用户名: 密码: 验证码:
自然排水条件下砂土液化变形规律与本构模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
饱和砂土地震液化和液化后大变形问题是岩土工程抗震领域热点与难点研究课题之一。本文采用震害资料调研、材料试验和数值分析等手段,以自然排水条件下砂土液化变形规律和本构模型研究为重点,以“液化大变形与剪切吸水效应”的定量描述为核心,在下述方面取得新成果:
     (1)开发了一套较高精度的饱和砂土剪切吸水试验测控装置,完成了系统的单调与循环剪切吸水试验,揭示了部分吸水剪切、自由吸水剪切、强制吸水剪切三种不同排水剪切作用下饱和砂土可呈现出硬化、理想塑性、软化甚至流滑失稳的三类不同本构响应的特征规律,指出了剪切吸水效应本质上体现在使饱和砂土发生更明显体胀和剪切放大作用两方面,阐明了地震荷载作用下饱和砂土在液化前震动、液化后震动、震后超孔压扩散与消散的3个不同阶段上均可能发生大变形和趋向流滑失稳。
     (2)基于体应变划分和应变约束条件,揭示了上述的三类本构响应以及液化大变形和流滑失稳破坏的形成机理与产生条件,提出了考虑剪切吸水效应的临界应力状态方程,试验表明相对剪切吸水率是表征应力应变类型的有效指标。
     (3)基于液化后大变形物理机制以及可逆和不可逆剪胀的研究成果,引入物态相关概念和强度演变规律,采用边界面模型的理论框架,建立了可考虑剪切吸水效应、可描述从小变形到大变形的弹塑性循环本构模型,通过对不同类型试验结果的模拟,初步验证了该模型的有效性。
     (4)发展了本构模型的数值格式以及合理描述液化大变形和流滑失稳破坏问题的方法。对新泻地震饱和砂土地基液化侧向大变形实例的分析表明:该数值方法较好地实现了对液化大变形发展的“3个过程”(包括自然排水条件下震动循环剪切小变形到大变形的瞬态演变过程、震后伴随超孔压扩散和消散的变形累积发展过程以及伴随着整个变形的物态演化过程)的定量描述。
     (5)基于经过验证的数值方法,再现了美国下圣菲尔南多土坝震后数十秒发生流滑失稳破坏的发展过程和主要现象,计算分析得到的震害特征规律与Seed等的调查结果吻合较好,从而较为圆满地解释了该震害形成的主要原因。
Study on liquefaction and large post-liquefaction deformation of saturated sand is one of hot and difficult topics in research field of soil dynamics and geotechnical earthquake engineering. Based on literatures investigation, material tests and numerical analysis, objective of this dissertation is to study liquefaction behavior and constitutive model of saturated sand under naturally drained condition, with emphasis on quantitative evaluation of large post-liquefaction deformation considering‘water-absorption effect in shearing’. The main achievements and conclusions can be drawn as follows.
     1. A new system suitable for water-absorption shear testing is developed and series of water-absorption shear tests of both monotonic and cyclic loading conditions are carried out. Three different types of stress-strain response, including strain harding, perfectly plastic and strain soften or instability, are found to be triggered under three different states of partial water-absorption, free water-absorption and compulsory water-absorption in shearing. Such different water-absorption effects in shearing are essentially to significantly increase the expansive volumetric strain and amplify the shear application. Special investigation is paid to a new finding that large deformation and instability can always occur within any one of three different stages including pre-liquefaction shaking, post-liquefaction shaking and post-shaking diffusion and dissipation of excess pore water pressure, provided that free and compulsory water-absorption in shearing is triggered.
     2. A new index, defined as‘relative rate of water-absorption in shearing’is found to be an effective indicator to classify three different types of the stress-strain response mentioned above. Mechanisms and conditions are provided to explain and evaluate the occurrence and development for three different types of the stress-strain response. And a formulation is given for describing the critical stress states dependent on the relative rate of water-absorption in shearing.
     3. A new cyclic elastic-plastic constitutive model is established based on mechanism of large post-liquefaction deformation, concept of the reversible and irreversible dilatancy and bounding surface constitutive theoretical frame. The state-dependent concept and effect of the water-absorption in shearing on the critical stress state are also considered to reflect the changes in physical state of material and shear strength during the water-absorption in shearing. Effectiveness of present model is preliminarily checked through comparing the tested and calculated results for different experimental paths of nomotonic and cyclic loading in naturally drained conditions.
     4. A new numerical algorithm of the present constitutive model and related practical numerical method are developed for evaluating the large post-liquefaction deformation and flowsliding. Case study on lateral ground spreading during the 1964 Niigata earthquake is made to confirm the effectiveness of the numerical algorithm and method. It is shown that such a new developed numerical analysis can be used to well reproduce the three processes: (1) transient evolution process of small to large ground deformation during an earthquake in naturally drained conditions, (2) accumulative developing process of post-earthquake ground deformation during diffusion and dissipation of the excess pore water pressures, and (3) gradual change process of material physical states during development of deformation.
     5. Another case study on delayed flowsliding failure of the Lower San Fernando dam in earthquake was preformed well using the present numerical method. The calculated dynamic behaviors and deformation of the dam are shown to be considerably consistent with those observations and main investigations made by Seed et al in the past. Satisfactory conclusions are consequently obtained to explain the main reasons why heavy damages to the dam were induced.
引文
[1] Terzaghi K, Peck R B. Soil mechanics in engineering practice (2nd edition). New York: John Wiley & Sons, Inc., 1948
    [2] National Research Council. Liquefaction of soils during earthquakes. Washington, D.C.: National Academy Press, 1985. 240 pages
    [3] Ishihara K. Liquefaction and flow failure during earthquake. Geotechnique, 1993, 43(3): 351-415
    [4]刘颖,谢君斐等.砂土震动液化.北京:地震出版社, 1984
    [5]张建民,谢定义.饱和砂土动本构模型研究进展.力学进展, 1994, 24(2): 187-201
    [6]汪闻韶.土的动力强度和液化特性.北京:中国电力出版社, 1997
    [7]栾茂田,林皋,杨庆.岩土地震工程与土动力学中若干新进展评述.第五届全国土动力学学术会议论文集,大连, 1998, 20-46
    [8]张建民,王建华.土动力学与土工抗震(水平报告).中国土木工程学会第八届全国土力学与岩土工程学术会议论文集,南京:万国学术出版社, 1999, 44-55
    [9]刘汉龙,陈生水.土体动力本构模型及动力分析研究进展.全国岩土工程青年专家学术会议论文集,宁波, 2000, 29-41
    [10]李亮,赵成刚.饱和土体动本构模型研究进展.世界地震工程, 2004, 20(1): 138-148
    [11] Casagrande A, F Rendon. Gyratory shear apparatus, design, testing procedures and test results on undrained sand. Technical report S-78-15, U.S. Army corps of engineers, Waterways Experiment Station, Vicksburg, Mississippi, 1978
    [12] Seed H B. Considerations in the earthquake-resistant design of earth and rockfill dams. Geotechnique, 1979, 29(3): 215-263
    [13] Hamada M. large ground deformations and their effects on lifelines: 1964 Niigata earthquake. Case studies of liquefaction and lifeline performance during past earthquakes, Vol. 1, Japanese case studies, Natl. Center for Earthquake Engineering Research, State Univ. of New York, Buffalo, N.Y., 1992, 3: 1-123
    [14] Liu H, Qiao T. Liquefaction potential of saturated sand deposits underlying foundation of structure. The 8th World Conference on Earthquake Engineering, San Francisco, Int. Association for Earthquake Engineerng, 1984, 199-206
    [15] Shen Z J. Dynamically coupled percolation and deformation analysis of earth dams. The 1st Inter Conf. on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. Missouri, USA, 1981, 389-394
    [16] Seed H B. Design problems in soil liquefaction. J. Geotech. Engrg., ASCE, 1987, 113(8): 827-845
    [17] Arulanandan K, Seed H B, Yogachandran C, Muraleetharan K K, Seed R B, Kabilamany K. Centrifuge study on volume changes and dynamic stability of earth dams. Journal of Geotechnical Engineering, 1993, 119(11): 1717-1731
    [18] Fiegel G L, Kutter B L. Liquefaction-induced lateral spreading of mildly sloping ground. Journal of Geotechnical Engineering, 1994, 120(12): 2236-2243
    [19] Kokusho T. Water film in liquefied sand and its effect on lateral spread. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(10): 817-826
    [20] Chu J, Lo S C, Lee I K. Strain-softening behavior of granular soil in strain-path testing. Journal of Geotechnical Engineering, 1992, 118(2): 191-208
    [21] Shamoto Y Z, Zhang J M, Kusukame T. A simple method for triaxial strain path testing. Soils and foundations, 1996, 36(2): 129-137
    [22] Boulanger R W, Truman S P. Void redistribution in sand under post-earthquake loading. Can. Geotech. J., 1996, 33: 829-834
    [23] Zhang J M. Cyclic critical stress state theory of sand with its application to geotechnical problems. Research Report of Tokyo Institute of Technology, Tokyo, 1997
    [24]张建民,时松孝次,田屋裕司.饱和砂土液化后的剪切吸水效应.岩土工程学报, 1999, 21(4): 398-402
    [25] Elorza O, Machado M R. Report on causes of failure of Barahona Dam. Boletin del Museo Nacional de Chile, 1929 (in Spanish)
    [26] Troncoso J H, Vergara A, Avendano A. The seismic failure of Barahona Tailings Dam. Proc. 3rd International Conference on Case Histories in Geotechnical Engineering, St. Louis, Missouri, 1993, 1473-1479
    [27] Ishihara K. Post-earthquake failure of a tailings dam due to liquefaction of the pond deposit. International Conference on Case Histories in Geotechnical Engineering, St. Louis, 1984, 3: 1129-1143
    [28] Ishihara K, Yasuda S, Yoshida Y. Liquefaction-induced flow failure of embankments and residual strength of silty sands. Soils and Foundations, 1990, 30(3): 69-80
    [29] Seed H B, Makdisi F I, Dealba P. Performance of earth dams during earthquakes. Journal of Geotechnical Engineering, 1978, 104(7): 967-994
    [30] Seed H B. Landslides during earthquakes due to soil liquefaction. Journal of Geotechnical Engineering, 1968, 94(5): 193-259
    [31] Wang F W, Sassa K, Fukuoka H. Geotechnical simulation test for the Nikawa landslide induced by January 17, 1995 Hyogoken-Nambu earthquake. Soils and Foundations, 2000, 40(1): 35-46
    [32] Berrill J B, Christensen S A, Keenan R J, Okada W, Pettinga J R. Lateral-spreading loads on a piled bridge foundation. Proc. Seismic Behavior of Ground and Geotechnical Structures, Balkema, Rotterdam, 1997, 173-183
    [33] Berrill J B, Christensen S A, Keenan R J, Okada W, Pettinga J R. Case study of lateral spreading forces on a piled foundation. Geotechnique, 2001, 51(6): 501-517
    [34] Seed H B, Idriss I M, Makdisi F, Banerjee N. The slides in the San Fernando Dams during the earthquake of February 9, 1971. Journal of Geotechnical Engineering, 1975, 101(7): 651-688
    [35]水利水电科学研究院.密云水库坝体及基础材料动剪切模量试验研究报告. 1978年6月
    [36]中国科学院工程力学所.唐山地震时密云水库白河土坝斜墙保护层滑落原因的初步分析和修复方案的抗震研究报告. 1977年6月
    [37]密云水库抗震防汛指挥部清华设计组.白河主坝地震滑坡的震害分析及抗震加固.清华大学学报, 1979, 2: 18-34
    [38]沈珠江,徐志英. 1976年7月28日唐山地震时密云水库白河主坝有效应力动力分析.水利水运工程学报, 1981, 3: 46-63
    [39]汪闻韶,黄锦德.中国水利工程震害资料汇编(1961-1985).水利水电科学研究院抗震防护研究所, 1990, 1-612
    [40]徐志英,沈珠江. 1975年辽南地震时石门土坝滑动有效应力动力分析.水利学报, 1982, 3: 13-22
    [41]袁晓铭,曹振中,孙锐等.汶川8.0级地震液化特征初步研究.岩石力学与工程学报, 2009, 28(6): 1288-1296
    [42] Castro G. Liquefaction of sands: [PhD dissertation]. Harvard University, 1969
    [43] Casagrande A. Liquefaction and cyclic deformation of sands - A critical review. The 5th Pan-American Conf. on Soil Mechanics and Foundation Engineering, Buenos Aires, Argentina, 1975
    [44] Gilbert P A. Investigation of density variation in triaxial test specimens of cohesionless soil subjected to cyclic and monotonic loading. Technical Report GL84-10, Department of Army, U.S. Army Corps of engineers, Washington, D.C., 1984
    [45] Casagrande A. Discussion. Journal of Geotechnical Engineering, 1980, 105(6): 725-727
    [46] Castro G. Discussion. Journal of Geotechnical Engineering, 1995, 121(7): 572-573
    [47] Chu J, Lo S-C R, I K Lee. Instability of granular soils under strain path testing. Journal of Geotechnical Engineering, 1993, 119(5): 874-892
    [48] Chu J, Lo S-C R. Asymptotic behavior of a granular soil in strain path testing. Geotechnique, 1994, 44(1): 65-82
    [49] Chu J, Leroueil S, Leong W K. Unstable behavior of sand and its implication for slope instability. Canadian Geotechnical Journal, 2003, 40(5): 873-885
    [50] Uchida K, Vaid Y P. Sand behavior under strain path control. Proceedings of the 8th International Conference on Soil Mechanics and Geotechnical Engineering, India, 1994, 17-20
    [51] Vaid Y P, Eliadorani A. Instability and liquefaction of granular soils under undrained and partially drained states. Canadian Geotechnical Journal, 1998, 35(6): 1053-1062
    [52] Vaid Y P, Eliadorani A. Undrained and drained (?) stress-strain response. Canadian Geotechnical Journal, 2000, 37(5): 1126-1130
    [53] Eliadorani A, Vaid Y P. Liquefaction of dilating sand. Geotechnical Special Publication, 2005, 1313-1323
    [54] Eliadorani A. The response of sands under partially drained states with emphasis on liquefaction: [PhD dissertation]. University of British Columbia, Canada, 2000
    [55] Shamoto Y, Sato M, Zhang J M. Simplified estimation of earthquake-induced settlements in saturated sand deposits. Soils and Foundations, 1996, 36(1): 39-50
    [56] Zhang J M, Shamoto Y, Tokimatsu K. Evaluation of earth pressure under any lateral deformation. Soils and Foundations, 1998, 38(1): 15-33
    [57]张建民,宋飞.砂土的压剪效应与渐近状态准则.岩土工程学报, 2008, 30(2): 166-171
    [58] Sivathayalan S, Logeswaran P. Behaviour of sands under generalized drainage boundary conditions. Canadian Geotechnical Journal, 2007, 44(2): 138-150
    [59] Tokimatsu K, Taya Y, Zhang J M. Effects of pore water redistribution on post-liquefaction deformation of sands. The 15th International Conference on Soil Mechanics and Geotechnical Engineering, Balkema, Rotterdam, Netherlands, 2001, 289-292
    [60] Tokimatsu K, Nakamura K. Liquefaction test without membrane penetration effects. Soils and Foundations, 1986, 26(4): 127-138
    [61] Sento N, Kazama M, Uzuoka R, Ohmura H, Ishimaru M. Possibility of postliquefaction flow failure due to seepage. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(7): 707-716
    [62] Yoshimine M, Nishizaki H, Amano K, Hosono Y. Flow deformation of liquefied sand under constant shear load and prediction of flow slide of infinite slope. Geotechnical Special Publication, 2005, 567-584
    [63] Yoshimi Y. An experimental study of liquefaction of saturated sands. Soils and Foundations, 1967, 7(2): 20-32
    [64] Fiegel G L, Kutter B L. Liquefaction mechanism for layered soils. Journal of Geotechnical Engineering, 1994a, 120(4): 737-755
    [65] Fiegel G L, Kutter B L. Liquefaction-induced lateral spreading of mildly sloping ground. Journal of Geotechnical Engineering, 1994b, 120(12): 2236-2243
    [66] Kokusho T. Mechanism for water film generation and lateral flow in liquefied sand layer. Soils and Foundations, 2000, 40(5): 99-111
    [67] Kokusho T, Kojima T. Mechanism for postliquefaction water film generation in layered sand. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(2): 129-137
    [68] Kokusho T, Kabasawa K. Effect of void redistribution or water films on shear strength of liquefied deposits. The 1st Japan-U. S. Workshop on Testing, Modeling, and Simulation, Boston, MA, 2003, 475-503
    [69] Bastani S A. Evaluation of deformations of earth structures due to earthquakes: [PhD dissertation]. Univ. of California, Davis, Calif., 2003
    [70] Kulasingam R. Effects of void redistribution on liquefaction induced deformations: [PhD dissertation]. Univ. of California, Davis, Calif., 2003
    [71] Kulasingam R, Malvick E J, Boulanger R W, Kutter B L. Strength loss and localization of silt interlayers in slopes of liquefied sand. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(11): 1192-1202
    [72] Malvick E J. Void redistribution-induced shear localization and deformation in slopes: [PhD dissertation]. Univ. of California, Davis, Calif., 2005
    [73] Malvick E J, Kutter B L, Boulanger R W, Kulasingam R. Shear localization due to liquefaction-induced void redistribution in a layered infinite slope. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(10): 1293-1303
    [74] Malvick E J, Kutter B L, Boulanger R W. Post shaking shear strain localization in a centrifuge model of a saturated sand slope. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(2), 164-174
    [75] Poulos S J. The steady state of deformation. Journal of the Geotechnical Engineering Division, 1981, 107(5): 553-562
    [76] Poulos S J, Castro G, France J W. Liquefaction Evaluation Procedure. Journal of Geotechnical Engineering, 1985, 111(6): 772-792
    [77] Vaid Y P, Chern J C. Cyclic and montonic undrained reponse of saturated sands. In: Proceedings of Advances in the Art of Testing Soils under Cyclic Conditions, ASCE Annual Convention. Detroit, Mich, 1985, 120-147
    [78] Dennis N D. Influence of specimen preparation techniques and testing procedure on undrained steady state shear strength. In: Proceedings of Advanced Triaxial Testing of Soils and Rock. ASTM STP 977, 642-654
    [79] Vaid Y P, Chung E K F, Kuerbis R H. Stress path and steady state. Canadian Geotechnical Journal, 1990, 27(1): 1-7
    [80] Seed H B. Design problems in soil liquefaction. Journal of Geotechnical Engineering, 1987, 113(8): 827-845
    [81] Seed R B, Harder L F. SPT-based analysis of cyclic pore pressure generation and undrained residual strength. Proceedings of H. B. Seed Memorial Symposium, Bi-Tech Publishing Ltd., 1990, 2: 351-376
    [82] Stark T D, Mesri G. Undrained shear strength of liquefied sands for stability analysis. Journal of Geotechnical Engineering, 1992, 118(11): 1727-1747
    [83]张建民,谢定义.饱和砂土振动孔隙水压力理论及应用研究进展.力学进展, 1992, 23(2): 165-180
    [84]汪闻韶.饱和砂土振动孔隙水压力的产生、扩散和消散.第1届土力学及基础工程学术会议论文集, 1964
    [85] Seed H B, Booker J R. Stabilization of potentially liquefiable sand deposits using gravel drains. Journal of the Geotechnical Engineering Division, 1976, 102(7): 757-768
    [86]沈珠江.饱和砂土的动力渗流变形计算.水利学报, 1980, 4: 14-21
    [87]徐志英,沈珠江.土坝地震孔隙水压力产生,扩散和消散的有限元法动力分析.华东水利学院报, 1981, 4
    [88] Ghaboussi J, Dikmen S U. Liquefaction analysis of horizontally layered sands. Journal of the Geotechnical Engineering Division, 1978, 104(3): 341-356
    [89]徐志英,周健.土坝地震孔隙水压力产生、扩散和消散的三维动力分析.地震工程与工程振动, 1985, 5(4): 52-72
    [90] Zienkiewicz O C, Shiomi T. Dynamic Behavior of saturated porous media: The generalized Biot formulation and its numerical solution. International Journal of Numerical and Analytical Methods in Geomechanics, 1984, 8: 71-96
    [91] Idriss I M, Lysmer J, Hwang R, Seed H B. QUAD-4: a computer program for evaluating the seismic response of soil structures by variable damping finite element procedures. Report No. EERC 73-16, University of California, Berkeley, 1973
    [92] Lysmer J, Udaka T, Tsai C F, Seed H B. FLUSH: a computer program for approximate 3-D analysis of soil-structure interaction problems. Report EERC 75-30, Earthquake Engineering Research Center, University of California, Berkeley, 1975
    [93] Finn W D L, Yogendrakumar M. TARA-3FL: a program for analysis of flow deformation in soil structures with liquefied zones. Soil Dynamics Group. Department of Civil Engineering, University of British Columbia, Vancouver, BC, 1989
    [94] Kawai T. Summary report on the development of the computer program DIANA-dynamic interaction approach and nonlinear analysis. Science University of Tokyo, Tokyo, 1985
    [95] Chan A H C. A unified finite element solution to static and cynamic geomechanics problem: [PhD dissertation]. University College of Swansea, Wales, 1988
    [96] Chan A H C. User’s manual for DIANA-SWANDYNE II. Report of Department of Civil Engineering, Glasgow University, 1990
    [97] Prevost J H. DYNAFLOW: a nonlinear transient finite element analysis program. Report of Civil Engineering, Princeton University, 1985
    [98] Muraleetharan K K, Mish K D, Yogachandran C, Arulanandan K. DYSAC2: Dynamic soil analysis code for 2-dimensional problems. Department of Civil Engineering, University of California, Davis, California, 1988
    [99] Anandarajah A. HOPDYNE- A finite element computer program for the analysis of static, dynamic and earthquake soil and soil-structure systems. The Johns Hopkins University, Baltimore, Maryland, 1990
    [100] Oka F, Yashima A. User’s manual of 2-dimensional liquefaction program, LIQCA. Depratment of Civil Engineering, Gifu University, Japan, 1990
    [101] Li X S, Wang Z L, Shen C K. SUMDES: A nonlinear procedure for response analysis of horizontally-layered sites subjected to multidirectional earthquake loading. Department of Civil Engineering, University of California, Davis, 1992
    [102] Ming H Y, Li X S. SUMDES2D: a two dimensional fully-coupled geotechnical earthquake analysis program. Report to the Department of Civil Engineering, the Hong Kong University of Science and Technology, Hong Kong, 2001
    [103] Zienkiewicz O C, Xie Y M. Analysis of Lower Sanfernando Dam failure under earthquake. Dam engineering, 1991, 2(4): 307-322
    [104] Gu W H, Morgenstern N R, Robertson P K. Progressive failure of Lower San Fernando Dam. Journal of Geotechnical Engineering, 1993, 119(2): 333-349
    [105] Gu W H, Morgenstern N R, Robertson P K. Postearthquake deformation analysis of wildlife site. Journal of Geotechnical Engineering, 1994, 120(2): 274-289
    [106]朱俊高,俞炯奇,姜朴.松砂液化后液化区域渐进扩散的计算方法初探.水利学报, 1998, 9: 52-56
    [107]王媛,姜朴,朱俊高,王彩粉.松粉砂地基地震后堤坝稳定性分析.水利学报, 2000, 11: 60-64
    [108]明海燕,李相崧. Lower San Fernando土坝破坏及加固的完全耦合分析.岩土工程学报, 2002, 24(3): 294-300
    [109] Ming H Y, Li X S. Fully coupled analysis of failure and remediation of Lower San Fernando Dam. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(4): 336-349
    [110] Yang Z, Elgamal A. Influence of permeability on liquefaction-induced shear deformation. Journal of Geotechnical Engineering, 2002, 128(7):720-729
    [111] Seid-Karbasi M, Byrne P M. Seismic liquefaction, lateral spreading and flow slides: a numerical investigation into void redistribution. Canadian Geotechnical Journal, 2007, 44: 873-890
    [112]王刚.砂土液化后大变形的物理机制与本构模型研究[博士学位论文].北京:清华大学, 2005
    [113]王刚,张建民.砂土液化变形的数值模拟,岩土工程学报, 2007, 29(3): 403-409
    [114] Prevost J H. A simple plasticity theory for frictional cohesionless soils. Soil Dynamics and Earthquake Engineering, 1985, 4(1): 9-17
    [115] Lacy S. Numerical procedures for nonlinear trainsient analysis of two-phase soil system: [PhD dissertation]. Princeton University, Princeton, N.J., 1986
    [116] Pastor M, Zienkiewicz O C. A generalized plasticity hierarchical model for sand under monotonic and cyclic loading. In: Pande G N, Van Impe W F eds, Proceedings of 2nd International Symposium on Numerical Models in Geomechanics. Ghent, Belgium: Jackson and Son, 1986, 131-150
    [117] Wang Z L, Dafalias Y F, Shen C K. Bounding surface hypoplasticity model for sand. Journal of Engineering Mechanics, 1990, 116(5): 983-1001
    [118] Iai S. A strain space multiple mechanism model for cyclic behavior of sand and its application. Earthquake Engineering Research Note No. 43, Port and Harbor Research Institute, Ministry of Transport, Japan, 1991
    [119] Proubet J. Application of computational geomechanics to description of soil behavior: [Phd Dissertation]. University of Southern California, Los Angeles, 1991
    [120] Bardet J P, Huang Q, Chi S W. Numerical prediction for model No. 1. In: Arulanandan K and Scott R F eds, Proceedings of International Conference on the Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems, Vol.1. Balkema, rotterdam , The Netherlands, 1993: 67-86
    [121] Anandarajah A. VELACS project: Elasto-plastic finite element predictions of the liquefaction behavior of centrifuge model No. 1, 3 and 4a. In: Arulanandan K and Scott R F eds, Proceedings of International Conference on the Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems, 1. Balkema, rotterdam , The Netherlands, 1993: 1075-1104
    [122] Aubry D, Benzenati I, Modaressi A. Numerical predictions for model No. 1. In: Arulanandan K and Scott R F eds, Proceedings of International Conference on the Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems, 1. Balkema, rotterdam , The Netherlands, 1993: 45-66
    [123] Muraleetharan K K, Mish K D, Arulanandan K. A fully coupled nonlinear dynamic analysis procedure and its verification using centrifuge test results. International Journal of Analytical Methods in Geomechanics, 1994, 18: 305-325
    [124] Byrne P M, McIntyre J. Deformations in granular soils due to cyclic loading. In: Proceedings of Settlement 94, Geotechnical Special Publication No. 40, ASCE, 1864-1896
    [125] Tateishi A, Taguchi Y, Oka F, Yashima A. A cyclic elasto-plastic model for sand and its application under various stress conditions. In: Proceedings of 1st International Conference on Earthquake Geotechnical Engineering, 1, Balkema, Rotterdam, The Netherlands, 399-404
    [126] Borja R I, Chao H Y, Montans F, Lin C H. Nonlinear ground response at Lotung LSST site. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(3): 187-197
    [127] Papadimitriou A G, Bouckovalas G D, Dafalias Y F. Plasticity model for sand under small and large cyclic strains. Journal of Geotechnical and Geovironmental Engineering, 2001, 127(11): 973-983
    [128] Arduino P, Kramer S, Baska D. UW-sand: A simple constitutive model for liquefiable soils. 2001 Mechanics and Materials Summer Conference, ASME Materials and Applied Mechanics Division, ASCE Engineering Mechanics Division, and Society of Engineering Science, 2001
    [129]沈珠江.复杂荷载下砂土液化变形的结构性模型.第五届全国土动力学学术会议论文集.大连理工大学出版社, 1998, 1-10
    [130]沈珠江.砂土液化分析的散粒体模型.岩土工程学报, 1999, 21(6): 742-748
    [131]史宏彦.无粘性土的应力矢量本构模型: [博士学位论文].西安:西安理工大学, 2000
    [132]刘汉龙,丰土根,高玉峰等.砂土多机构边界面模型及其试验验证.岩土力学, 2003, 24(5): 696-700
    [133] Parra E. Numerical modeling of liquefaction and lateral ground deformation including cyclic mobility and dilation response in soil systems:[PhD thesis]. Department of Civil Engineering, Rensselaer Polytechnic Institute, Troy, New York, 1996
    [134] Yang Z H, Elgamal A, Parra E. Computational model for cyclic mobility and associated shear deformation. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(12): 1119-1127
    [135] Ishihara K, Tatsuoka F, Yasuda S. Undrained deformation and liquefaction of sand under cyclic stress. Soils and Foundations, 1975, 15(1):29-44
    [136] Wang Z L, Dafalias Y F. Simulation of post-liquefaction deformation of sand. In: Proceedings of ASCE 15th Engineering Mechanics Conference. Columbia University, New York, NY, 2002
    [137]张建民,罗刚.考虑可逆与不可逆剪胀的粗粒土动本构模型.岩土工程学报, 2005, 27(2): 178-184
    [138]张建民,王刚.评价饱和砂土液化过程中小应变到大应变的本构模型.岩土工程学报, 2004, 26(4): 546-552
    [139] Shamoto Y, Zhang J M, Goto S. Mechanism of large post-liquefaction deformation. Soils and Foundations, 1997, 37(2): 71-80
    [140]王刚,张建民.砂土液化大变形的弹塑性循环本构模型.岩土工程学报, 2007, 29(1): 51-59
    [141]张建民,王刚.砂土液化后大变形的机理.岩土工程学报, 2006, 28(7): 835-840
    [142] Jefferies M G. Nor-sand: A simple critical state model for sand. Geotechnique, 43(1): 91-103
    [143] Manzari M T, Dafalias Y F. A critical sate two-surface plasticity model for sands. Geotechnique, 1997, 47(2): 255-272
    [144] Cubrinovski M, Ishihara K. Modeling of sand behavior based on state concept. Soils and Foundations, 1998a, 38(3): 115-127
    [145] Cubrinovski M, Ishihara K. State Concept and modified elastoplasticity for sand modelsing. Soils and Foundations, 1998b, 38(4): 213-225
    [146] Li X S, Dafalias Y F. Dilatancy for cohesionless soils. Geotechnique, 2000, 50(4): 449-460
    [147] Li X S. A sand model with state-dependent dilatancy. Geotechnique, 2002, 52(3): 173-186
    [148] Wang Z L, Dafalias Y F, Makdisi F I. State pressure index for modeling sand behavior. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(6): 511-519
    [149] Been K, Jefferies M G. A state parameter of sands. Geotechnique, 1985, 35(2): 99-112
    [150]张丙印,吕明治,高莲士.粗粒料大型三轴试验中橡皮膜嵌入量对体变的影响及校正.水利水电技术, 2003, 34(2): 30-33
    [151]王洪瑾.三轴试验中橡皮膜顺变性对体积变化和孔隙水压力的影响.岩土工程学报, 1985, 7(1): 76-84
    [152]张建民,段云秦.振动三轴试验中仪器系统阻尼力的水试样校正法.岩土工程学报, 1989, 11(1): 79-84
    [153] Yoshimi Y, Hatanaka M, Oh-oka H. Undisturbed sampling of saturated sands by freezing. soils and foundation, 1978, 18(3): 59-73
    [154]中华人民共和国水利部. SL237-1999土工试验规程.北京:中国水利水电出版社, 1999
    [155]张建民.砂土的可逆性和不可逆性剪胀规律.岩土工程学报, 2000, 22(1): 12-17
    [156]罗刚.粒状土的可逆性和不可逆性变形规律与循环本构模型研究: [博士学位论文].北京:清华大学, 2004
    [157]陈存礼,谢定义.球应力往返作用下饱和砂土变形特性的试验研究.岩石力学与工程学报, 2005, 24(3): 513-520
    [158]杨光,孙江龙,于玉贞,张丙印.偏应力和球应力往返作用下粗粒料的变形特性,清华大学学报(自然科学版), 2009, 6: 822-825
    [159] Gajo A, Muir Wood D. Severn-Trent sand: a kinematic-hardening constitutive model: the q-p formulation. Geotechnique 1999, 49(5): 595-614
    [160] Been K G, Jefferies M G, Hachey J. The critical state of sands. Geotechnique, 1991, 41(3): 365-381
    [161] Muir Wood D, Belkheir K, Liu D F. Strain softening and state parameter for sand modeling. Geotechnique, 1994, 44(2): 335-339
    [162] Poorooshasb H, Holubec I, Sherbourne A N. Yielding and flow of sand in triaxial compression, Part I. Canadian Geotechnical Journal, 1966, 3(5): 179-190
    [163] Poorooshasb H, Holubec I, Sherbourne A N. Yielding and flow of sand in triaxial compression, Part II. Canadian Geotechnical Journal, 1967, 4(4): 376-397
    [164] Bolton M D. The strength and dilatancy of sands. Geotechnique, 1986, 36(1): 65-78
    [165] Richart F E, Hall J R, Woods R D. Vibrations of soils and foundtions, Prentice-Hall, Inc., Englewood Cliffs, N. J
    [166] Wan R G, Guo R G. A simple constitutive model for granular soils: modified stress-dilatancy approach. Computers and Geotechnique, 1998, 22(2):109-133
    [167] Matsuoka H, Nakai T. Stress-deformation and strength characteristics of soil under three different principal stresses. In: Proceedings of JSCE, No.232: 59-70
    [168] Zhang J M. Prediction of liquefaction-induced residual deformation. Shimizu Technical Research Bulletin, 1996, 15: 1-29
    [169]罗汀,姚仰平,楚剑.饱和砂土的渐近状态特性及模拟.中国科学E辑:技术科学, 2009, 39(1): 39-47
    [170]姚仰平,侯伟,周安楠.基于Hvorslev面的超固结土本构模型.中国科学E辑:技术科学, 2007, 37(11): 1417-1429
    [171] Li X S, Wang Y. Linear representation of steady-state line for sand. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(12): 1215-1217.
    [172] Verdugo R, Ishihara K. The steady state of sandy soils. Soil and Foundation, 1996, 36 (2): 81-91
    [173]王勖成,邵敏.有限单元法基本原理和数值方法(第2版).北京:清华大学出版社, 1997
    [174]钱家欢,殷宗泽.土工原理与计算.北京:中国水利水电出版社, 1996
    [175]朱伯芳.有限单元法原理与应用(第2版).北京:中国水利水电出版社, 1998
    [176] Simo J C, Taylor R L. Consistent tangent operator for rate independent elasto-plasticity. Computer Methods in Applied Mechanics and Engineering, 1985, 48: 79-116
    [177] Simo J C, Hughes T J R. Computational inelasticity, Interdisciplinary Applied Mathematics. Berlin: Springer, 1998
    [178] Belytschko T, Liu W K, Moran B.连续体和结构的非线性有限元(庄茁译).北京:清华大学出版社, 2002
    [179] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid, Part I - low-frequency range. J. Acoust. Soc. Am., 1956a, 28(2): 168-178
    [180] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid, Part II - low-frequency range. J. Acoust. Soc. Am., 1956b, 28(2): 179-191
    [181] Zienkiewicz O C. Field equations for porous media under dynamic loads. In Numerical Methods in Geomechanics, D. Reidel, Boston U.S.A. 1982
    [182] Zienkiewicz O C, Shiomi T. Dynamic Behaviour of saturated porous media: The generalized Biot formulation and its numerical solution. International Journal of Numerical and Analytical Methods in Geomechanics, 1984, 8: 71-96
    [183] Kawakami F, Asada A. Damage to the ground and earth structures by the Niigata earthquake of June 16, 1964. Soils and Foundations, 1966, 6 (1): 14-30.
    [184] Kramer. Geotechnical earthquake engineering. Prentice-Hall, Inc., New Jersey, 1996.
    [185] Gibbs H J, Holtz W G. Research on determining the density of sands by Spoon Penetration Testing. Proc. 4th Int. Conf. Soil Mech. Fdn. Engng, London, 1957, 1: 35-39.
    [186] Seed H B, Lee K L, Idriss I M, Makdisi F. Analysis of the slides in the San Fernando Dams during the earthquake of February 9, 1971. 1973, Rep. No. EERC 73-2, Univ. of California, Berkeley, Calif.
    [187] Seed H B, Idriss I M, Lee K L, Makdisi F I. Dynamic analysis of the slide in the lower San Fernando Dam during the earthquake of February 9, 1971. J. Geotech. Eng. Div., Am. Soc. Civ. Eng., 1975b, 101(9): 889-911
    [188] Seed H B, Seed R B, Harder L F, Jong H L. Reevaluation of the lower San Fernando Dam, Report 2: Examination of the post-earthquake slide of February 9, 1971. 1989, Contract Rep. No. GL-89-2, U.S. Army Corps of Engineers, Washington, D.C.
    [189] Lee, K.L., Seed, H.B., Idriss, I.M., and Makadisi, F.I. Properties of Soil in the San Fernando Hydraulic Fill Dams, J. Geotech. Eng. Division, 1975, 8: 801-821
    [190] Serff N, Seed H B, Makdisi F I, Chang C Y. Earthquake induced deformations of earth dams. 1976, Rep. No. EERC 76-4, Earthquake Eng. Research Center, Univ. of California, Berkeley, Calif.
    [191] Castro G, Keller T O, Boynton S S. Reevaluation of the lower San Fernando Dam. Report 1: An investigation of the February 9, 1971 slide. 1989, Contract, Rep. No. GL-89-2, U.S. Army Corps of Engineers, Washington, D.C.
    [192] Castro G, Seed R B, Keller T O, Seed H B. Steady state strength analysis of lower San Fernando dam slide. J. Geotech. Eng., 1992, 118(3): 406-427
    [193]黄茂松,钱建固,吴世明.土坝动力应变局部化与渐进破坏的自适应有限元分析.岩土工程学报, 2001, 23(5): 206-310
    [194] Zienkiewicz O C, Leung K H, Hinton E, Chang C T. Earth dam analysis for earthquakes: Numerical solution and constitutive relations for nonlinear damage analysis. Proc., Int. Conf. on Dams and Earthquakes, London, 1981, 179-194
    [195] Moriwaki Y, Beikae M, Idriss I M. Nonlinear seismic analysis of the upper San Fernando dam under the 1971 San Fernando earthquake. Proc., 9th World Conf. on Earthquake Eng., Tokyo and Kyoto, Japan, 1988, 8: 237–241
    [196] Dakoulas P, Eltaher A. Nonlinear seismic effective stress dam-foundation interaction. Geotechnology earthquake engineering and soil dynamics 3, P. Dakoulas, M. Yegian, and R. D. Holtz, eds., GSP75, ASCE, Univ. of Washington, Seattle, 1998, 2: 866-877
    [197] Beaty M, Byrne P. A simulation of the Upper San Fernando Dam using a synthesized approach. Proc., 13th Annual Vancouver Geotechnical Society Symp., Vancouver, 1999: 63-72
    [198] Wu G. Earthquake-induced deformation analyses of the upper San Fernando Dam under the 1971 San Fernando earthquake. Can.Geotech. J., 2001, 28:1-15
    [199] Duke C M. Effects of site classification and distance on instrumental indices in the San Fernando earthquake. UCLA Engineering Report 7247, University of California, Los Angeles, Calif., 1972
    [200] Scott R F. the calculation of horizontal accelerations from seismoscope records. Bulletin of the seismological society of America, 1973, 63(5): 1637-1661
    [201] Hazen A. Discussion of‘Dams on sand foundations’by A. C. Koening. Trans. Am. Soc. Civ. Eng., 1911, 73: 199-203

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700