杨晓梅,李青.基于加权压缩感知的MR图像重建方法[J].中国组织工程研究,2012,16(26):4817-4821
    [57]王郗雨,杨晓梅,胡学姝.基于奇异值分解的压缩感知核磁共振图像重构算法[J].计算机应用研究,2013,30(4):1247-1249
    [58] Goldstein T, Osher S. The split Bregman method for L1-regularized problems[J]. SIAM Journal onImaging Sciences,2009,2(2):323-343
    [59]李青,杨晓梅,李红.基于压缩感知的自适应正则化磁共振图像重建[J].计算机应用,2012,32(2):541-544
    [60] Septimus A, Steinberg R. Compressive sampling hardware reconstruction[C]//Circuits and Systems(ISCAS), Proceedings of2010IEEE International Symposium on. IEEE,2010:3316-3319
    [61] Wang Y, Bermak A, Boussaid F. FPGA implementation of compressive sampling for sensornetwork applications[C]//Quality Electronic Design (ASQED),20102nd Asia Symposium on. IEEE,2010:5-8
    [62]王聪,冯衍秋.利用GPGPU进行快速稀疏核磁共振数据重建[J].计算机工程与应用,2011.47(17):203-209
    [63] Stone S S, Haldar J P, Tsao S C, et al. Accelerating advanced MRI reconstructions on GPUs[J].Journal of Parallel and Distributed Computing,2008,68(10):1307-1318
    [64]石光明,刘丹华,高大化,等.压缩感知理论及其研究进展[J].电子学报.2009,37(5):1070-1081
    [65] Baraniuk R G. Compressive sensing [lecture notes][J]. Signal Processing Magazine, IEEE,2007,24(4):118-121
    [66] Liang Z P, Lauterbur P C. Principles of magnetic resonance imaging: a signal processingperspective[M]. New York: SPIE Optical Engineering Press,2000
    [67]宋庆增,顾军华.共轭梯度求解器的FPGA设计与实现[J].计算机应用,2011,31(9):2571-2573
    [68] Candes E J, Tao T. Decoding by linear programming[J]. Information Theory, IEEE Transactions on,2005,51(12):4203-4215
    [69] Lustig M. Sparse MRI[M]. ProQuest,2008
    [70] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matchingpursuit[J]. Information Theory, IEEE Transactions on,2007,53(12):4655-4666
    [71]刘平.磁共振非笛卡尔采样数据的快速成像算法研究[D].广州:南方医科大学,2009
    [72]晁明举.核磁共振理论及应用综述[J].周口师范高等专科学校学报,1995,5(16):52-55
    [73]周爱珍.基于稀疏采样的医学成像方法研究[D].广州:南方医科大学,2011
    [74]黄继英,梁星源.磁共振成像原理[M].西安:陕西科学技术出版社,1997.1-76,150-160
    [75]赵喜平.磁共振成像系统的原理及应用[M].北京:科学出版社,2000.10-145,246-379,612-641
    [76]方青.磁共振部分K空间数据图像重建[D].上海:上海交通大学,2007
    [77]公伟.变密度随机采样的并行磁共振成像方法的研究[D].山东:青岛大学,2010
    [78]张廷芳.关于MRI中减轻伪像方法和并行成像重建算法的研究[D].天津:河北工业大学,2010
    [79] Donoho D L. Wedgelets: nearly minimax estimation of edges.(English summary)[J]. Ann. Statist,1999,27(3):859-897
    [80] Candes E J, Donoho D L. Curvelets: A surprisingly effective nonadaptive representation for objectswith edges[R]. Stanford Univ Ca Dept of Statistics,2000.
    [81] Candes E J, Donoho D L. New tight frames of curvelets and optimal representations of objects withpiecewise C2singularities[J]. Communications on pure and applied mathematics,2004,57(2):219-266
    [82] Candes E, Demanet L, Donoho D, et al. Fast discrete curvelet transforms[J]. Multiscale Modeling&Simulation,2006,5(3):861-899
    [83] Do M N, Vetterli M. The contourlet transform: an efficient directional multiresolution imagerepresentation[J]. Image Processing, IEEE Transactions on,2005,14(12):2091-2106
    [84] Kingsbury N. Complex wavelets for shift invariant analysis and filtering of signals[J]. Applied andcomputational harmonic analysis,2001,10(3):234-253.
    [85] Le Pennec E, Mallat S. Sparse geometric image representations with bandelets[J]. Image Processing,IEEE Transactions on,2005,14(4):423-438
    [86] Guo K, Labate D. Optimally sparse multidimensional representation using shearlets[J]. SIAMjournal on mathematical analysis,2007,39(1):298-318
    [87]胥斌,唐远炎,房斌.基于剪切波变换的纹理图像分类[J].计算机工程与应用,2011,47(29):15-17
    [88]吴为.内点法在大型电力系统无功优化中的应用研究[D].哈尔滨:哈尔滨工业大学,2008
    [89] Easley G, Labate D, Lim W Q. Sparse directional image representations using the discrete shearlettransform[J]. Applied and Computational Harmonic Analysis,2008,25(1):25-46
    [90]郭强.基于剪切波变换的图像统计模型及其应用研究[D].上海:上海大学,2010
    [91]李国燕,侯向丹,顾军华,等.快速中值滤波算法的改进及其FPGA实现[J].电子技术应用,2013,39(2):137-140
    [92]李国燕,顾军华,宋庆增,等.基于FFT的泊松方程快速求解器的硬件实现[J].计算机测量与控制,2013,1:083
    [93] Mizuno S, Nagasawa A. A primal-dual affine-scaling potential-reduction algorithm for linearprogramming[J]. Mathematical Programming,1993,62(1-3):119-131
    [94] Todd M J. Potential-reduction methods in mathematical programming[J]. MathematicalProgramming,1997,76(1):3-45
    [95]陈宝林.最优化理论与算法[M].清华大学出版社有限公司,2005:180-202
    [96]张贤达.矩阵分析与应用[M].清华大学出版社有限公司,2004.24-38
    [97] Luethi P, Studer C, Duetsch S, et al. Gram-Schmidt-based QR decomposition for MIMO detection:VLSI implementation and comparison[C]//Circuits and Systems,2008. APCCAS2008. IEEE AsiaPacific Conference on. IEEE,2008:830-833
    [98] Singh C K, Prasad S H, Balsara P T. VLSI architecture for matrix inversion using modifiedGram-Schmidt based QR decomposition[C]//20th International Conference on VLSI Design.2007:836-841
    [99]徐树方,高立,张平文.数值线性代数[M].北京大学出版社,2000.125-182
    [100]陆金甫译,特雷弗腾著.数值线性代数[M].人民邮电出版社,2006.11-30
    [101] Li G, Gu J, Song Q, et al. The hardware design and implementation of a signal reconstructionalgorithm based on compressed sensing[C]//Intelligent Networks and Intelligent Systems (ICINIS),2012Fifth International Conference on. IEEE,2012:96-100
    [102]李国燕,侯向丹,周博君,等.基于离散剪切波的压缩感知MRI图像重建[J].计算机应用研究,2013,30(6)
    [103] Borghi A, Darbon J, Peyronnet S, et al. A simple compressive sensing algorithm for parallelmany-core architectures[J]. CAM Report,2008:08-64
    [104] Andrecut M. Fast GPU implementation of sparse signal recovery from random projections[J].arXiv preprint arXiv:0809.1833,2008
    [105] Lee S, Wright S J. Implementing algorithms for signal and image reconstruction on graphicalprocessing units[J]. Computer Sciences Department, University of Wisconsin-Madison, Tech. Rep,2008
    [106]仇德元.GPGPU编程技术——从GLSL、CUDA到OpenCL[M].机械工业出版社.2011,13-16
    [107]韩博,周秉锋. GPGPU性能模型及应用实例分析[J].计算机辅助设计与图形学学报,2009,21(9):1219-1226
    [108] NVIDIA C. Programming Guide Version2.3.1//NVIDIA–World Leader in Visual ComputingTechnologies.2011[J]. URL: http://www. nvidia. com/object/cuda_develop. html (дата обраще ния:17.01.2012)
    [109] Hansen M S, Atkinson D, Sorensen T S. Cartesian SENSE and k‐t SENSE reconstruction usingcommodity graphics hardware[J]. Magnetic Resonance in Medicine,2008,59(3):463-468
    [110] Sorensen T S, Schaeffter T, Noe K O, et al. Accelerating the nonequispaced fast Fourier transformon commodity graphics hardware[J]. Medical Imaging, IEEE Transactions on,2008,27(4):538-547
    [111]刘凡.并行图像处理研究[D].南京:南京大学,2012
    [112] Jia X, Lou Y, Li R, et al. GPU-based fast cone beam CT reconstruction from undersampled andnoisy projection data via total variation[J]. Medical physics,2010,37:1757.
    [113] Nvidia C. Cublas library[J]. NVIDIA Corporation, Santa Clara, California,2008,15
    [114] Stone S S, Haldar J P, Tsao S C, et al. Accelerating advanced MRI reconstructions on GPUs[J].Journal of Parallel and Distributed Computing,2008,68(10):1307-1318
    [115]李国燕,侯向丹,顾军华,等.稀疏磁共振图像重建算法的GPU并行设计与实现[J].计算机应用与软件,2013,第9期
    [116]全英汇.稀疏信号处理在雷达检测和成像中的应用研究[D].西安:西安电子科技大学,2012
    [117]宋庆增.电磁场数值计算的FPGA加速技术研究[D].天津:河北工业大学,2012

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700