用户名: 密码: 验证码:
YAG粉体组分和形貌调控及粉体反位缺陷的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
掺钕钇铝石榴石(Nd:YAG)透明激光陶瓷因其兼有激光玻璃能够实现的大尺寸和激光晶体所拥有的高热导率和高机械强度,并可以实现高浓度掺杂,是超高功率激光器及各种固态激光器的备选的下一代激光工作介质。
     透明激光陶瓷的制备是建立在高性能钇铝石榴石粉体原料批量合成的基础上的,因此,钇铝石榴石纳米粉体的合成一直是十几年来激光陶瓷研究的热点和关键。目前,尽管人们已经能够制备出性能较高的激光陶瓷材料,但由于对纳米粉体合成过程中的化学反应机理、成核与生长机制、表面物理形态对致密纳米晶体颗粒的形成规律没有搞清,人们尚无法稳定获得相结构完美的、高分散的、粒径可控的激光陶瓷粉体,所以,激光陶瓷一直未实现批量生产。另外,YAG晶体中的Y离子可能会占据Al离子的位置而形成的反位缺陷,这种分子缺陷曾被认为是影响掺杂YAG基材料发光性能的主要原因之一,其存在与否及浓度多少一直是YAG结构化学的研究热点,虽然有相关理论和实验研究,但仍然没有达成定论,对于YAG纳米粉体中是否存在这种分子缺陷,也缺乏可靠的实验研究。
     因此,本论文主要针对YAG纳米粉体合成新方法,以及常规的碳酸氢铵共沉淀法合成过程中的基础物理化学反应机制,特别对前驱体形成、物相转化、形貌演化等方面进行系统的研究,揭示相关合成过程中的反应机理,以实现对YAG粉体组分、形貌和结构的调控。同时,本文利用包括中子衍射在内的多种现代表征和研究手段,研究化学计量比对YAG粉体反位缺陷的存在及浓度的影响,以寻找YAG粉体中反位缺陷调控的依据。
     本论文主要研究工作如下:
     1.溶液-干燥-煅烧法制备YAG粉体及其低温烧结现象研究
     (1)为了避免共沉淀法制备YAG粉体过程中Y离子和A1离子在沉淀产物中偏析,实现YAG前驱体中元素均匀分布,本文提出基于硝酸铝和硝酸钇混合溶液的干燥粉末进行煅烧分解,合成YAG粉体的一种溶液-干燥-煅烧法。
     利用这种方法在850℃下实现了纯相YAG粉体的制备,粉体一次颗粒尺寸为20-30nm,具有很好的烧结活性,同时容易出现聚集和晶粒生长。1000℃煅烧能够形成尺寸约为20μm的陶瓷小块,其晶粒大小约为1-2μm,这种晶粒生长的温度比通常纳米粉体成型的陶瓷坯体的烧结温度低约700℃。
     由于此方法保证了Y离子和Al离子原子级均匀分布,故能够在较低温度下反应生成YAG相,并可以避免六方相YA103等中间相残留。相邻纳米颗粒之间界面两边物质的自由能差AG很大,为纳米颗粒长大提供了很大的晶粒生长驱动力,这是其低温致密化的主要原因。另外,氧化物纳米颗粒表面断键带来的大量羟基所实现的颗粒之间的氢键连接,以及干燥和煅烧过程中羟基失水形成桥氧,是纳米颗粒间紧密聚集、颗粒间物质输运的势垒降低,实现粉体低温致密化的另一原因。
     (2)基于硝酸盐溶液-干燥-煅烧法所实现的低温致密现象,本文提出了以YAG单晶为基体,利用纳米晶粒的高活性实现YAG晶体生长的固相外延生长单晶的方法。采用混合硝酸盐-柠檬酸溶胶为前驱体,利用液相沉积-分解-固相外延法实现了Nd:YAG在YAG(111)单晶衬底上的外延生长。研究表明,旋涂法制备的混合YAG前驱体薄膜500℃热处理,得到由非晶氧化物纳米颗粒组成的薄膜,1100℃热处理能使纳米颗粒结晶化,并且在衬底的影响下实现定向外延生长。X射线衍射表明,薄膜生长方向为(111)晶面,与衬底方向一致。经过1700℃热处理,发现薄膜与晶体完全融合,晶界消失。
     (3)溶液-干燥-煅烧法提供了一种制备YAG粉体的简单方法,通过一定措施提高粉体的分散性,就可能实现组分均匀的YAG纳米粉体的批量制备;单晶固相外延法是一种低温、低成本的高温晶体生长方法,是传统的气相、液相外延生长模式以外的第三种晶体生长方法,可以用于制备梯度掺杂的YAG单晶,同时也可以用于高熔点氧化物晶体的低温生长。
     2.碳酸氢铵沉淀法制备YAG粉体的组分及形貌调控研究
     (1)通过对碳酸氢铵正滴法(沉淀剂滴入混合硝酸盐溶液)与反滴法(混合硝酸盐溶液滴入沉淀剂)YAG粉体合成过程中反应体系pH、前驱体中Y/A1比及前驱体煅烧过程中晶相转化规律的研究,探讨了两种不同共沉淀方法前驱体形成机制及其对前驱体分解、晶相形成过程的影响,为实现前驱体形貌规则、组分均匀,以及调节合成粉体的相组成奠定了基础。
     研究表明:碳酸氢铵正滴法形成的前驱体沉淀虽然宏观上满足YAG的化学计量比,但是因为Y离子和Y离子沉淀顺序不同,从微观结构来看,沉淀颗粒中Y和Al呈现核壳状梯度分布。碳酸氢铵反滴法沉淀形成过程可以看做在液滴微反应器中进行的正滴法沉淀形成过程,但是反滴法可以实现两种离子在更小尺度上的共同沉淀,获得Y、Al元素均匀分布的前驱体。
     在碳酸氢铵正滴过程中(pH值上升过程),Al离子先形成沉淀物晶核,随着体系pH值的升高以及Al离子沉淀物晶核的增多,Y离子沉淀物在Al离子前驱体晶核上析出,形成Y/Al逐渐增大的,Y、Al梯度分布的核壳结构。在碳酸氢铵反滴过程中(pH值下降过程),将滴入体系的液滴看做是正滴过程中的离子溶液,将体系中的NH4HC03看做是正滴过程中滴入的沉淀剂,如果以液滴为参照系看作一个微反应器,这样液滴微反应器中离子溶液存在着pH梯度,此梯度将使得单一液滴微反应器中离子沉淀过程与正滴过程相似。因为混合反应过程是在剧烈搅拌条件下进行,液滴体积较小,在pH较高的环境中,这些微小的液滴与沉淀剂迅速反应,首先形成Y和Al共沉淀的外壳,将内部离子包裹起来,保持微小液滴尺度上Y和Al元素的化学计量比。由于沉淀外壳的阻隔,内部pH值的变化减缓,内部离子缓慢在沉淀外壳上形成Al沉淀和Y沉淀,形成空心结构,之后聚沉形成前驱体沉淀。这是反滴法共沉淀过程制备YAG前驱体需要陈化的原因之一
     (2)针对碳酸氢铵反滴法制备YAG前驱体,本文研究了沉淀剂用量对前驱体形貌和组分的影响,及其对物相转变的影响。发现高碳酸氢铵用量在共沉淀过程中可以保证前驱体严格的共沉淀过程,但是在陈化过程中其反应溶液对浸泡其中的前驱体中的元素分布、颗粒形貌等产生影响,进而影响煅烧过程中YAG粉体晶相的形成。
     研究表明,过量的碳酸氢铵有利于维持反应体系中pH的相对稳定,能够更快的达到Y和Al离子的沉淀条件,但是其带来的高pH化学环境,使得先期沉淀物在陈化过程中出现了Y/Al比例的变化,并引起前驱体结构和形貌变化,以及Y和Al沉淀物的分离,引起组分的不均匀,增加了反应过程中Y和Al的扩散难度,不利于反应形成YAG相,增大了可控制备的难度。
     (3)采用碳酸氢铵反滴法制备YAG前驱体,能够降低粉体制备温度,碳酸氢铵的用量是调控前驱体产物的组分和形貌的关键因素。
     3.煅烧温度调控YAG纳米粉体粒度及对坯体烧结性能的影响
     (1)采用碳酸氢铵共沉淀法制备YAG前驱体,分别经过900、1000、1100、1200和1300℃2小时煅烧,得到了颗粒尺寸分别为30、40、80、100和200nm的YAG粉体。
     利用高温热膨胀仪,对粉体制备的坯体的加热致密化过程进行实时地检测,发现随着颗粒尺寸的增大,坯体收缩开始和终止的温度提高。其中30nm的粉体的坯体收缩终止温度比200nm的还要高,其总收缩率比200nm的粉体制备的坯体总收缩率高约30%,这是由低合成温度得到的粉体的空壳结构,以及其高烧结活性导致的封闭气孔所致。研究发现,粉体粒度近似的粉体在粘连程度、坯体收缩率等方面表现相似,说明粉体颗粒尺寸对其烧结性能具有决定作用。
     烧结结果显示,小尺寸低结晶性带来的高烧结活性能在一定程度上降低烧结温度,但容易导致晶粒生长过程过快,局部的不均匀造成晶粒异常长大和封闭气孔,说明纳米粉体过高的烧结活性可能会给YAG陶瓷烧结带来困难。颗粒尺寸为200nm的粉体虽然粘连程度有所增加,但是能够实现晶粒稳定生长,达到最高致密化程度。
     (2)使用颗粒尺寸为200nm的粉体在200MPa下制备的陶瓷坯体,在不同温度下真空烧结20min,研究了烧结所形成的陶瓷微观结构,讨论了陶瓷致密过程的不同阶段,提出选择适当低温长时间烧结之后,再提高温度烧结,对透明陶瓷的制备有益。因为在烧结过程前期,纳米粉体具有很高的烧结活性,能够在相对低温下实现晶粒长大。适当的低温,有利于避免快速烧结引起大量封闭气孔;烧结后期需要提高温度来提高原子迁移率,以通过晶界迁移达,到进一步致密。
     4.非化学计量比YAG粉体中反位缺陷研究
     制备了非化学计量比的YxAlsO12(x=3.4,3.2,3.1,3.0,2.85,2.65)粉体,采用X射线吸收谱(XANES),X射线光电子能谱(XPS),X射线粉末衍射(XRD),中子粉末衍射(NPD),以及核磁共振(NMR)等测试方法,对其A1和Y的占位情况进行研究。从实验上讨论反位缺陷问题,发现煅烧得到的YAG粉体中反位缺陷含量很低,添加的过量的Y或者Al进入YAG晶格的几率很低,多以富Y化合物或者铝氧化物的形式存在,这些非YAG相多附着在YAG颗粒表面。
     利用Rietveld峰形拟合的方法,对非化学计量比的YAG粉体的NPD和XRD分析研究,证实了液相法制备的YAG粉体中的反位缺陷浓度很低,甚至可能不存在。非化学计量比对反位缺陷浓度的影响很弱,过量的Y和Al最终以富Y(YAM, YAP)和Al2O3的形式存在,进入YAG晶格形成缺陷的机会很小。
     通过27Al MAS NMR等分析过量的Al的存在状态,发现Al-O五配位结构的存在,结合XRD和高分辨TEM结果,判断过量的Al能够以结晶性较弱的θ-Al203或者非晶状态存在于YAG颗粒的表面。XANES和XPS测试确认了A1有多种占位情况,表现为铝过量样品的吸收谱线出现展宽。受到粉体中十分复杂的元素晶格环境的影响,基于分析不同晶格场中元素结合能的方式,不适合讨论粉体中的反位缺陷。
Neodymium doped Yttrium Aluminum Garnet (Nd:YAG) transparent ceramics are of promising materials with comparable potential application scale to glass gain materials. The thermal conductivity and mechanical properties of the YAG transparent ceramics are more prominent than that of its single crystals. Ceramic materials are the second generation of laser materials for solid state laser technology.
     Powders with high quality are the basis for fabricating ceramics with high quality. Thus, the synthesis of YAG powders has attracted extensive attention ever since the successful accomplishment of the YAG laser ceramics. Nowadays, the high quality laser ceramics have been achieved via various methods, however, due to uncertainty of chemical mechanism, nucleus formation, growth process, and surface fundamental in the nano-YAG synthesis process, the batch production of laser ceramics is still suspended. Moreover, yttrium might substitute aluminium in the YAG crystal to form antisite defects. These defects are considered to play important roles in the reduction of high laser performing of the crystals. However, the confirmation of the existence and concentration of antisite defects are still suspended, especially in powders.
     Thus, this work concludes the exploration for new synthesis process of YAG powders, and investigation of the fundamentals in the normal co-precipitation process with NH4HCO3, such as mechanism of precipitation, phase transition, morphology evolution, and so on, to try to uncover the reaction mechanism, in order to make it clear for the controllable synthesis of good YAG powders. Meanwhile, this study investigates the antisite defects in the non-stoichiometric YAG powders, trying to find ways to modify the antisite concentration.
     The main contents of this study are as following:
     1. YAG nanoparticles synthesized via nitrate decomposition and their low temperature densification behavior
     (1) To avoid the use of precipitation, and to form precursor with homogeneous ion distributions, the mixed nitrate decomposition process was used.
     Pure YAG powders were obtained from calcination of mixed nitrates at850℃. The powders were in size of20-30nm, highly sintering active, easy to assemble and grow up. Micro-ceramics with scale up to20μm with grains in sizes of1-2μm were obtained at the calcination temperature of1000℃, which is about700℃lower than the traditional sintering temperature of YAG ceramics.
     Due to the homogenous distribution of Y and Al elements, YAG structure could be formed without obvious existence of Hexagonal-YAlO3(YAH). The nano-scale powders supplied large gibbs free energy difference△G between adjacent particles, and pushed the nano-particles growing up. That is to say that the20-30nm nano-particles are the main reason for the low temperature densification. Moreover, the bridge-oxygen formed between ultra-fine particles could make the adjacent particles closer, and was considered as anther reason for the densification of YAG ceramics at low temperature.
     (2) Based on the significantly different potential between substrate and nano-particles, and the low temperature densification phenomenon, the epitaxial growth of single YAG at the solid state was proposed. Nitrate-citric acid sol solution was used as the precursor. With the deposition-decomposition-sintering process, the Nd:YAG films were achieved on YAG (111) single crystal substrates. With500℃heat treatment, the homogeneous amorphous oxides formed on the substrates. After crystallization at1100℃, the films with oriented direction have been proved with XRD measurement. With the obviations of the surface and interface section with AFM and SEM, the interface between film and substrate was found. After1700℃heat treatment, the interface disappeared.
     (3) Nitrates decomposition process supplies a simple route for synthesis of fine YAG powders. With the overcome of aggregation by using dispersion agencies, this route could realize the batch synthesis of homogenous YAG powders. The epitaxial growth of single YAG at the solid state is a method for growth of single crystal at low temperature. It is another route for crystal growth, beside traditional gas, liquid epitaxial growth. It could be applied for the fabrication of high-melt-point crystals, as well as doped YAG with gradient doping concentration.
     2. Modulation of composition and morphology of the YAG precursors obtained by co-precipitation process
     (1) The normal and reversed titration processes of co-precipitation method were performed to synthesize YAG precipitate. By comparing the variation of Y/Al ratio during the titration process, combined with the variation of pH in the reaction system, the formation of YAG precipitate with normal and reversed titration processes was proposed. The distribution of yttrium and aluminium ions was discussed.
     The investigation suggests that the precipitate formed in the normal titration process is not homogenous. The distribution of Y and Al exhibits gradient. The reverse titration process performs as a tiny reactor of the normal titration process, but it could realize co-precipitation process, and obtain precursor with homogenous Y and Al distribution.
     Normal titration process is a process with increasing pH. The Al-precipitate forms first, and makes the visibly turbid solution a sol. A small amount of Y-precipitate forms under these conditions due to the higher solubility product of Y-precipitate. With the increase in pH, more Y-precipitate forms, and adheres to the surface of the existing Al-precipitate, forming the YAG precursor precipitate. Reversed titration process is a process with decreasing pH. Considering the droplet of ion solution and its neighborhood to be a small reaction system, the reaction process should be quite similar to that formed via the normal titration co-precipitation method. Fortunately, due to the agitation, the tiny droplet would form a Y and Al co-precipitate shell, keeping the overall composition stoichiometric. The Y and Al ions precipitate on the shell and form hollow particles, then driven by high surface energy and electrostatic attraction, these tiny particles assemble, forming the final precipitate. This homogeneity in such a small scale makes the formation of YAG easier.
     (2) Based on the synthesis of YAG precursor with reversed titration process, the effect of dosage of NH4HCO3on the morphology and composition of precursor were discussed. The high dosage of NH4HCO3is good for the first formation of precipitate, but would cause changes for the morphology and elemental distribution, which are bad for the phase transition.
     After the formation of precipitate, the chemical environment affects the composition and morphology of the as-obtained precipitate. High pH is good for the co-precipitation process, but it also brings trouble to the stoichiometry and homogeneity of the precipitate during the aging process. The effect makes that the reaction from Y and Al precipitates into YAG needs more energy and time due to the matter transfer.
     (3) The reversed titration process could realize the phase transition at low temperature. The dosage of NH4HCO3is the key to modify the composition and morphology of precursor.
     3. Effect of the powder size on the sintering property and the densification process
     (1) The YAG powders were obtained by calcining the precursors obtained via co-precipitation process at900,1000,1100,1200and1300℃for2h. The as-obtained powders are in sizes of30,40,80,100and200nm.
     The real-time measurement of the high temperature thermal expansion measurement was performed to identify the densification processes of the compacts. It is noticed that with the increase of particle size, the starting and ending temperatures of the shrinkage process increase. The powder calcined at900℃was not confined by the rule. That is due to the low crystallinity of the powder. The compact with30nm powder has a total shrinkage30%larger than that with200nm powder. The powders with similar particle sizes exhibit similar aggregation and sintering activity, which imply the important role of particle size playing in the sintering process.
     The sintering results prove that the samples made from the powder calcined at low temperatures readily exhibit abnormal grain growth and pore envelopment. With the increase of calcination temperature, the obtained ceramics becomes better. In this study, the ones calcined at1300℃with particle size of200nm showed the best result of all.
     (2) Taking the powder with particle size of200nm for example, different sintering states at different temperatures were investigated with SEM. It is suggested that low sintering temperature is good at the initial period of sintering, while high sintering temperature is needed to form ceramics with full density.
     4. Antisite defects of the non-stoichiometric YAG powders
     Specially synthesized non-stoichiometric YAG powders YxAl5O12(x=3.4,3.2,3.1,3.0,2.85,2.65) were used for the measurements of XANES, XPS, powder-XRD and NPD, as well as NMR. Low antisite defect concentrations in the powders were identified, and it was suppose to be a good chance for the fabrication of bulk materials with low antistite defects.
     Combined neutron and X-ray diffraction investigation on cation antisite defects was performed on specialized synthesized YxAl5O12yttrium aluminum garnet nanopowders to try understanding the defect chemistry in YAG system. No clear evidence was observed for the exists of YAl,16a, YAl,24c and AlY,24d antisite defects in these specially synthesized samples. It was found that the nonstoichiometry with extra amounts of Y or Al could only cause the formation of different phases such as YAM, YAP, or θ-Al2O3and α-Al2O3in addition to the main YAG phase. YAG materials containing low level or even no antisite defects may be achieved through low temperature synthesis process.
引文
[1]B. E. Yoldas, Transparent porous alumina, American Ceramic Association Bulletin, 1975,54(3),286-289.
    [2]G. de With, and H. J. A. van Dijk, Translucent Y3Al5O12, Mater. Res.,1984, 19,1669-1674.
    [3]M. Sekita, H. Haneda, T. Yanagitani, and S. Shirasaki, Induced emission cross section of Nd:Y3Al5012 ceramics, J. Appl. Phys.,1990,67(1),453-458.
    [4]A. Ikesue, I. Furusato, and K. Kamata. Fabrication of polycrystalline, tansparent YAG ceramics by a solid-state reaction method, J. Am. Ceram. Soc.,1995,78(1), 225-228.
    [5]T. Yanagitani, H. Yagi, and M. Ichikawa,, Japanese patent,1998,10-101333.
    [6]T. Yanagitani, H. Yagi, and Y. Hiro, Japanese patent,1998,10-101411.
    [7]Jianren Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials, J. Alloy Compd.,2001, 341(1-2),220-225.
    [8]A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers, J. Am. Ceram. Soc.,1995,78(4),1033-1040.
    [9]闻雷,孙旭东,马伟民,固相反应法制备Nd:YAG透明陶瓷,无机材料学报,2004,19(2),295-301。
    [10]潘裕柏,徐军,吴玉松,李江,李劲东,姜本学,陈卫标,冯锡淇,曾燕萍,黄莉萍,郭景坤,Nd:YAG透明陶瓷的制备与激光输出,无机材料学报,2006,21(5),1278-1280。
    [11]T. Tachiwaki, M. Yoshinaka, K. Hirota, T. Ikegami, and O. Yamauchi, Novel synthesis of Y3Al5O12 (YAG) leading to transparent ceramics, Solid State Comm., 2001,119,603-606.
    [12]Y. Qiu, and L. Gao, Novel way to synthesis nanocrystalline aluminum nitride from coarse aluminum powder, J. Am. Ceram. Soc.,2003,86 (7),1214-1216.
    [13]D. Ravichandran, R. Roy, A. G. Chakhovskoi, C. E. Hunt, W. B. White, and S. Erdei, Fabrication of Y3Al5O12:Er thin films and powders for field emission display application, J. Lumin.,1997,71,291-297.
    [14]Y. Rabinovitch, C. Bogicevic, F. Karolak, D. Tetard, and H. Dammak, Freeze-dried nanmetric neodymium-doped YAG poeders for transparent ceramics, J. Mater. Pro. Tech.,2008,199,314-320.
    [15]李江,潘裕柏,张俊计,黄莉萍,郭景坤,共沉淀法制备钇铝石榴石(YAG)纳米粉体,硅酸盐学报,2003,31(5),490-493。
    [16]Jiguang Li, T. Ikegami, J. H. Lee, T. Mori, and Y. Yajima, Co-precipitation synthesis and sintering of yttrium aluminium garnet (YAG) powders:the effect of precipitant, J. Eur. Ceram. Soc.,2000,20,2395-2405.
    [17]Xia Li, Hong Liu, Jiyang Wang, Hongmei Cui, Xudong Zhang, and Feng Han, Preparation of YAG:Nd nano-sized powders by co-precipitation method, Mater. Sci. Eng (A),2004,379,347-350.
    [18]Xia Li, Hong Liu, Jiyang Wang, Xudong Zhang, and Hongmei Cui, Preparation and properties of YAG nano-sized powder from different precipitating agents, Opt. Mater.,2004,25,407-412.
    [19]卢利平,刘景和,孙晶,朱忠丽,王英伟,万玉春,Nd:YAG激光陶瓷超细粉体的合成及其性能表征,光学技术,2005,31(2),306-308。
    [20]王介强,陶文宏,高新睿,李勇,郑少华,微波均相合成YAG纳米粉体及其可烧结性研究,无机材料学报,2005,20(5),1037-1042。
    [21]Xiaolin Zhang, Duo Liu, Hong Liu, Jiyang Wang, Haiming Qin, and Yuanhua Sang, Microstructural characteristics of Nd:YAG powders leading to transparent ceramics, Journal of Rare Earths,2011,29(6),585-591.
    [22]Yuanhua Sang, Hong Liu, Xudong Sun, Xiaolin Zhang, Haiming Qin, Yaohui Lv, Di Huo, Duo Liu, Jiyang Wang, and Robert. I. Boughton, Formation and calcination temperature-dependent sintering activity of YAG precursor synthesized via reverse titration method, Journal of Alloys and Compounds,2011,509,2407-2413.
    [23]M. Suarez, A. Fernandez, J. L. Menendeza, M. Nygren, R. Torrecillas, and Z. Zhao, Hot isostatic pressing of optically active Nd:YAG powders doped by a colloidal processing route, J. Eur. Ceram. Soc.,2010,30(6),1489-1494.
    [24]H. M. H. Fadlalla, and C. C. Tang, YAG:Ce3+ nano-sized particles prepared by precipitation technique, Mater. Chem. Phys.,2009,114,99-102.
    [25]Xianxue Li, and Wenju Wang, Preparation of uniformly dispersed YAG ultrafine powders by co-precipitation method with SDS treatment, Powder Technology,2009, 196(1),26-29.
    [26]Yongming Zhang, Hongming Yu, Synthesis of YAG powders by the co-precipitation method, Ceram. Int.,2009,35(5),2077-2081.
    [27]魏岳,李志强,庄云飞,韦志仁,混合沉淀剂对YAG:Ce荧光粉性能的影响,材料导报,2010,24(2),23-26。
    [28]Min Liu, Shiwei Wang, Dingyuan Tang, Lidong Chen, and Jian Ma, Preparetion and upconversion luminescence of YAG (Y3Al5O12):Yb3+, Ho3+nanocrystals, J. Rare Earth,2009,27(1),66-70.
    [29]M. Inore, H. Otsu, H. Kominami, and T. Inui, Synthesis of yttrium aluminum garnet by the glycotheraml method, J. Am. Ceram. Soc.,1991,74(6),1452-1454.
    [30]房明浩,陈健,潘伟,蒋梦宁,水热法合成YAG粉体的制备工艺,材料导报,2000,10,23-24。
    [31]张旭东,混合溶剂热合成球形YAG微粉,稀有金属材料与工程,2003,32,7-10。
    [32]Xia Li, Hong Liu, Jiyang Wang, Hongmei Cui, and Feng Han, Production of nanosized YAG powders with spherical morphology and nonaggregation via a solvothermal method, J. Am. Ceram. Soc.,2004,87(12),2288-2290.
    [33]Zuogui Wu, Xudong Zhang, Wen He, Yuanwei Du, Naitao Jia, Pengcheng Liu, and Fanqing Bu, Solvothermal synthesis of spherical YAG powders via different precipitants, J. Alloy Compd.,2009,472(1-2),576-580.
    [34]A. Cabanas, Jun Li, Paul Blood, T. Chudoba, W. Lojkowski, M. Poliakoff, and E. Lester, Synthesis of nanparticulate yttrium aluminium garnet in supercritical water-ethanol mixtures, J. Supercrit. Fluids.,2007,40(2),284-292.
    [35]Q. X. Zheng, B. Li, H. D. Zhang, J. J. Zheng, M. H. Jiang, X. T. Tao, Fabrication of YAG mono-dispersed particles with a novel combination method employing supercritical water process, J. Supercrit. Fluids.,2009,50(1),77-81.
    [36]郭瑞,曾人杰,吴音,王婷,黄勇,微乳液法制备纳米球形YAG:Ce3+荧光粉, 硅酸盐学报,2008,36(3),352-357。
    [37]Yanhui Li, Jihua Zhang, Qingquan Xiao, and Renjie Zeng, Synthesis of ultrafine spherical YAG:Eu3+ phosphors by MOCVD, Mater. Lett.,2008,62(23),3787-3789.
    [38]Sang Ho Lee, Hye Young Koo, Su Min Lee, and Yun Chan Kang, Characteristics of Y3Al5O12:Ce phosphor powders prepared by spray pyrolysis from ethylenediaminetetraacetic acid solution, Ceram. Int.,2010,36(2),611-615.
    [39]L. Mancic, K. Marinkovic, B. A. Marinkovic, M. Dramicanin, and O. Milosevic, YAG:Ce3+nanostructured particles ontianed via spray pyrolysis of polymeric precursor solution, J. Eur. Ceram. Soc.,2010,30(2),577-582.
    [40]R. Lopez, J. Zarate, E. A. Aguilar, and J. Munoz-Saldana, Preparation of neodymium-doped yttrium aluminum garnet powders and fibers, J. Rare Earth,2008, 26(5),670-673.
    [41]A. Purwantoa, W. N. Wang, T. Ogi, I. W. Lenggoro, E. Tanabe and K. Okuyama, High luminance YAG:Ce nanparticles fabricated from urea added aqueous precursor by flame process, J. Alloy Compd.,2008,463,350-357.
    [42]刘颂豪,激光陶瓷-固体激光工作物质探索的新热点,激光与红外,2005,35(6),385-390。
    [43]A. Ikesue, K. Kamata, and K. Yoshida, Effects of neodymium concentration on optical characteristics of polycrystalline Nd:YAG laser materials, J. Am. Ceram. Soc., 1996,79(7),1921-1926.
    [44]R. Fedyk, D. Hreniak, W. Lojkoski, W. Strek, H. Matysiak, E. Grzanka, S. Gierlotka, and P. Mazur, Method pf preparation and structural properties of transparent YAG nanoceramics, Opt. Mater.,2007,29(10),1252-1257.
    [45]R. Chaim., R. M. Jaeckel, and J. Z. Shen, Transparent YAG ceramics by surface softening of nanoparticles in spark plasma sintering, Mater. Sci. Eng. A,2006,429, 74-78.
    [46]Jiping Cheng, D. Agrawal, Yunjin Zhang, and R. Roy, Microwave sinering of transparent alumina, Mater. Lett.,2002,56(4),587-590.
    [47]A. Maitre, C. Salle, R. Boulesteix,J-F. Baumard, and Y. Rabinovitch, Effect of silica on the reactive sinering of polycrystalline Nd:YAG ceramics, J. Am. Ceram. Soc.,2008,91(2),406-413.
    [48]L. Rogobete, A. Lupei, V. Lupei, A. Petraru, and B. Diaconescu, Inhomogeneous broadening by point defects of Re3+ optical lines in YAG, Proc. SPIE,2001,4430, 97-107.
    [49]张克从,张乐惠,晶体生长科学与技术(下册),科学出版社,北京,1997
    [50]L. I. Kazakova, G. M. Kuzmicheva, E. M. Suchkova, Growth of Y3Al5O12 crystals for jewelry, Inorganic Materials,2003,39(9),959-970.
    [51]M. M. Kuklja, Defects in yttrium aluminium perovskite and garnet crystals: atomistic study, Journal of Physics:Condensate Materials,2000,12,2953-2967.
    [52]M. M. Kuklja, R. Pandey, Atomistic modeling of native point defects in yttrium aluminum garnet crystals, Journal of the American Ceramics Society,1999,82(10), 2881-2886.
    [53]S. Geller, G. P. Espinosa, L. D. Fullmer, and P. B. Crandall, Mater. Res. Bull., 1972,7(11),1219-1224.
    [54]Y. K. Voronko, A. A. Sobol, Local inhomogeneity of garnet doped with rare-earth ions, Phys. Stat. Sol. A,1975,27(2),657-663.
    [55]M. K. Ashurov, Y. Voronko, V. V. Osiko, A. A. Sobol, and M. I. Timoshechkin, Spectroscopic study of stoichiometry deviation in crystals with garnet structure, Phys. Stat. Sol. a,1977,42(1),101-110.
    [56]V. Babin, K. Blazek, A. Krasnikov, K. Nejezchleb, M. Nikl, T. Savikhina, and S. Zazubovich, Luminescence of undoped LuAG and YAG crystals, Phys. Sta. Sol. c, 2005,2(1),97-100.
    [57]C. Landron, S. Lefloch, M. Gervais, J. P. Coutures, and D. Bazin, Yttrium coordination shell in YAG related structures, Phys. Sta. Sol. b,1996,196(1),25-31.
    [58]D. A. Pawlak, K. Wozniak, Z. Frukacz, T. L. Barr, D. Fiorentina, and S. Seal, ESCA studies of yttrium aluminum garnets, J. Phys. Chem. B,1999,103,1454-1461.
    [59]V. V. Laguta, M. Nikl, A. Vedda, E. Mihokova, J. Rosa, and K. Blazek, Hole and electron traps in the YAlO3 single crystal scintilator, Phys. Rev. B,2009,80(4), 045114.
    [60]P. Palmeroa, C. Esnoufb, L. Montanaroa, and G. Fantozzib, Influence of the co-precipitation temperature on phase evolution in yttrium-aluminium oxide materials, J. Euro. Ceram. Soc.,2005,26(9),1565-1573.
    [61]W. B. Liu, W. X. Zhang, J. Li, H. M. Kou, Y. Q. Shen, L. Wang, Y. Shi, D. Zhang, and Y. B. Pan, Influence of pH values on (Nd+Y):A1 molar ratio of Nd:YAG nanopowders and preparation of transparent ceramics, J. Alloys Compd.,2010,503(2), 525-528.
    [62]Xiaolin Zhang, Duo Liu, Yuanhua Sang, Hong Liu, and Jiyang Wang, Effects of aging on the characteristices of Nd:YAG nano-powders, J. Alloys Compd.,2010, 502(1),206-210.
    [63]J. Q. Wang, H. Y. Xu, Y. Wang, and Y. L. Yue, Effect of Sulfate Ions on YAG Powders Synthesized by Microwave Homogeneous Precipitation, J. Rare Earths,2006, 24(1, supplement 1),284-287.
    [64]N. Matsushita, N. Tsuchiya, K. Nakatsuka, and T. Yanagitani, Precipitation and calcination processes for yttrium aluminum garnet precursors synthesized by the urea method, J. Am. Ceram. Soc.,1999,82(8),1977-1984.
    [65]H. Wang, L. Gao, and K. Niihara, Synthesis of nanoscale yttrium aluminum garnet powder by the co-precipitation method, Mater. Sci. Eng. A,2000,288(1),1-4.
    [66]W. Q. Li, and L. Gao, Co-precipitation processed needle-like YAG dispersed in alumina powder, Mater. Lett.,2001,48(3-4),157-161.
    [67]S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, Properties of transparent Ce:YAG ceramic phosphors for white LED, Opt. Mater.,2011,33(5),688-691.
    [68]A. K. Pradhan, K. Zhang, and G. B. Loutts, Synthesis of neodymium-doped yttrium aluminum garnet (YAG) nanocrystalline powders leading to transparent ceramics, Mater. Res. Bull.,2004,39(9) 1291-1298.
    [69]Yongming Zhang, Hongming Yu, Synthesis of YAG powders by the co-precipitation method, Ceram. Int.,2009,35(5),2077-2081.
    [70]R. Singh, R. K. Khardekar, A. Kumar, and D. K. Kohli, Preparation and characterization of nanocrystalline Nd:YAG powder, Mater. Lett.,2007,61,921-924.
    [71]Jiang Li, Yubo Pan, Fagui Qiu, Yusong Wu, Wenbin Liu, and Jingkun Guo, Synthesis of nanosized Nd:YAG powders via gel combustion, Ceram. Int.,2007, 33(6),1047-1052
    [1]A. Ikesue, I. Furusato, and K. Kamata. Fabrication of polycrystalline, tansparent YAG ceramics by a solid-state reaction method, J. Am. Ceram. Soc.,1995,78(1), 225-228.
    [2]A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers, J. Am. Ceram. Soc.,1995,78(4),1033-1040.
    [3]闻雷,孙旭东,马伟民,固相反应法制备Nd:YAG透明陶瓷,无机材料学报,2004,19(2),295-301。
    [4]潘裕柏,徐军,吴玉松,李江,李劲东,姜本学,陈卫标,冯锡淇,曾燕萍,黄莉萍,郭景坤,Nd:YAG透明陶瓷的制备与激光输出,无机材料学报,2006,21(5),1278-1280。
    [5]S. A. Hassanzadeh-Tabrizi, E. Taheri-Nassaj, and H. Sarpoolaky, Synthesis of an alumina-YAG nanopowder via sol-gel method, J. Alloys Compd.,2008,456(1-2), 282-285.
    [6]D. J. Sordelet, M. L. Akinc, Y Han, and M.H. Han, Synthesis of yttrium aluminum garnet precursor powders by homogeneous precipitation, J. Eur. Ceram. Soc.,1994, 14,123-130.
    [7]Xia Li, Hong Liu, Jiyang Wang, Hongmei Cui, and Feng Han, Production of nanosized YAG powders with spherical morphology and nonaggregation via a solvothermal method, J. Am. Ceram. Soc.,2004,87(12),2288-2290.
    [8]J. H. In, H. C. Lee, M. J. Yoon, K. K. Lee, J. W. Lee, and C. H. Lee, Synthesis of nanosized YAG:Eu3+ phosphor in continuous supercritical water system, J. Supercrit. Fluids,2007,40(3),389-396.
    [9]T. Yanagitani, H. Yagi, and Y. Hiro, Japanese patent,1998,10-101411.
    [10]Jianren Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials, J. Alloy Compd.,2001, 341(1-2),220-225.
    [11]Sang Ho Lee, Hye Young Koo, Su Min Lee, and Yun Chan Kang, Characteristics of Y3Al5O12:Ce phosphor powders prepared by spray pyrolysis from ethylenediaminetetraacetic acid solution, Ceram. Int.,2010,36(2),611-615.
    [12]徐学珍,陈熙基,姜腾雨,田惠琴,李群英,李玉明,殷绩民,和张敏,提高Nd:YAG晶体中Nd3+离子浓度分布均匀性的研究,人工晶体学报,1998,27(3),22-24.
    [13]A. Ikesue, and Yan Lin Aung, Synthesis and Performance of Advanced Ceramic Lasers, J. Am. Ceram. Soc.,2006,89(6),1936-1944.
    [14]A. Ikesue, Yan Lin Aung, T. Yoda, S. Nakayama, and T. Kamimura, Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing, Optical Materials,2007,29(10),1289-1294.
    [15]J. Dong, and K. Q. Lu, Noncubic symmetry in garnet structures studied using extended x-ray-absorption fine-structure spectra, Phys. Rev. B,1991,43(11), 8808-8821.
    [16]Yu. V. Zorenko, V. I. Gorbenko, G. B. Stryganyuk, V. N. Kolobanov, D. A. Spasski, K. Blazek, and M. Nikl, Luminescence of excitons and antisite defects in Lu3Al5O12:Ce single crystals and single-crystal films, Optics and Spectroscopy,2005, 99,932-931.
    [17]刘维良,喻佑华,先进陶瓷工艺学,武汉理工大学出版社,2004.8.
    [18]W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics, Second Edition, John Wiley and Sons, Inc.1976.
    [19]B. Pacewska, and M. Keshrm, Thermal transformations of aluminum nitrate hydrate, J. Thermochim. Acta,2002,385(1-2),73-80.
    [20]J. A. Dean. Lange's Handbook of Chemistry.15th ed., Beijing World Publishing Corporation/McGraw-Hill, Beijing,1999.
    [21]Zhihui Chen, Yun Yang, Zhanggui Hu, Jiangtao Li, and Shuli He, Synthesis of highly sinterable YAG naopowders by a modified co-precipitation method, J. Alloys Compd.2007,433(1-2),328-331.
    [22]S. Ramanathan, S. K Roy, R. Bhat, D. D. Upadhyaya, and A. R. Biswas, Alumina powders from aluminium nitrate-urea and aluminium sulphate-urea reactions-the role of the precursor anion and process conditions on characteristics, Ceram. Int.,1997, 23(1),45-53.
    [23]R. K. Pati, J. C. Ray, and P. Pramanik, A novel chemical route for the synthesis of nanocrystalline α-Al2O3 powder, Mater. Lett.,2000,44(5),299-303.
    [24]P. Colomban, Structure of oxide gels and glasses by infrared and raman scattering, J. Mater. Sci.,1989,24(8),3002-3010.
    [25]P. Apte, H. Burke, and H. Pickup, Synthesis of yttrium aluminum garnet by reverse strike precipitation, J. Mater. Res.,1992,7(3),706-711.
    [26]D. R. Messier, and G. E. Gazza, Synthesis of MgAl2O4 and Y3Al5O12 by thermal decomposition of hydrated nitrate mixture, Am. Ceram. Soc. Bull.1072,51(9), 692-694.
    [27]V. B. Gusshkova, V. A. Krzhizhanovskaya, O.N. Egorova, Y. P. Udalov, and L. P. Kachalova, Interaction of yttrium and aluminum oxides, Inorg. Mater.,1983,19(1), 80-84.
    [28]Jiang Li, Yubo Pan, Fagui Qiu, Yusong Wu, Wenbin Liu, and Jingkun Guo, Synthesis of nanosized Nd:YAG powders via gel combustion, Ceram. Int.,2007, 33(6),1047-1052.
    [29]P. Palmero, C. Esnouf, L. Montanaro, and G. Fantozzi, Influence of the co-precipitation temperature on phase evolution in yttrium-aluminium oxide materials, J. Euro. Ceram. Soc.,2005,25,1565-1573.
    [30]W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics. Second ed, John Wiley & Sons, Inc.1976.
    [31]R. Fedyk, D. Hreniak, W. Lojkoski, W. Strek, H. Matysiak, E. Grzanka, S. Gierlotka, and P. Mazur, Method of preparation and structural properties of transparent YAG nanoceramics, Opt. Mater.,2007,29(10),1252-1257.
    [32]孙占兴,房明浩,卫李贤,溶胶-凝胶法制备Y3_xCexA15O12纳米粉体的研究,2009,38,308-311。
    [33]李珍,曹全喜,张红国,改进的溶胶-凝胶法制备Nd:YAG纳米粉体及透明陶瓷,电子科技,2009,22(10),47-52。
    [34]H. M. Wang, M. C. Simmonds, Y. Z. Huang, and J. M. Rodenburg, Synthesis of nanosize powders and thin films of Yb-doped YAG by sol-gel methods, Chem. Mater., 2003,15,3474-3480.
    [1]A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers, J. Am. Ceram. Soc.,1995,78(4),1033-1040.
    [2]S. A. Hassanzadeh-Tabrizi, E. Taheri-Nassaj, and H. Sarpoolaky, Synthesis of an alumina-YAG nanopowder via sol-gel method, J. Alloys Compd.,2008,456(1-2), 282-285.
    [3]Y. P. Fu, S. B. Wen, and C. S. Hsu, Preparation and characterization of Y3Al5O12:Ce and Y2O3:Eu phosphors powders by combustion process, J. Alloys Compd.,2008,458(1-2),318-322.
    [4]D. J. Sordelet, M. Akinc, M. L. Panchula, Y. Han, and M. H. Han, Synthesis of yttrium aluminum garnet precursor powders by homogeneous precipitation, J. Euro. Ceram. Soc.,1994,14(1),123-130.
    [5]Jiguang Li, Xiaodong Li, Xudong Sun, T. Ikegami, and T. Ishigaki, Uniform colloidal cpheres for (Y1-xGdx)2O3 (x=0-1):formation mechanism, compositional impacts, and physicochemical properties of the oxides, Chem. Mater.,2008,20(6), 2274-2281.
    [6]Xiaolin Zhang, Duo Liu, Yuanhua Sang, Hong Liu, and Jiyang Wang, Effects of aging on the characteristices of Nd:YAG nano-powders, J. Alloys Compd.,2010, 502(1),206-210.
    [7]M. L. Saladino, G. Nasillo, D. C. Martino, and E. Caponetti, Synthesis of Nd:YAG nanopowder using the citrate method with microwave irradiation, J. Alloys Compd., 2010,491(1-2),737-741.
    [8]Xia Li, Hong Liu, Jiyang Wang, Feng Han, and R. I. Boughton, Production of nanosized YAG powders with spherical morphology and nonaggregation via a solvothermal method, J. Am. Ceram. Soc.,2004,87(12),2288-2290.
    [9]Zuogui Wu, Xudong Zhang, Wen He, Yuanwei Du, Naitao Jia, Pengcheng Liu, and Fanqing Bu, Solvothermal synthesis of spherical YAG powders via different precipitants, J. Alloy Compd.,2009,472(1-2),576-580.
    [10]J. H. In, H. C. Lee, M. J. Yoon, K. K. Lee, J. W. Lee, and C. H. Lee, Synthesis of nano-sized YAG:Eu3+ phosphor in continuous supercritical water system, J. Supercrit. Fluids.,2007,40(3),389-396.
    [11]M. Danchevskaya, Y. Ivakin, S. Torbin, and G. Muravieva, Technological capability of synthesis of inorganic oxides in water fluid in neighborhood of critical point, J. Supercrit. Fluids.,2008,46(3),358-364.
    [12]Q. X. Zheng, B. Li, H. D. Zhang, J. J. Zheng, M. H. Jiang, and X. T. Tao, Fabrication of YAG mono-dispersed particles with a novel combination method employing supercritical water process, J. Supercrit. Fluids.2009,50(1),77-81.
    [13]T. Yanagitani, H. Yagi, M. Ichikawa, Japanese patent,1997,10-101333.
    [14]T. Yanagitani, H. Yagi, Y. Hiro, Japanese patent,1998,10-101411.
    [15]H. Yagi, T. Yanagitani, K. Takaichi, K. I. Ueda, and A. A. Kaminskiim, Characterizations and laser performances of highly transparent Nd3+:Y3Al5O12 laser ceramics, Opt. Mater.,2007,29(10),1258-1262.
    [16]Xia Li, Qiang Li, Jiyang Wang, Shunliang Yang, and Hong Liu, Synthesis of Nd3+doped nano-crystalline yttrium aluminum garnet (YAG) powders leading to transparent ceramics, Opt. Mater.2007,29(5),528-531.
    [17]Hua Gong, Dingyuan Tang, Hui Huang, and Jan Ma, Agglomeration control of Nd:YAG nanoparticles via freeze drying for transparent Nd:YAG ceramics, J. Am. Ceram. Soc.,2009,92(4),812-817.
    [18]Zhihui Chen, Yun Yang, Zhanggui Hu, Jiangtao Li, and Shuli He, Synthesis of highly sinterable YAG naopowders by a modified co-precipitation method, J. Alloys Compd.2007,433(1-2),328-331.
    [19]A. K. Pradhan, K. Zhang, and G. B. Loutts, Synthesis of neodymium-doped yttrium aluminum garnet (YAG) nanocrystalline powders leading to transparent ceramics, Mater. Res. Bull,2004,39(9) 1291-1298.
    [20]Jiguang Li, T. Ikegami, J. H. Lee, T. Mori, and Y. Yajima, Co-precipitation synthesis and sintering of yttrium aluminium garnet (YAG) powders:the effect of precipitant, J. Eur. Ceram. Soc.,2000,20,2395-2405.
    [21]王宏志,高濂,共沉淀法制备纳米YAG粉体,无机材料学报,2001,16(4),630-634。
    [22]P. Palmeroa, C. Esnoufb, L. Montanaroa, and G. Fantozzib, Influence of the co-precipitation temperature on phase evolution in yttrium-aluminium oxide materials, J. Euro. Ceram. Soc.,2005,26(9),1565-1573.
    [23]W. B. Liu, W. X. Zhang, J. Li, H. M. Kou, Y. Q. Shen, L. Wang, Y. Shi, D. Zhang, and Y. B. Pan, Influence of pH values on (Nd+Y):A1 molar ratio of Nd:YAG nanopowders and preparation of transparent ceramics, J. Alloys Compd.,2010,503(2), 525-528.
    [24]M. Suarez, A. Fernandez, J. L. Menendez, M. Nygren, R. Torrecillas, and Z. Zhao, Hot isostatic pressing of optically active Nd:YAG powders doped by a colloidal processing route, J. Euro. Ceram. Soc.,2010,30(6),1489-1494.
    [25]J. Q. Wang, H. Y. Xu, Y. Wang, and Y. L. Yue, Effect of Sulfate Ions on YAG Powders Synthesized by Microwave Homogeneous Precipitation, J. Rare Earths,2006, 24(1, supplement 1),284-287.
    [26]N. Matsushita, N. Tsuchiya, K. Nakatsuka, and T. Yanagitani, Precipitation and calcination processes for yttrium aluminum garnet precursors synthesized by the urea method, J. Am. Ceram. Soc.,1999,82(8),1977-1984.
    [27]H. Wang, L. Gao, and K. Niihara, Synthesis of nanoscale yttrium aluminum garnet powder by the co-precipitation method, Mater. Sci. Eng. A,2000,288(1),1-4.
    [28]W. Q. Li, and L. Gao, Co-precipitation processed needle-like YAG dispersed in alumina powder, Mater. Lett.,2001,48(3-4),157-161.
    [29]Xia Li, Hong Liu, Jiyang Wang, Xudong Zhang, and Hongmei Cui, Preparation and properties of YAG nano-sized powder from different precipitating agent, Opt. Mater.,2004,25(4),407-412.
    [30]S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, Properties of transparent Ce:YAG ceramic phosphors for white LED, Opt. Mater.,2011,33(5),688-691.
    [31]Yongming Zhang, Hongming Yu, Synthesis of YAG powders by the co-precipitation method, Ceram. Int.,2009,35(5),2077-2081.
    [32]R. Singh, R. K. Khardekar, A. Kumar, and D. K. Kohli, Preparation and characterization of nanocrystalline Nd:YAG powder, Mater. Lett.,2007,61,921-924.
    [33]Jiang Li, Yubo Pan, Fagui Qiu, Yusong Wu, Wenbin Liu, and Jingkun Guo, Synthesis of nanosized Nd:YAG powders via gel combustion, Ceram. Int.,2007, 33(6),1047-1052.
    [34]D. R. Messier, and G. E. Gazza, Synthesis of MgAl2O4 and Y3Al5O12 by thermal decomposition of hydrated nitrate mixture, Am. Ceram. Soc. Bull.1072,51(9), 692-694.
    [35]V. B. Gusshkova, V. A. Krzhizhanovskaya, O.N. Egorova, Y. P. Udalov, and L. P. Kachalova, Interaction of yttrium and aluminum oxides, Inorg. Mater.,1983,19(1), 80-84.
    [36]X. L. Du, Y. Q. Wang, X. H. Su, and J. G. Li, Influences of pH value on the microstructure and phase transformation of aluminum hydroxide, Powder Tech.,2009, (1),40-46.
    [37]L. Y. He, and N. P. Li, Research on mechanism of preparation of crystalline yttrium carbonate by precipitation of ammonium bicarbonate, Rare Metal Cement. Carb.,2002,30(1),1-5.
    [38]Z. G. Huang, X. D. Sun, Z. M. Xiu, S. W. Chen, and C. T. Tsai, Precipitation synthesis and sintering of yttria nanopowders, Mater. Lett.,2004,58(15),2137-2142.
    [39]J. G. Li, T. Ikegami, J. H. Lee, T. Mori, and Y. Yajima, Reactive yttrium aluminate garnet powder via co-precipitation using ammonium hydrogen carbonate as the precipitant, J. Mater. Res.,2000,15(9),1864-1867.
    [1]A. K. Pradhan, K. Zhang, and G. B. Loutts, Synthesis of neodymium-doped yttrium aluminum garnet (YAG) nanocrystalline powders leading to transparent ceramics, Mater. Res. Bull.,2004,39(9) 1291-1298.
    [2]Yongming Zhang, Hongming Yu, Synthesis of YAG powders by the co-precipitation method, Ceram. Int.,2009,35(5),2077-2081.
    [3]R. Singh, R. K. Khardekar, A. Kumar, and D. K. Kohli, Preparation and characterization of nanocrystalline Nd:YAG powder, Mater. Lett.,2007,61,921-924.
    [4]Jiang Li, Yubo Pan, Fagui Qiu, Yusong Wu, Wenbin Liu, and Jingkun Guo, Synthesis of nanosized Nd:YAG powders via gel combustion, Ceram. Int.,2007, 33(6),1047-1052
    [5]H. Yagi, K. Takaichi, K. Ueda, Y. Yamasaki, T. Yanagitani, and A. A. Kaminskii, The physical properties of composite YAG ceramics, Laser Phys.,2005,15(9), 1338-1344.
    [6]K. Ueda, J.F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, and A. A. Kaminskii, Scalable ceramic lasers, Laser Phys.,2005,15(7),927-938.
    [7]R. Fedyk, D. Hreniak, W. Lojkoski, W. Strek, H. Matysiak, E. Grzanka, S. Gierlotka, and P. Mazur, Method pf preparation and structural properties of transparent YAG nanoceramics, Opt. Mater.,2007,29(10),1252-1257.
    [8]刘颂豪,激光陶瓷-固体激光工作物质探索的新热点,激光与红外,2005,35(6),385-390.
    [9]S. Kochawattana, A. Stevenson, S. H. Lee, M. Ramirez, V. Gopalan, J. Dumm, and V. K. Castillo, Sintering and grain growth in SiO2 doped Nd:YAG, J. Eur. Ceram. Soc., 2008,28,1527-1534.
    [10]R. Boulesteix, A. Maitre, J. F. Baumarda, Y. Rabinovitch, C. Salle, S. Weber, and M. Kilo, The effect of silica doping on neodymium diffusion in yttrium aluminum garnet ceramics:implications for sintering mechanisms, J. Eur. Ceram. Soc.29 (2009) 2517-2526.
    [11]刘维良,喻佑华,先进陶瓷工艺学,武汉理工大学出版社,2004.8.
    [12]W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics, Second Edition, John Wiley and Sons, Inc.1976.
    [1]M. Nikl, E. Mihokova, J. Pejchal, A. Vedda, Yu. Zorenlo, and K. Nejezchleb, The antisite LuAl defect-related trap in Lu3Al5O12:Ce single crystal, Phys. Staus Solidi b, 2005,242(14), R119-R121.
    [2]V. V. Laguta, M. Nikl, A. Vedda, E. Mihokova, J. Rosa, and K. Blazek, Hole and electron traps in the YAlO3 single crystal scintillator, Phys. Rev. B,2009,80,045114.
    [3]M. Kh. Ashurov, Yu. K. Voronko, V. V. Osiko, A. A. Sobol, and M. I. Timoshechkin, Spectroscopic study of stoichiometry deviation in crystals with garnet structure, Phys. Status Solidi a,1977,42(1),101-110.
    [4]L. Vozhenskaya, Yu. Zorenko, N. Patsagan, and M. Paskovsky, Degree of polarization of radiation of laser-pumped dye lasers with an isotropic resonator, Opt. Spectrosc,1987,80,135-141.
    [5]Yu. V. Zorenko, V. I. Gorbenko, G. B. Stryganyuk, V. N. Kolobanov, D. A. Spasski, K. Blazek, and M. Nikl, Luminescence of excitons and antisite defects in Lu3Al5O12:Ce single crystals and single-crystal films, Optics and Spectroscopy,2005, 99,932-931.
    [6]V. Babin, K. Blazek, A. Krasnikov, K. Nejezchleb, M. Nikl, T. Savikhina, and S. Zazubovich, Luminescence of undoped LuAG and YAG crystals, Phys. Status Solidi c,2005,2(1),97-100.
    [7]R. W. G. Wyckoff, Crystal Structures, Vol.3; p.967. Wiley, New York, London, U.K.
    [8]Y. Zorenko, A. Voloshinovskii, V. Savhyn, T. Voznyak, M. Nikl, K. Nejezchleb, V. Mikhailin, V. Kolobanov, and D. Spasskii, Exciton and antisite.defect-related luminescence in Lu3Al5O12 and Y3Al5O12 garnets, Phys. Status Solidi b,2007,244, 2180-2189.
    [9]J. Dong, and K. Q. Lu, Noncubic symmetry in garnet structures studied using extended x-ray-absorption fine-structure spectra, Phys. Rev. B,1991,43(11), 8808-8821.
    [10]C. Landron, S. Lefloch, M. Gervais, J. P. Coutures, and D. Bazin, Yttrium coordination shell in YAG related structures, Phys. Stat. Sol. b,1996,196,25-31.
    [11]M. M. Kuklja, and R. Pandey, Atomistic modeling of native ooint defects in yttrium aluminum garnet crystals, J. Am. Ceram. Soc.,1999,82(10),2881-2886.
    [12]A. P. Patel, M. R. Levy, R. W. Grimes, R. M. Gaume, R. S. Frigelson, K. J. McClellan, and C. R. Stanek, Mechanisms of nonstoichiometry in Y3Al5O12, Appl. Phys. Lett.,2008,93,191902.
    [13]B. Liu, M. Gu, X. L. Liu, S. M. Huang, and C. Ni, Formation energies of antisite defects in Y3Al5012:A first-principles study, Appl. Phys. Lett.,2009,94,121910.
    [14]H. M. Rietveld, Line profiles of neutron powder diffraction peaks for structure refinement, Acta Cryst,1967,22,151-152.
    [15]H. M. Rietveld, A profile refinement method for nuclear and magnetic structures, Journal of Applied Crystallography,1969,2,65-71.
    [16]A. C. Larson, R. B. Von Dreele, General Structure Analysis System, Los Alamos National Laboratory Report LAUR,2000,86-748.
    [17]B. H. Toby, EXPGUI, a graphical user interface for GSAS, J. Appl. Cryst.,2001, 34,210-213.
    [18]W. C. Hamilton, Significance tests on the crystallographic R factor, Acta Cryst., 1965,18,502-510.
    [19]A. B. Munoz-Garcia, E. Artacho, and L. Seijo, Atomistic and electronic structure of antisite defects in yttrium aluminum garnet:Density-functional study, Phys. Rev. B, 2009,80(1),014105.
    [20]F. Euler, and J. A. Bruce, Oxygen coordinates of compounds with garnet structure, Acta Crystallogr.,1965,19,971-978.
    [21]A. Emiraliev, A. G. Kocharov, R. V. Bakradze, V. Karimov, and Z. I. Ahmetzhanov, The neutron diffraction redefinition of the coordinates of the atoms of oxygen in yttrio-aluminum garnet, Kristallographie,1976,21,211-213.
    [22]J. B. Nelson, D. P. Riley, An experimental investigation of the extrapolation methods in the derivation of accurate unit-cell dimensions of crystals, Proc. Phys. Soc,1945,57,160-177.
    [23]H. W. King, and E. A. Payzant, An experimental examination of error function for Bragg-Brentano powder diffractometry, Adv. X-ray Anal.,1993,36,663-670.
    [24]S. Cava, S. M. Tebcherani, I. A. Soouza, S. A. Pianaro, C. A. Paskocimas, E. Longo, and J. A. Varela, Structural characterization of phase transition of Al2O3 nanopowders obtained by polymeric precursor method, Mater. Chem. Phys.,2007, 103,394-399.
    [25]C. Pecharroman, I. Sobrados, J. E. Iglesias, T. Gonzalez-Carreno, and J. Sanz, Thermal evolution of transitional aluminas followed by NMR and IR spectroscopies, J. Phys. Chem. B,1999,103,6160-6170.
    [26]K. Sohlberg, S. J. Pennycook, and S. T. Pantelides, Hydrogen and the structure of the transition aluminas, J. Am. Ceram. Soc.,1999,121,7493-7499.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700