用户名: 密码: 验证码:
水平轴风力机叶片失速问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水平轴风力机是最有效的风能转换装置,在其开发和研制过程当中,最关键的核心问题就是设计高效、高可靠性的风轮。随着风力机的尺寸逐渐增大,需要更可靠的气动载荷预测方法,来确保更加优化的设计。气动载荷的可靠预测必须依赖准确的工程计算方法、气动力模型和修正模型。这些方法及模型的准确性又取决于对静态失速(失速延迟)、动态失速及动态载荷等关键气动问题所涉及的复杂流动机理的正确认识和深刻理解。
     本文通过数值计算和理论分析,研究了风力机静态失速和动态失速等气动问题,提出了一种基于代理的递归框架的非定常气动力降阶模型,采用了合成射流的方式对风力机翼型进行了主动流动控制的研究。研究以具有丰富详实的实验数据的美国国家可再生能源实验室的联合实验风轮和经典翼型为应用对象。研究成果有助于建立较为准确的载荷预测模型,提高风力机的设计水平,为保障风轮的可靠运行和提高风力机整体性能提供有力的支持。
     本文主要研究内容和研究成果如下:
     1)采用Menter的带转捩修正的K SST湍流模型,成功地对不同来流速度下的典型的NREL Phase VI风轮的内部流场进行了模拟,总体上和实验值吻合较好,只是在较高的风速下,流动分离严重,存在一定的差异,验证了计算的准确性。通过叶片不同叶高截面处的压力系数分布以及叶片吸力面的极限流线分布详细分析了叶轮流场特性。
     2)基于风轮的全尺度数值模拟结果,分析了失速延迟的内在流动机制,建立了三维流场和工程模型间的联系。推导获得了风轮不同叶高位置的轴向诱导因子,确定了各位置的有效攻角,提取了包含三维旋转效应及叶根叶尖效应的截面翼型气动数据。并与Du-Selig失速延迟模型的结果以及Tangler方法得到的结果进行了深入的比较和分析,探索了实际叶片不同叶高位置的失速特征。
     3)通过数值方法分析了典型深度失速工况的流场特征和动态失速涡的发展、传播和最后脱落的过程,加深对动态失速发生机理的理解。基于Menter的转捩修正的k SST湍流模型及网格变形的动网格技术对绕其1/4弦长点作正弦波周期性振荡的风力机翼型进行了CFD模拟,并与风洞测试的非定常实验结果进行了全面的对比,表明两者基本吻合,验证了动态失速数值模拟结果的准确性。通过流线分布和压力系数分布,揭示了气动力迟滞回线的变化特征。
     4)基于所获得包括未失速、失速初生到轻度失速以及最后的深度失速多个工况下的非定常流场数据,研究了不同折合频率、平均攻角以及振荡幅角对翼型动态失速的影响。折合频率对动态失速有着重要的影响,随着折合频率的增大,升力的峰值出现在更高的攻角处,迟滞效应变得更为显著。在某些工况中,导致负的气动阻尼和迟滞现象加剧。并且基于升阻力和转矩系数,分析了动态失速对实际运行的风力机载荷的影响。
     5)基于以上的翼型非定常数据,利用SBRF降阶建模方法,有效地预测了动态失速条件下翼型的非定常升力,阻力和转矩。研究证明,对气动响应求解要求逼近精度较高的诸多气动弹性以及被动/主动最优化设计研究中,SBRF降阶模型是一种非常理想的既保留极高近似精度又具有较高计算效率的非定常气动模型。
     6)采用合成射流,对静态及振荡的风力机翼型绕流流场进行了流动控制效果的数值研究。研究发现:对于静态翼型,在小攻角流动附着时,对翼型的性能则有负面的影响,在预失速阶段,合成射流对翼型性能有显著的提升效果,在过失速区域则影响微弱。对动态振荡翼型,合成射流在翼型振荡周期很大范围内能够有效抑制动态失速条件下的气动力迟滞效应,但是对于深度失速时有限的大攻角范围内,仍然存在强烈的涡脱落及气动力振荡。
Designing highly efficient and reliable wind turbine rotor is the most essentialproblem in the research and development of horizontal axis wind turbine (HAWT) whichhas been the most effective wind energy convertor. With the radical increase in windturbine scale, to ensure more optimal designs, more reliable predictions of aerodynamicloads which depend on the use of accurate engineering computational methods,aerodynamic modeling and correction models, are needed. The accuracy of these methodsand models however relies on a correct cognition and a profound understanding in thecomplicated flow mechanisms that are closely related to key aerodynamic problems suchas static stall (stall delay), dynamic stall and dynamic loads etc.
     Through numerical computations and theoretical analysis, static stall and dynamicstall problems on wind turbines are investigated, a reduced-order model for unsteadyaerodynamic forces prediction based on a surrogate-based recurrence framework (SBRF) isput forward, and a study on the impact of active flow control with synthetic jet on a windturbine airfoil is performed. The research is based on the combined experiment Phase VIrotor and S809airfoil of National Renewable Energy Laboratory (NREL) for which thereare abundant specific and detailed experimental data available. The research achievementshelp establish more accurate loads prediction models and enhance wind turbine designlevel, which provides a strong support for ensuring wind turbine operation reliability andenhancement of its overall performance.
     The main contents and achievements of the research are as follows:
     1) Using Menter’s transition corrected k SST turbulence model, numericalsimulations of the flowfield around the typical NREL Phase VI rotor under differentfree stream speeds is carried out, and the result are generally in agreement with the experiments with some discrepancy under high wind speed when the flow separationincreases and the accuracy of simulation is validated. The rotor flow field features areanalyzed in detail with pressure coefficient distribution on different blade radialsections and the limiting streamlines distribution on the blade suction surface.
     2) Based on the full scale rotor CFD results, the intrinsic flow mechanisms of stall delayis analyzed, and the relations between3D flow field and engineering models isestablished. The axial reduction factors at different blade radial sections are deduced,and the effective angles of attack are obtained. The sectional aerodynamic coefficientswhich include3D rotational effects and blade tip and root effects are extracted.Extensive comparison and analysis is performed among CFD results, those withcorrection by Du-Selig stall delay model and those of Tangler Method, and the stallcharacteristics of different blade radial sections is explored.
     3) Through numerical simulations, the process of dynamic vortex development,convection and finally shedding into wake for a typical deep stall case are illustratedin detail leading to a further understanding of the mechanism involved in the dynamicstall phenomenon. With the application of Menter’s transition corrected k SSTturbulence model and mesh deformation based dynamic mesh technique, CFDsimulations on the wind turbine airfoil undergoing sinusoidal periodic pitchoscillations about it’s quarter chord point are carried out. The result is compared withthe wind tunnel experimental data, which shows a good agreement, thus the accuracyof CFD simulations is validated. Via streamlines and pressure coefficient distribution,the variation of aerodynamic hysteresis loops is disclosed.
     4) Depending on the unsteady flow field data of the multiple cases under non-stall, stallonset, light stall and deep stall conditions, the impact of reduced frequency, meanangle of attack and the amplitude of pitch oscillation on the airfoil dynamic stall isinvestigated, which finds that reduced frequency plays a great role in dynamic stall.With increased reduced frequency, lift peak value is to appear at a higher angle ofattack, and the negative aerodynamic damping and hysteresis effect become morepronounced in some cases. Based on the lift drag and moment coefficients, theinfluence of dynamic stall over wind turbine practical operation is analyzed.
     5) Based on the above computed airfoil unsteady aerodynamic results, with SBRF reduce-order modeling, the unsteady lift, drag and moment is predicted underdynamic stall conditions. The research manifests that the SBRF reduced-ordermodeling approach is ideally suited for a variety of aeroelastics and active/passivedesign optimization studies that require high fidelity aerodynamic response solutionswith efficiency as high as that of semi-empirical models.
     6) The flow field around static and pitching airfoil is simulated with synthetic jet as anactive flow control method. The study shows that: for static airfoil, under attachedflow with small angle of attack, jet actuation has a negative impact on the airfoilperformance; in prestall regime, the jet enhances the airfoil performance remarkably;and in the poststall regime, the effect diminishes and becomes weak. For pitchingairfoil, the synthetic jet can effectively suppress the hysteresis for a large portion ofthe oscillation cycle. However, for a limited range with large angle of attack in deepstall, strong vortex shedding and aerodynamic oscillation still exist.
引文
[1] Half year report[R]. World Wind Energy Association,2012.
    [2]李俊峰.2012中国风电发展报告[M].北京:中国环境科学出版社,2012.
    [3] Hansen, M. O. L. Aerodynamics of wind turbines[M]. Earthscan/James&James,2008.
    [4] Miley, S. J. A catalog of low Reynolds number airfoil data for wind turbine applications[M].NTIS,1982.
    [5]杨科,王会社,徐建中,杜建一,赵晓路.基于CFD技术的高性能风力机翼型最优化设计方法[J].工程热物理学报.2007,28(04):586-588.
    [6] Tangler, J. L. and Somers, D. M. Status of the special-purpose airfoil families[R]. SolarEnergy Research Inst., Golden, CO (USA); Airfoils, Inc., Hampton, VA (USA),1987.
    [7] Snel, H. Review of the present status of rotor aerodynamics[J]. Wind Energy.1998,1(S1):46-69.
    [8] Du, Z. and Selig, M. A3-D stall-delay model for horizontal axis wind turbine performanceprediction[A].36th Aerospace Sciences Meeting and Exhibit and1998ASME Wind EnergySymposium, Reno, Nevada,1998.
    [9] Barnsley, M. and Wellicome, J. Wind tunnel investigation of stall aerodynamics for a1.0mhorizontal axis rotor[J]. Journal of Wind Engineering and Industrial Aerodynamics.1992,39(1):11-21.
    [10] Himmelskamp, H. Profile investigations on a rotating airscrew[R]. MAP Volkenrode Report,1945.
    [11] Young, W. H. and Williams, J. C. Boundary-layer separation on rotating blades in forwardflight[J]. AIAA Journal.1972,10(12):1613-1619.
    [12] Madsen, H. and Christensen, H. On the relative importance of rotational, unsteady andthree-dimensional effects on the HAWT rotor aerodynamics[J]. Wind Engineering.1990,14(6):405-415.
    [13] Snel, H. Scaling laws for the boundary layer flow on rotating windturbine blades[A].Proceedings of the Fourth IEA Symposium on the Aerodynamics of Wind Turbines, ETSU,Harwell,1991.
    [14] Narramore, J. C. and Vermelandt, R. Navier-Stokes calculations of inboard stall delay dueto rotation[J]. Journal of Aircraft.1992,29(1):73-78.
    [15] Dwyer, H. and McCroskey, W. Crossflow and unsteady boundary-layer effects on rotatingblades[J]. AIAA Journal.1971,9(8):1498-1505.
    [16] Robinson, M. C., Hand, M. M., Simms, D. A., and Schreck, S. J. Horizontal axis windturbine aerodynamics: Three-dimensional, unsteady and separated flow influences[A].Engineering Conference, Golden, Colorado,1999.
    [17] Schreck, S., Robinson, M., Hand, M., and Simms, D. HAWT dynamic stall responseasymmetries under yawed flow conditions[J]. Wind Energy.2000,3(4):215-232.
    [18] Schreck, S. J., Robinson, M. C., Hand, M. M., and Simms, D. A. Blade dynamic stall vortexkinematics for a horizontal axis wind turbine in yawed conditions[J]. Journal of Solar EnergyEngineering.2001,123(4):272-281.
    [19] Milborrow, D. J. Changes in aerofoil characteristics due to radial flow on rotating blades[A].7th BWEA Conference, Oxford, UK,1985.
    [20] Ronsten, G. Static pressure measurements on a rotating and a non-rotating2.375m windturbine blade. Comparison with2D calculations[J]. Journal of Wind Engineering and IndustrialAerodynamics.1992,39(1):105-118.
    [21] Sicot, C., Devinant, P., Loyer, S., and Hureau, J. Rotational and turbulence effects on awind turbine blade. Investigation of the stall mechanisms[J]. Journal of Wind Engineering andIndustrial Aerodynamics.2008,96(8-9):1320-1331.
    [22] Snel, H., Houwink, R., and Bosschers, J. Sectional prediction of lift coefficients on rotatingwind turbine blades in stall[R]. ECN-C--93-052, Petten, the Netherlands: Energy Research Centreof the Netherlands (ECN), December,1994.
    [23] Chaviaropoulos, P. K. and Hansen, M. O. L. Investigating three-dimensional and rotationaleffects on wind turbine blades by means of a Quasi-3D Navier-Stokes solver[J]. Journal of FluidsEngineering.2000,122(2):330-336.
    [24] Raj, N. V. An improved semi-empirical model for3-D post-stall effects in horizontal axiswind turbines[Dissertation]. Master Science Thesis, University of Illinois at Urbana-Champaign2000.
    [25] Corrigan, J. J. and Schillings, J. J. Empirical model for stall delay due to rotation[A].American Helicopter Society Aeromechanics Specialists Conference, San Francisco, California,1994.
    [26] Banks, W. and Gadd, G. Delaying effect of rotation on laminar separation[J]. AIAA Journal.1963,1(4):941-942.
    [27]杜朝辉.水平轴风力涡轮设计与性能预估方法的三维失速延迟模型—I.理论基础[J].太阳能学报.1999,20(04):392-397.
    [28]杜朝辉.水平轴风力涡轮设计与性能预估方法的三维失速延迟模型—II.模型建立及应用[J].太阳能学报.2000,21(01):1-6.
    [29]杜朝辉.水平轴风力涡轮设计与性能预估方法的三维失速延迟模型—III.模型改进[J].太阳能学报.2000,21(02):145-150.
    [30] Lindenburg, C. Modelling of rotational augmentation based on engineering considerationsand measurements[A]. European Wind Energy Conference, London, November22-25,2004.
    [31] Bak, C., Johansen, J., and Andersen, P. B. Three-dimensional corrections of airfoilcharacteristics based on pressure distributions[A]. European Wind Energy Conference&Exhibition, Athens, Greece,2006.
    [32] S rensen, N., Michelsen, J., and Schreck, S. Navier–stokes predictions of the NREL PhaseVI Rotor in the NASA Ames80ft×120ft wind tunnel[J]. Wind Energy.2002,5(2-3):151-169.
    [33] Xu, G. and Sankar, L. Application of a viscous flow methodology to the NREL Phase VIrotor[A].2002ASME Wind Energy Symposium, Reno, NV,2002.
    [34] Hand, M. M., Simms, D. A., Fingersh, L. J., Jager, D. W., and Cotrell, J. R. Unsteadyaerodynamics experiment Phase V: Test configuration and available data campaigns[R].NREL/TP-500-29491, Golden, Colorado: National Renewable Energy Laboratory,2001.
    [35] Schreck, S. and Robinson, M. Structures and interactions underlying rotationalaugmentation of blade aerodynamic response[A].41st AIAA Aerospace Sciences Meeting andExhibit, Reno, Nevada,2003.
    [36] Somers, D. M. Design and experimental results for S809airfoil[R]. NREL/SR-440-6918UC Category:1213DE97000206, Golden, Colorado,1997.
    [37] Tangler, J. L. Insight into wind turbine stall and post-stall aerodynamics[J]. Wind Energy.2004,7(3):247-260.
    [38]伍艳,王同光.三维旋转效应对桨叶气动特性影响的计算[J].空气动力学学报.2006,24(2):200-204.
    [39]伍艳,王同光.风力机叶片的三维非定常气动特性估算[J].计算力学学报.2008,25(1):100-103.
    [40]胡丹梅,杜朝辉,朱春建.水平轴风力机静态失速特性[J].太阳能学报.2006,27(3):217-222.
    [41]竺晓程,沈昕,杜朝辉.带失速延迟模型的改进型升力线法预测风力机性能[J].太阳能学报.2007,28(05):545-548.
    [42]戴韧,王海刚.水平轴风力机失速延迟特性及其力学机理的研究[J].太阳能学报.2008,29(03):337-342.
    [43]李佳,胡丹梅,张建平.水平轴风力机静态失速数值模拟[J].华东电力.2011,39(07):1171-1176.
    [44] Lynette, R. California wind farms: Operational data collection and analysis[R].SERI/PR-217-3489, Golden, Colorado: National Renewable Energy(NREL),1989.
    [45] Shipley, D. E., Miller, M. S., and Robinson, M. C. Dynamic stall occurrence on a horizontalaxis wind turbine blade[R]. NREL/TP-442-6912UC Category1211DE95009264, Golden,Colorado: National Renewable Energy Laboratory (NREL),1995.
    [46] Butterfield, C. P. Aerodynamic pressure and flow-visualization measurement from arotating wind turbine blade[R]. Solar Energy Research Inst., Golden, CO (USA),1988.
    [47] Leishman, J. G. Challenges in modelling the unsteady aerodynamics of wind turbines[J].Wind Energy.2002,5(2-3):85-132.
    [48] Carta, F. O. An analysis of the stall flutter instability of helicopter rotor blades[J]. Journal ofthe American Helicopter Society.1967,12(4):1-18.
    [49] Bielawa, R. Synthesized unsteady airfoil data with applications to stall fluttercalculations[A].31st Annual Forum of the American Helicopter Society, Washington DC, May13–15,1975.
    [50] Gross, D. W. and Harris, F. D. Prediction of in-flight stalled airloads from oscillating airfoildata[A].25th Annual Forum of the American Helicopter Society, Washington DC, May14–16,1969.
    [51] Gormont, R. E. A mathematical model of unsteady aerodynamics and radial flow forapplication to helicopter rotors[R]. DTIC Document,1973.
    [52] Beddoes, T. A synthesis of unsteady aerodynamic effects including stall hysteresis[J].Vertica.1976,1(2):113-123.
    [53] Gangwani, S. T. Synthesized airfoil data method for prediction of dynamic stall andunsteady airloads[J]. Vertica.1984,8(2):93-118.
    [54] Johnson, W. Comparison of three methods for calculation of helicopter rotor blade loadingand stresses due to stall[R]. NASA TN D-7833, National Aeronautics and SpaceAdministration(NASA),1974.
    [55] Tran, C. T. and Petot, D. Semi-empirical model for the dynamic stall of airfoils in view ofthe application to the calculation of response of a helicopter blade in forward flight[J]. Vertica.1981,5(1):35-53.
    [56] Tran, C.T. and Falchero, D. Application of the ONERA dynamic stall model to a helicopterrotor blade in forward flight[A].7th European Rotorcraft Forum, Garmisch-Partenkirchen,Germany, Sept.22–25,1981.
    [57] McAlister, K. W. Application of the ONERA model of dynamic stall[R]. NASA TechnicalPaper2399, AVSCOM Technical Report84-A-3,1984.
    [58] Peters, D. A. Toward a unified lift model for use in rotor blade stability analysis[J]. Journalof the American Helicopter Society.1985,30(3):32-42.
    [59] Leishman, J. G. and Beddoes, T. S. A generalized method for unsteady airfoil behavior anddynamic stall using the indicial method[A].42nd Annual Forum of the American HelicopterSociety, Washington DC, June,1986.
    [60] Leishman, J. G. and Beddoes, T. S. A semi-empirical model for dynamic stall[J]. Journal ofthe American Helicopter Society.1989,34(3):3-17.
    [61] Pierce, K. and Hansen, A. C. Prediction of wind turbine rotor loads using theBeddoes-Leishman model for dynamic stall[J]. Journal of Solar Energy Engineering.1995,117(3):200-204.
    [62] Datta, A., Nixon, M., and Chopra, I. Review of rotor loads prediction with the emergence ofrotorcraft CFD[J]. Journal of the American Helicopter Society.2007,52(4):287-317.
    [63] Mehta, U. B. Dynamic stall of an oscillating airfoil[A]. AGARD Meeting on UnsteadyAerodynamics, Ottawa, Canada, September1977.
    [64] Wu, J. C., Huff, D. L., and Sankar, L. N. Evaluation of three turbulence models for theprediction of steady and unsteady airloads[A]. AIAA Paper89-0609,1989.
    [65] Tuncer, I. H., Wu, J. C., and Wang, C. M. Theoretical and numerical studies of oscillatingairfoils[J]. AIAA Journal.1990,28:1615-1624.
    [66] Ghia, K. N., Yang, J., Oswald, G. A., and Ghia, U. Study of dynamic stall mechanism usingsimulation of two-dimensional Navier-Stokes equations[A].29th AIAA Aerospace SciencesMeeting, Reno, Nevada,1991.
    [67] Ghia, K. N., Yang, J., Osswald, G. A., and Ghia, U. Study of the role of unsteady separationin the formation of dynamic stall vortex [A].30th Aerospace SciencesMeeting&Exhibit, Reno,Nevada,1992.
    [68] Sankar, N. Compressibility effects on dynamic stall of a NACA0012airfoil[J]. AIAAJournal.1981,19(5):557-568.
    [69] Chyu, W. and Davis, S. Numerical studies of unsteady transonic flow over an oscillatingairfoil[R]. NASA STI/Recon Technical Report N,1984.
    [70] Visbal, M. R. and Visbal, M. R. Effect of compressibility on dynamic stall of a pitchingairfoil[A].26th AIAA Aerospace Sciences Meeting, Reno, Nevada,1988.
    [71] Visbal, M. and Shang, J. Investigation of the flow structure around a rapidly pitchingairfoil[J]. AIAA Journal,1989,27:1044-1051.
    [72] Reisenthel, P. H. Further results on the Reynolds number scaling of incipient leading edgestall[A].33rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV,1995.
    [73] Choudhuri, P. G. and Knight, D. D. Effects of compressibility, pitch rate, and Reynoldsnumber on unsteady incipient leading-edge boundary layer separation over a pitching airfoil[J].Journal of Fluid Mechanics.1996,308:195-218.
    [74] Sankar, L. and Tang, W. Numerical solution of unsteady viscous flow past rotor sections[A].AIAA Paper85-0129,1985.
    [75] Rumsey, C. and Anderson, W. Some numerical and physical aspects of unsteadyNavier-Stokes computations over airfoils using dynamic meshes[A].26th AIAA AerospaceSciences Meeting, Reno, NV,1988;.
    [76] Ekaterinaris, J. A. Compressible studies on dynamic stall[A].27th AIAA AerospaceSciences Meeting, Reno, Nevada,1989.
    [77] Patterson, M. and Lorber, P. Computational and experimental studies of compressibledynamic stall[J]. Journal of Fluids and Structures.1990,4(3):259-285.
    [78] Ekaterinaris, J. Analysis of low Reynolds number airfoil flows[J]. Journal of Aircraft.1995,32(3):625-630.
    [79] Van Dyken, R., Ekaterinaris, J. A., Chandrasekhara, M., and Platzer, M. Analysis ofcompressible light dynamic stall flow at transitional Reynolds numbers[J]. AIAA Journal.1996,34(7):1420-1427.
    [80] Barakos, G. N. and Drikakis, D. Computational study of unsteady turbulent flows aroundoscillating and ramping aerofoils[J]. International Journal for Numerical Methods in Fluids.2003,42(2):163-186.
    [81] Salari, K. and Roache, P. The influence of sweep on dynamic stall produced by a rapidlypitching wing[A].28th AIAA Aerospace Sciences Meeting, Reno, Nevada,1990.
    [82] Yang, H. and Przekwas, A. Dynamic stall on a three-dimensional rectangular wing[A].AIAA Paper93-0637,1993.
    [83] Newsome, R. Navier–stokes simulation of wing–tip and wing–juncture interactions for apitching wing[A].25th AIAA Fluid Dynamics Conference, US Air Force Academy, ColoradoSprings, CO,1994.
    [84] Schreck, S. J. and Helin, H. E. Unsteady vortex dynamics and surface pressure topologieson a finite pitching wing[J]. Journal of Aircraft.1994,31:899-907.
    [85] Ekaterinaris, J. A. Numerical investigation of dynamic stall of an oscillating wing[J]. AIAAJournal.1995,33:1803-1808.
    [86] Morgan, P. and Visbal, M. Simulation of unsteady three-dimensional separation on apitching wing[J]. AIAA Paper2709,2001.
    [87] Spentzos, a., Barakos, G. N., Badcock, K. J., Richards, B. E., Coton, F. N., Galbraith, R. a.M., Berton, E., and Favier, D. Computational fluid dynamics study of three-dimensional dynamicstall of various planform shapes[J]. Journal of Aircraft.2007,44:1118-1128.
    [88] Duque, E. P. N., van Dam, C. P., Brodeur, R. R., and Chao, D. D. Navier-Stokes analysis oftime-dependent flows about a wind turbine[A].3rd ASME/JSME Joint Fluids EngineeringConference, San Francisco, California,1999.
    [89] Johansen, J. Unsteady airfoil flows with application to aeroelastic stability[R].Ris-R-1116(EN), Roskilde, Denmark: Ris National Laboratory, October,1999.
    [90] S rensen, N. N. and Schreck, S. Computation of the National Renewable EnergyLaboratory Phase-VI Rotor in pitch motion during standstill[J]. Wind Energy.2011,15(3):425-442.
    [91]高志鹰,汪建文,韩晓亮,东雪青,刘冬冬,新吉勒图,仇连君.风力机叶片动态绕流结构的PIV实验研究[J].工程热物理学报.2009,30(2):230-232.
    [92]陈旭,郝辉,田杰,杜朝辉.水平轴风力机翼型动态失速特性的数值研究[J].太阳能学报.2003,24(6):735-740.
    [93]查顾兵,竺晓程,杜朝辉.风力机叶片三维旋转尾缘分离点研究[A].中国工程热物理学会2008年热机气动热力学与流体机械学术会议论文集,2008.
    [94]查顾兵,竺晓程,沈昕,俞国华,杜朝辉.水平轴风力机在偏航情况下动态失速模型分析[J].太阳能学报.2009,30(9):1298-1300.
    [95]王同光,伍艳.考虑旋转效应的风力机非定常气动特性的计算[A].中国空气动力学会2004全国工业空气动力学学术会议论文集,2004.
    [96]王芳,王同光.基于涡尾迹方法的风力机非定常气动特性计算[J].太阳能学报.2009,30(9):1286-1291.
    [97]吕超,王同光,许波峰.三维动态失速模型在风力机气动特性计算中的应用[J].南京航空航天大学学报.2011,43(5):708-712.
    [98]刘雄,张宪民,陈严,叶枝全.基于Beddoes-Leishman动态失速模型的水平轴风力机动态气动载荷计算方法[J].太阳能学报.2008,29(12):1449-1455.
    [99]刘雄,张宪民,李德源,陈严,叶枝全.风力机翼型非定常气动力分析[J].应用基础与工程科学学报.2010,18(3):503-516.
    [100]张仲柱,汪仲夏,王会社,赵晓路,徐建中.偏航工况下叶轮气动性能研究[A].2007年流体机械学术会议论文集,2007.
    [101] Lucia, D. J., Beran, P. S., and Silva, W. A. Reduced-order modeling: New approaches forcomputational physics[J]. Progress in Aerospace Sciences.2004,40(1):51-117.
    [102] Hall, K. C., Thomas, J. P., and Dowell, E. H. Proper orthogonal decomposition techniquefor transonic unsteady aerodynamic flows[J]. AIAA Journal.2000,38(10):1853-1862.
    [103]张震宇.风力机翼型动态失速的POD模型降阶方法[J].南京航空航天大学学报.2011,43(5):577-580.
    [104] Silva, W. Identification of nonlinear aeroelastic systems based on the volterra theory:Progress and opportunities[J]. Nonlinear Dynamics.2005,39(1):25-62.
    [105] Balajewicz, M., Nitzsche, F., and Feszty, D. Reduced order modeling of nonlineartransonic aerodynamics using a pruned volterra series[A]. Proceedings of the50thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, PalmSprings, CA,2009.
    [106] Queipo, N. V., Haftka, R. T., Shyy, W., Goel, T., Vaidyanathan, R., and Kevin Tucker, P.Surrogate-based analysis and optimization[J]. Progress in Aerospace Sciences.2005,41(1):1-28.
    [107] Lian, Y., Oyama, A., and Liou, M.-S. Progress in design optimization using evolutionaryalgorithms for aerodynamic problems[J]. Progress in Aerospace Sciences.2010,46(5-6):199-223.
    [108] Trizila, P., Kang, C. K., Visbal, M., and Shyy, W. A surrogate model approach in2D versus3D flapping wing aerodynamic analysis[A]. AIAA Paper5914,2008.
    [109] Glaz, B., Liu, L., Friedmann, P. P., Bain, J., and Sankar, L. N. A surrogate-based approachto reduced-order dynamic stall modeling[J]. Journal of the American Helicopter Society.2012,57(2):1-9.
    [110] Glaz, B., Liu, L., and Friedmann, P. P. Reduced-order nonlinear unsteady aerodynamicmodeling using a surrogate-based recurrence framework[J]. AIAA Journal.2010,48(10):2418-2429.
    [111] Trizila, P., Kang, C., Visbal, M. R., and Shyy, W. Unsteady fluid physics and surrogatemodeling of low Reynolds number flapping airfoils[A].38th Fluid Dynamics Conference andExhibit, Seattle, Washington,2008.
    [112] Forrester, A., Sobester, A., and Keane, A. Engineering design via surrogate modelling: Apractical guide[M]. Wiley,2008.
    [113]韩忠华.旋翼绕流的高效数值计算方法及主动流动控制研究[博士论文].西安:西北工业大学.2007.
    [114] Barlas, T. and Kuik, G. A. M. State of the art and prospectives of smart rotor control forwind turbines[A]. Journal of Physics: Conference Series75,2007.
    [115] Spera, D. A. Wind turbine technology: Fundamental concepts of wind turbineengineering[M]. New York: ASME Press,1994.
    [116] Wright, A. D. Modern control design for flexible wind turbines[R]. NREL/TP-500-35816,National Renewable Energy Laboratory,2004.
    [117] Lobitz, D. W. and Veers, P. S. Aeroelastic behavior of twist-coupled HAWT blades[A].AIAA Paper98-0029,1998.
    [118] Lobitz, D. W., Veers, P. S., Eisler, G. R., Laino, D. J., Migliore, P. G., and Bir, G. The useof twisted-coupled blades to enhance the performance of horizontal axis wind turbines[R].SAND01-1303, Sandia National Laboratories, Albuquerque, NM,2001.
    [119] Lobitz, D. Aeroelastic tailoring in wind-turbine blade applications[A]. American WindEnergy Association Meeting and Exhibition, Bakersfield, CA,1998.
    [120] Lobitz, D. W., Veers, P. S., and Migliore, P. G. Enhanced performance of HAWTs usingadaptive blades[A]. Wind Energy96ASME Wind Energy Symposium Houston,1996.
    [121] Scott Collis, S., Joslin, R. D., Seifert, A., and Theofilis, V. Issues in active flow control:Theory, control, simulation, and experiment[J]. Progress in Aerospace Sciences.2004,40(4-5):237-289.
    [122] Burton, T., Sharpe, D., Jenkins, N., and Bossanyi, E. Wind Energy Handbook[M]. WileyOnline Library,2001.
    [123] M., G. Advanced pitch control for wind turbines[R]. Technical Report2001.001, DelftUniversity of Technology-DUWIND,2001.
    [124] Hammond, C. Wind tunnel results showing rotor vibratory loads reduction using higherharmonic blade pitch[J]. Journal of the American Helicopter Society.1983,28(1):10-15.
    [125] Chopra, I. Recent progress on the development of a smart rotor system[A]. Proceedings ofthe11th International Conference on Adaptive Structures and Technologies, Technomic, Lancaster,2001.
    [126] Jamieson, P. M. K., Hornzee-Jones, C., Moroz, E. M., and Blakemore, R. W. Variablediameter wind turbine rotor blades[P].2005.
    [127] Dawson, M. and Wallace, J. Variable length wind turbine blade[P].2003.
    [128] Energy, G. W. and LLC. Advanced wind turbine program next generation turbinedevelopment project[R]. Subcontract Report NREL/SR-5000-38752,2006.
    [129] Gad-el-Hak, M. Overview of turbulence control research in USA[A]. Proceedings of theSymposium on Smart Control of Turbulence, Tokyo,1999.
    [130] Johnson, S., van Dam, C., and Berg, D. Active load control techniques for windturbines[R]. SAND2008-4809, Albuquerque, NM: Sandia National Laboratories,2008.
    [131] Glezer, A. and Amitay, M. Synthetic jets[J]. Annual Review of Fluid Mechanics.2002,34(1):503-529.
    [132] James, R., Jacobs, J., and Glezer, A. A round turbulent jet produced by an oscillatingdiaphragm[J]. Physics of Fluids.1996,8(9):2484-2495.
    [133] Seifert, A., Bachar, T., Koss, D., Shepshelovich, M., and Wygnanskil, I. Oscillatoryblowing: A tool to delay boundary-layer separation[A]. AIAA Paper93-0440,1993.
    [134] Donovan, J. F., Kral, L. D., and Cary, A. W. Active flow control applied to an airfoil [A].36th AIAA, Aerospace Sciences Meeting&Exhibit, Reno, NV,1998.
    [135] Ravindran, S. Active control of flow separation over an airfoil[A]. Third InternationalConference on Nonlinear Problems in Aviation and Aerospace, Daytona Beach, FL,2001.
    [136] Tensi, J., Bourgois, S., Bonnet, J. P., Breux, J. M., and Siauw, W. L. Airfoil performanceenhancement using fluidic actuators[R]. Laboratoire d’Etudes Aérodynamiques UMR6609,2007.
    [137] Maldonado, V., Boucher, M., Ostman, R., and Amitay, M. Active vibration control of awind turbine blade using synthetic jets[J]. International Journal of Flow Control.2009,1(4):227-238.
    [138]罗振兵,夏智勋,方丁酉,王志吉,胡建新.合成射流影响因素[J].国防科技大学学报.2002,24(03):32-35.
    [139]罗振兵,夏智勋,胡建新,王志吉,赵建民,缪万波.相邻激励器合成射流流场数值模拟及机理研究[J].空气动力学学报.2004,22(01):52-59.
    [140]王德全,夏智勋,罗振兵.相邻合成射流激励器低速射流矢量控制研究[J].固体火箭技术.2006,29(05):325-328.
    [141]王德全,夏智勋,罗振兵,胡建新,赵建民,缪万波.合成射流与横向主流作用的流场数值分析[J].空气动力学学报.2007,25(01):92-96.
    [142]王林,罗振兵,夏智勋,刘冰.不同出口倾角合成双射流流动特性及边界层控制初步研究[A].中国力学学会学术大会'2009,河南郑州,2009.
    [143]罗振兵,夏智勋.压电式合成射流激励器计算模型—罗-夏模型[A].中国计算力学大会(CCCM2010)暨第八届南方计算力学学术会议(SCCM8),四川绵阳,2010.
    [144]何高让,汪亮,张恩昭.双微射流合成流场数值分析[J].宇航学报,2000,21(增刊):1-5.
    [145]高峰,汪亮.单微射流作动器定向控制主流数值模拟[J].西北工业大学学报.2003,21(5):528-531.
    [146]高峰,汪亮.双微射流作动器合成流场数值模拟[J].空气动力学学报.2003,21(3):267-273.
    [147]郝礼书.合成射流致动器的设计研究[硕士论文].西安:西北工业大学,2005.
    [148]郝礼书,韩忠华,乔志德,何光洪.合成射流致动器出口流场特性分析[J].机械设计与制造.2006,8:138-139.
    [149]朱业传,苑伟政,马炳和,邓进军,姜澄宇.微致动器用于翼面流场主动控制规律研究[J].纳米技术与精密工程.2008,6(1):24-28.
    [150]郝礼书,乔志德.压电式合成射流致动器的设计与实验研究[J].压电与声光.2009,31(6):836-838.
    [151]邓进军,苑伟政,罗剑,马炳和,姜澄宇. MEMS技术在流动分离主动控制中的应用[J].西北工业大学学报.2010,28(3):381-387.
    [152]刘小波,张伟伟,蒋跃文,叶正寅.低频、大功率合成射流对翼型非定常气动特性影响的数值研究[A].中国力学大会2011暨钱学森诞辰100周年纪念大会论文集,2011.
    [153]沈丹东,马炳和,邓进军,苑伟政.压电式微型合成射流器结构参数优化设计[J].航空学报.2011,32(9):1755-1764.
    [154]侯辉,马炳和,邓进军,王树山,庄成乾.一种微型侧喷式压电合成射流器的设计[J].航空精密制造技术.2012,48(3):10-13.
    [155]刘小波,张伟伟,蒋跃文,李韶飞,叶正寅.尾缘合成射流影响翼型非定常气动特性的数值研究[J].空气动力学学报.2012,30(5):606-612.
    [156]刘艳明,伍耐明,董金钟,周盛.合成射流作用机理及其对共轴射流掺混的影响[J].北京航空航天大学学报.2007,33(01):5-9.
    [157]冯立好,王晋军,徐超军.高效合成射流激励信号的实验验证[J].实验流体力学.2008,22(01):6-10.
    [158]张攀峰,王晋军.合成射流控制NACA0015翼型大攻角流动分离[J].北京航空航天大学学报.2008,34(04):443-446.
    [159]郑新前,张扬军,周盛.合成射流控制压气机分离流动及工程应用探索[J].中国科技论文在线.2008,03(08):547-552.
    [160]张攀峰,王晋军.孔口倾斜角对合成射流控制翼型流动分离的影响[J].兵工学报.2009,30(12):1658-1662.
    [161]张攀峰,燕波,戴晨峰.合成射流环量控制翼型增升技术[J].中国科学:技术科学.2012,42(09):1046-1053.
    [162] DeSalvo, M. and Glezer, A. Control of airfoil aerodynamic performance using distributedtrapped vorticity[A].19th AIAA Computational Fluid Dynamics Conference, San Antonio, TX.,2009.
    [163] Schlichting, H. and Gersten, K. Boundary Layer Theory[M]. Springer Verlag,2000.
    [164] Corten, G. P. Flow separation on wind turbine blades[Dissertation]. Utrecht: University ofUtrecht2001.
    [165] McCullough, G. B. and Gault, D. E. Examples of three representative types ofairfoil-section stall at low speed[M]. National Advisory Committee for Aeronautics,1951.
    [166] Gault, D. E. A correlation of low-speed, airfoil-section stalling characteristics withReynolds number and airfoil geometry[M]. National Advisory Committee for Aeronautics,1957.
    [167] Bak, C., Madsen, H. A., Fuglsang, P., and Rasmussen, F. Observations and hypothesis ofdouble stall[J]. Wind Energy.1999,2(4):195-210.
    [168] Evans, W. T. and Mort, K. W. Analysis of computer flow parameters for a set of suddenstalls in low-speed two-dimensional flow[A]. N89-70567,1959.
    [169] Theodorsen, T. General theory of aerodynamic instability and the mechanism of flutter[R].NACA report496,1935.
    [170] McCroskey, W. J. and Pucci, S. L. Viscous-inviscid interaction on oscillating airfoils insubsonic flow[J]. AIAA Journal.1982,20(2):167-174.
    [171] Lorber, P. F. and Cartat, F. O. Incipient torsional stall flutter aerodynamic experiments onthree-dimensional wings[J]. Journal of Propulsion and Power.1994,10:217-224.
    [172] Baldwin, B. and Lomax, H. Thin-layer approximation and algebraic model for separatedturbulent flows[A].16th AIAA Aerospace and Science Meeting, Huntsville, Alabama,1978.
    [173] McCroskey, W., McAlister, K., and Carr, L. Dynamic stall on advanced airfoil sections[J].Journal of the American Helicopter Society.1981,26(03):40-50.
    [174] Beddoes, T. A qualitative discussion of dynamic stall[R]. AGARD Rept. R-679,1980.
    [175] Snel, H. A short history of wind turbine aerodynamics, or: From Betz to Better[A].ECN-L--07-068,2007.
    [176] Landgrebe, A. J. Overview of helicopter wake and airloads technology[R]. NASA86A48654,1985.
    [177] Vermeer, N. J., van Bemmelen, J., and Over, E. How big is a tip vortex[A].10th IEASymposium on Aerodynamics of Wind Turbines,1996.
    [178] Chen, C. J. Fundamentals of turbulence modelling[M]. Washington, DC: Taylor&Francis,1997.
    [179] Versteeg, H. K. and Malalasekera, W. An introduction to computational fluid dynamics:The finite volume method[M]. Prentice Hall,2007.
    [180] Launder, B. and Spalding, D. Mathematical methods of turbulence[M]. Academic Press,London/New York:1972.
    [181]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [182] Johson, D. and King, L. A new turbulence closure model for boundary layer flows withstrong adverse pressure gradients and separation[A].22nd American Institute of Aeronautics andAstronautics Aerospace Sciences Meeting, Reno, NV,1984.
    [183] Menter, F. R., Langtry, R. B., Likki, S. R., Suzen, Y. B., Huang, P. G., and V lker, S. Acorrelation-based transition model using local variables—Part I: Model formulation [A]. ASMETurbo Expo2004, Vienna, Austria,2004.
    [184] Langtry, R., Menter, F., Likki, S., Suzen, Y., Huang, P., and V lker, S. A correlation-basedtransition model using local variables—part II: Test cases and industrial applications[A]. ASMETurbo Expo2004, Vienna, Austria,2004.
    [185] Stock, H. W. and Haase, W. Navier-Stokes airfoil computations with eNtransitionprediction including transitional flow regions[J]. AIAA Journal.2000,38(11):2059-2066.
    [186] S rensen, N. N., Bechmann, A., and Zahle, F.3D CFD computations of transitional flowsusing des and a correlation based transition model[J]. Wind Energy.2011,14(1):77-90.
    [187] Somers, D. M. Design and experimental results for the S809airfoil[R].NREL/SR-440-6918UC Category:1213DE97000206, Golden, Colorado: National RenewableEnergy Laboratory,1997.
    [188] Hand, M. M., Simms, D. A., Fingersh, L. J., Jager, D. W., Cotrell, J. R., Schreck, S., andLarwood, S. M. Unsteady aerodynamics experiment Phase VI: Wind tunnel test configurationsand available data campaigns[R]. NREL/TP-500-29955, National Renewable Energy Laboratory,2001.
    [189] Butterfield, C. P., Musial, W., and Simms, D. A. Combined experiment Phase1. FinalReport[R]. National Renewable Energy Lab., Golden, CO,1992.
    [190] Ramsay, R. R., Hoffman, M. J., and Gregore, K. G. Effects of grit roughness and pitchoscillations on the S809airfoil[R]. NREL/TP-442-7817, Golden, Colorado: National RenewableEnergy Laboratory (NREL),1995.
    [191] Schreck, S. Analysis and modeling of the NREL full-scale wind tunnel experiment[J].Wind Energy.2002,5(2-3):77-257.
    [192] Schepers, J. Angle of attack in aerodynamic field measurements on wind turbines[R].ECN Technical Report,1995.
    [193] Brand, A. To estimate the angle of attack of an airfoil from the pressure distribution[M].Netherlands Energy Research Foundation ECN,1994.
    [194] Viterna, L. A. and Corrigan, R. D. Fixed pitch rotor performance of large wind turbines[A].DOE/NASA Workshop on Large Horizontal Axis Wind Turbines, Cleveland, Ohio,1981.
    [195] Ekaterinaris, J. A. and Platzer, M. F. Computational prediction of airfoil dynamic stall[J].Progress in Aerospace Sciences.1998,33(11-12):759-846.
    [196] Buhl Jr, M. L., Wright, A. D., and Tangler, J. L. Wind turbine design codes: A preliminarycomparison of the aerodynamics[R]. NREL/CP-500-23975UC Category:1211, Golden, Colorado:National Renewable Energy Laboratory, Jan.12,1998.
    [197] Bisplinghoff, R. L., Ashley, H., and Halfman, R. L. Aeroelasticity[M]. Dover Publications,1996.
    [198] Leonaritis, I. and Billings, S. Input-output parametric models for non-linear systems[J].International Journal of Control.1985,41(2):303-344.
    [199] Levin, A. U. and Narendra, K. S. Control of nonlinear dynamical systems using neuralnetworks. II. Observability, identification, and control[J]. IEEE Transactions on Neural Networks,,1996,7(1):30-42.
    [200] Xiang, C. Existence of global input-output model for nonlinear systems[A]. InternationalConference on Control and Automation,Budapest, Hungary,2005.
    [201] Ljung, L. System identification[M]. Wiley Online Library,1999.
    [202] Simpson, T. W., Lin, D. K. J., and Chen, W. Sampling strategies for computer experiments:Design and analysis[J]. International Journal of Reliability and Applications.2001,2(3):209-240.
    [203] Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. Design and analysis of computerexperiments[J]. Statistical Science.1989,4(4):409-423.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700