用户名: 密码: 验证码:
掺杂结合能带结构调控优化n型Mg_2Si_(1-x)Sn_x基材料热电性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中温领域(500~900K)热电材料可适用于汽车尾气废热、工厂废热等工业余废热的热电发电回收利用,有望大幅提高化石能源的利用率,其研究和开发对我国节能减排具有重要战略意义。Mg2Si1-xSnx基热电材料,是一类重要的中温热电材料,具有原料蕴藏丰富、价格低廉、不含有稀缺Te元素、组成元素无毒和比重小等优点,近年来其研究受到国际上的广泛关注。对于n型Mg2Si1-xSnx基热电材料,目前其热电性能还比较低,最大热电优值ZT约为1.1。限制这类材料热电性能提高的主要原因是Mg含量难以精确控制、Mg的缺失和过量对热电性能的影响规律还缺乏深刻认识,以及载流子浓度和能带结构对热电性能的影响规律还缺乏系统深入的研究。此外,材料在高温下的长期热稳定性是其能否应用的关键因素,对此还缺乏相关系统的研究。
     本研究针对n型Mg2Si1-xSnx基固溶体研究存在的上述问题,拟通过改进固相反应的合成工艺实现对Mg含量的精确控制,研究Mg含量偏离化学计量比对n型Mg2Si1-xSnx基材料中缺陷结构、电子浓度和热电性能的影响规律;采用Sb和Bi掺杂并结合Mg含量调节优化Mg2Si1-xSnx基固溶体材料的电子浓度,研究电子浓度对热电性能的影响规律;通过能带结构的理论计算和系统的实验研究揭示Sn/Si比对导带结构的影响规律及热电性能影响的物理机制,通过能带结构调控优化n型Mg2Si1-xSnx基固溶体材料的电输运性能;并对其热稳定性进行了初步探索,其主要研究结果如下:
     对Mg含量结合Sb掺杂量对n型Mg2Si1-xSnx基固溶体中电子浓度、缺陷结构种类和浓度,以及热电性能的系统研究表明,过量的Mg可在n型Mg2Si1-xSnx固溶体基体中引入间隙Mg和Sn/Si空位等缺陷结构,这些缺陷结构作为电子施主能显著提高材料的电子浓度,并明显优化材料的电导率和功率因子。在Sb掺杂基础上,Mg的含量增加7-12%可使n型Mg2Si1-xSnx基固溶体的电子浓度和电导率提高2-10倍;然而,在不掺杂Sb条件下,Mg含量的改变对材料电子浓度的调控作用很有限。热性能研究表明,Mg含量偏离化学计量比对n型Mg2Si1-xSnx基固溶体的晶格热导率没有明显影响。
     对Sb、Bi掺杂结合Mg的过量对n型Mg2Si1-xSnx基固溶体电子浓度和热电性能的优化研究表明,掺杂0~4%的Sb/Bi元素可使n型Mg2Si1-xSnx基固溶体的电子浓度、电导率和功率因子提高1~2个数量级,Sb和Bi的掺杂对电性能的调控作用基本等同。在高掺杂量条件下,随着Sb/Bi掺杂量的增加,n型Mg2Si1-xSnx基固溶体材料的电子浓度趋于饱和;因而,为使n型Mg2Si1-xSnx的电子浓度和功率因子得到有效调节和优化,在Sb/Bi掺杂的基础上需要结合Mg含量的适当过量。Sb的掺杂并不能明显降低n型Mg2Si1-xSnx基材料室温以上的晶格热导率,而Bi的掺杂对晶格热导率的抑制效果略优于Sb。由于Bi掺杂在大幅优化n型Mg2Si1-xSnx基材料电性能的同时能较明显降低晶格热导率,Mg2Si0.4Sn0.6基固溶体在Bi掺杂量为3%时获得最高热电优值ZT达1.40。
     对Mg2Si1-xSnx固溶体能带结构的第一性原理计算和系统的电性能研究结果表明,Mg2Si1-xSnx固溶体的导带底由重导带和轻导带构成,随Sn/Si比的增加,轻重导带逐渐收敛,且在x=0.65~0.68之间发生简并,这引起n型Mg2Si1-xSnx基固溶体中载流子有效质量、Seebeck系数和功率因子的显著提升。x=0.7时Mg2Si1-xSnx固溶体的轻重导带近乎发生简并,载流子有效质量取得显著增加的同时载流子迁移率并没有降低,因而n型Mg2Si0.3Sn0.7基固溶体具有所有Sn/Si比组分中最高的Seebeck系数和功率因子。由于x=0.6组分获得Mg2Si1-xSnx中最低的晶格热导率,n型Mg2Si1-xSnx得到最优热电优值ZT的组分范围为x=0.6~0.7,最高ZT值在高温下可达1.30~1.40。系统实验研究证实,n型Mg2Si1-xSnx基固溶体在电子浓度处于1.6×1020     对热电性能较优异的x=0.5、0.6、0.65和0.70的n型Mg2Si1-xSnx基固溶体在573~773K下进行了1~3周的退火研究,结果表明,Mg2Si1-xSnx基固溶体的物相和热电性能的稳定性与Mg2Si1-xSnx赝二元相图的非混溶间隙区域密切相关。尽管不同Sn/Si比的Mg2Si1-xSnx基固溶体的热电优值ZT在退火后整体上没有衰减,x=0.5和0.6的组分固溶体的物相、电性能和热性能在退火前后有较明显的变化。处于非混溶间隙区域的Mg2Si0.5Sn0.5基固溶体在773K长时间退火后发生了分相,但电性能和热性能在退火前后基本不变。处于非混溶间隙区域边界的Mg2Si0.4Sn0.6基固溶体的电性能和热性能在退火前后发生较明显的改变。基本处于或完全处于相图连续固溶区域的x=0.65和0.7的Mg2Si1-xSnx基固溶体在退火过程中物相很稳定,同时电性能和ZT值没有衰减或是略有提升。综上所述,x=0.65和0.7的Mg2Si1-xSnx组分固溶体同时具有优异的热电性能和热稳定性,将极有可能适用于500~800K范围的热电发电应用。
Medium-temperature (500-900K) thermoelectric materials could be used for reusing the exhaust heat of automobile and industrial waste heat and converting them into available electricity, and were prospective to increase the conversion efficiency of the fossil energy. Thus the investigation and development of these materials were strategically important for saving energy and reducing carbon emission in our country. Being one type of important medium-temperature thermoelectric materials, Mg2Si1-xSnx-based solid solutions have attracted considerable interest as prospective thermoelectric materials for waste heat recovery because of their abundant and low cost chemical constituents, not containing scarce Te element, environmentally friendly, low density and so on. The thermoelectric properties of n-type Mg2Si1-xSnx based solid solutions were still relatively low up till now, and their highest ZT value was about1.1. The main reasons that limited the enhancement of ZT values of these materials were listed below:Mg content hard to control precisely and its influence on thermoelectric properties remaining unknown, the carrier concentration and band structure lack of enough optimization. In addition, the investigation of long-term thermal stability of these materials at high temperatures was one of the key points for the application of thermoelectric power generation, however there also lacked related systematic study of thermal stability of these materials at the moment.
     Based on the above difficulties, in this research n-type Mg2Si1-xSnx based solid solutions were adopted for the following issues:a) realizing the precise control of Mg content and exploring the influences on point defects, electron concentration and thermoelectric properties of n-type Mg2Si1-xSnx caused by Mg content deviating from its stoichiometric amount; b) adjusting the electron concentration through Sb or Bi doping and the variation of Mg content, and investigating the effect of electron concentration on thermoelectric properties of n-type Mg2Si1-xSnx; revealing the correlation between conduction band structure and electrical properties by means of band structure calculation along with systematical experimental study, and optimizing the electrical properties of n-type Mg2Si1-xSnx through modifying and optimizing their band structure; a primary exploration of thermal stability for n-type Mg2Si1-xSnx based solid solutions. The major research results were listed below:
     The effective management of the compositions for Mg2Si1-xSnx based solid solutions, especially for the Mg amount, was realized by optimizing the synthesis process and by fixing the parameters of the process. The influence of Mg content combined with Sb doping amount on the electron concentration, point defects and thermoelectric properties of n-type Mg2Si1-xSnx based materials were investigated in this research and showed that, the excess of Mg could introduce intrinsic points defects like interstitial Mg and vacancies Si in the crystal lattice which behaved as the electrons donor and significantly enhanced the electron concentration and power factor of these materials. On the basis of Sb doping, the electron concentration of n-type Mg2Si1-xSnx based solid solutions was increased by2-10times, and by1.3~1.8×1020cm-3with Mg amount increased by7-12%. However, the electron concentration varied slightly with Mg content in the case of non-Sb doping. Thermal properties measurement indicated that, the deviation of Mg content from stoichiometric amount did not affect the lattice thermal conductivity of n-type Mg2Si1-xSnx based materials.
     The influence of Sb/Bi doping on the thermoelectric properties of n-type Mg2Si1-xSnx based solid solutions were discussed in this research. Sb/Bi doping, with the amount in the range of0-4%, could cause an enhancement by one to two orders of magnitude in the electron concentration, the electrical properties as well as the power factor. The regulating action of Bi doping for electrical properties was similar to Sb. Under the condition of heavily-doping, the electron concentration of n-type Mg2Si1-xSnx based materials has nearly reached a saturated point with further increase of Sb/Bi amount. Thus, in order to effectively optimize the electron concentration and power factor of n-type Mg2Si1-xSnx based solid solutions, we not only needed Sb/Bi doping but also needed excess addition of Mg. In addition, Sb doping could not reduce the lattice thermal conductivity of n-type Mg2Si1-xSnx based materials while Bi had larger suppression effect on the lattice thermal conductivity compared to Sb, which was caused by much larger atomic mass of Bi. Due to the large enhancement of electrical properties and somewhat decrease in the lattice thermal conductivity through Bi doping, Mg2Si0.4Sn0.6based solid solution doped with3%Bi possessed the largest ZT value of1.40at high temperatures.
     Band structure calculations based on first-principles-theory and systematic experimental studies indicated that, the edge of light conduction band and heavy conduction band converged in energy with increasing Sn/Si ratio, and degenerated at x=0.65-0.68. The degeneration of conduction band structure would result in an enhancement on density-of-states effective mass and Seebeck coefficient, but had no detrimental impacts on the carrier mobility. Low-temperature electronic heat capacity data and thermoelectric properties measurement results confirmed the converging and degenerating features of the conduction bands. The density-of-states effective mass, Seebeck coefficient and power factor of n-type Mg2Si1-xSnx based solid solutions were enhanced with the increase of Sn/Si ratio, and gained the largest value at Mg2Sio.3Sno.7where two conduction bands nearly degenerated. Due to the lowest lattice thermal conductivity was obtained at Mg2Si0.4Sn0.6, n-type Mg2Si1-xSnx based solid solutions gained the largest ZT values at x=0.6-0.7. Experimental results also revealed that, n-type Mg2Si1-xSnx based solid solutions with different Sn/Si ratio obtained the optimum ZT values at1.6×1020     The investigation of thermal stability of n-type Mg2Si1-xSnx with x=0.5,0.6,0.65and0.70at573~773K for1~3weeks showed that, the thermal stability of these materials was closely connected with the miscibility gap of pseudo-binary phase diagram of Mg2Si-Mg2Sn. The ZT values for these n-type Mg2Si1-xSnx materials remained nearly unchanged or enhanced in some extent in the annealing process. The thermoelectric properties of Mg2Si0.5Sn0.5based solid solutions, which were positioned in the miscibility gap of the phase diagram, did not change after annealing while the phase structure changed in this process. For Mg2Si0.4Sn0.6based solid solutions, the electrical and thermal properties varied a lot before and after annealing while phase structure remained unchanged, resulting from this component situated in the boundary area of the miscibility gap. Due to Mg2Si1-xSnx with x=0.65and0.7nearly or totally positioned in the continuous solid solutions region of the phase diagram, these materials were stable in both the phase structure and thermoelectric properties in the annealing process. Therefore, Mg2Si1-xSnx with x=0.65and0.7were confirmed to possess both the excellent thermoelectric properties and thermal stability, and were most likely to be the best choice in n-type Mg2Si1-xSnx for thermoelectric power generation in the range of500~800K.
引文
[1]T. J. Seebeck.265,1822-1823, Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin.1822.1822-1823,265.
    [2]J. C. Peltier, Ann. Phys. Chim,1834. LV1,371.
    [3]E. Altenkirsch, E. Phys. Z,1909.10,560.
    [4]E. Altenkirsch, E. Phys. Z,1911.12,920.
    [5]D. M. C. M. B. Rowe, Morden Thermoelectricity.1983, Holt Rinchalt and Wiston London,28-33.
    [6]J. B. M. Cadoff. E. Thermoelectric Materials and Device.1961:New York, Reinhold Pub. Corp.84-92.
    [7]G. J. Snyder and T. S. Uresell, Thermoelectric efficiency and compatibility, Physical Review B,2003.91:148301.
    [8]G. S. Nolas, J. Sharp, and H. J. Goldsmid. Thermoelectrics Basic Principles and New Materials Developments. Springer,2001.
    [9]T. M. Tritt. Thermal Conductivity:Theory, Properties and Application, Kluwer Academic Plenum Publishers,2004.
    [10]G. A. Slack, D. M. Rowe. Handbook of Thermoelectrics. CRC Press, Boca Raton, FL,1995.
    [11]H. W. Mayer, I. Mikhail and K. Schubert. Uber einige phasen der Mischungen ZnSbN und CdSbN. Journal of the Less Common Metals,1978.59(1):43-52.
    [12]P. F. Qiu, et al. Effect of antisite defects on band structure and thermoelectric performance of ZrNiSn half-Heusler alloys. Applied Physics Letters,2010.96 (15).
    [13]Yu. C, et al. High-performance half-Heusler thermoelectric materials Hf1-x ZrxNiSnl-ySby prepared by levitation melting and spark plasma sintering. Acta Materialia,2009.57(9):2757-2764.
    [14]W. J. Xie, et al. Synthesis and thermoelectric properties of (Ti,Zr,Hf)(Co,Pd)Sb half-Heusler compounds. Journal of Physics D-Applied Physics:2009.42(23).
    [15]W. J. Xie, Q. Jin and X. F. Tang. The preparation and thermoelectric properties of Ti0.5Zro.25Hfo.25Co1-xNixSb half-Heusler compounds. Journal of Applied Physics, 2008.103(4).
    [16]S. R. Culp, et al. (Zr,Hf)Co(Sb,Sn) half-Heusler phases as high-temperature (> 700 degrees C)p-type thermoelectric materials. Applied Physics Letters,2008.93(2).
    [17]S. R. Culp, et al. Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800 degrees C. Applied Physics Letters,2006.88(4).
    [18]J. Yang, G. P. Meisner and L. Chen. Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds. Applied Physics Letters, 2004.85(7):1140-1142.
    [19]Q. Shen, et al. Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds. Applied Physics Letters,2001.79(25): 4165-4167.
    [20]Y. Xia, et al. Thermoelectric properties of semimetallic (Zr, Hf)CoSb half-Heusler phases. Journal of Applied Physics,2000.88(4):1952-1955.
    [21]M. Zhou, et al. Disorder scattering effect on the high-temperature lattice thermal conductivity of TiCoSb-based half-Heusler compounds. Journal of Applied Physics, 2005.98(1).
    [22]A. F. Ioffe, et al. Semiconductor Thermoelements and Thermoelectric Cooling. Physics Today,1959.12(5):42.
    [23]H. J. Goldsmid, A. R. Sheard and D. A. Wright. The performance of bismuth telluride thermojunctions. Journal of Applied Physics,1959.9(9):365-370.
    [24]M. H. Ettenberg, et al. Improving yield and performance in pseudo-ternary thermoelectric alloys (Bi2Te3)(Sb2Te3)(Sb2Se3). Journal of Crystal Growth,1997.179(3-4):495-502.
    [25]H. W. Jeon, et al. Electrical and thermoelectrical properties of undoped Bi2Te3-Sb2Te3 and Bi2Te3-Sb2Te3-Sb2Se3 single crystals. Journal of Physics and Chemistry of Solids, 1991.52(4):579-585.
    [26]G. Q. Zhang, et al. Large scale highly crystalline Bi2Te3 nanotubes through solution phase nanoscale Kirkendall effect fabrication. Chemical Communications,2009(17): 2317-2319.
    [27]Poudel, B, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science,2008.320(5876):634-638.
    [28]Y. Ma, et al. Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks. Nano Letters,2008.8(8): 2580-2584.
    [29]H. Rauh, et al. Generalized phonon density of states of the layer compounds Bi2Se3, Bi2Te3, Sb2Te3 and Bi2(Teo.5Seo.5)3, (Bio.5Sbo.5)2Te3. Journal of Physics C. Solid State Physics.14:2705.
    [30]W. J. Xie, et al. Nanostructure and thermoelectric properties of p-type Bio.5Sb1.5Te3 compound prepared by melt spinning technique. Proceedings ICT 07 Twenty-Sixth International Conference on Thermoelectrics,2008:23-26.
    [31]W. J. Xie, et al. Identifying the Specific Nanostructures Responsible for the High Thermoelectric Performance of (Bi,Sb)2Te3 Nanocomposites. Nano Letters,2010.10: 3283-3289.
    [32]H. Lee, et al. Effects of nanoscale porosity on thermoelectric properties of SiGe. Journal of Applied Physics,2010.107(9).
    [33]A. J. Minnich, et al. Modeling study of thermoelectric SiGe nanocomposites. Physical Review B,2009.80(15).
    [34]N. Mingo, et al. "Nanoparticle-in-Alloy" Approach to Efficient Thermoelectrics:Silicides in SiGe. Nano Letters,2009.9(2):711-715.
    [35]G.Joshi, et al. Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-type Silicon Germanium Bulk Alloys. Nano Letters,2008.8(12):4670-4674.
    [36]D. M. Rowe. Electron mobility in heavily doped, hot pressed silicon germanium alloys. Applied Energy,1980.6(6):455-462.
    [37]Gaur N. K. S. Phonon thermal conductivity of heavily doped hot-pressed p-type Si-Ge alloys at high temperatures. Physica B,1978.93(2):212-218.
    [38]G. S. Nolas, G. A. Slack and S. B. Schujman. Semiconductor clathrates:A phonon glass electron crystal material with potential for thermoelectric applications. Recent Trends in Thermoelectric Materials Research I,2001.69:255-300.
    [39]Nolas G. S. Semiconductor clathrates:a PGEC system with potential for thermoelectric applications. Materials Research Society Symposium-Proceedings,1999.545:435-442.
    [40]G. S. Nolas, Cohn J. L. and Nelson E. Transport properties of tin clathrates.18th international conference on thermoelectrics. Baltimore, MD, USA:IEEE, Piscataway, NJ, USA,1999.493-495.
    [41]Iversen B. B, Palmqvist A. E. C. Cox D. E. Nolas G. S. Stucky G. D. Blake N. P. and Metiu H. Why are Clathrates Good Candidates for Thermoelectric Materials? Journal of Solid State Chemistry,2000.149(2):455-458.
    [42]H. J. Goldsmid and G. S. Nolas A review of the new thermoelectric materials.20th international conference on thermoelectrics, Beijing,2001.1-6.
    [43]D. Parker and D. J. Singh High-temperature thermoelectric performance of heavily doped PbSe. Physical Review B.2010.82(3).
    [44]Ni, J. E. et al. Room temperature Young's modulus, shear modulus, Poisson's ratio and hardness of PbTe-PbS thermoelectric materials. Materials Science and Engineering B-Advanced Functional Solid-State Materials,2010.170(1-3):58-66.
    [45]J. Q. He et al. Microstructure-Lattice Thermal Conductivity Correlation in Nanostructured PbTe0.7S0.3 Thermoelectric Materials. Advanced Functional Materials,2010.20(5): 764-772.
    [46]Y. Gelbstein et al. Highly Efficient Ge-Rich GexPb1-xTe Thermoelectric Alloys. Journal of Electronic Materials,2010.39(9):2049-2052.
    [47]H. Lin, et al. Phase separation and nanostructuring in the thermoelectric material PbTe1-xSx studied using the atomic pair distribution function technique. Physical Review B,2009.80(4).
    [48]X. Ke, et al. Microstructure and a nucleation mechanism for nanoprecipitates in PbTe-AgSbTe2. Phys Rev Lett,2009.103(14):145-502.
    [49]J. He, et al. Role of self-organization, nanostructuring and lattice strain on phonon transport in NaPb(18-x)Sn(x)BiTe(20) thermoelectric materials. J Am Chem Soc, 2009.131(49):17828-35.
    [50]S. N. Girard, et al. Investigation of Solid-State Immiscibility and Thermoelectric Properties of the System PbTe-PbS. Materials and Devices for Thermal-to-Electric Energy Conversion,2009.1166:59-64.
    [51]S. H. Yang, et al. Nanostructures in high-performance (GeTe)(x)(AgSbTe2)(100-x) thermoelectric materials. Nanotechnology,2008.19(24).
    [52]S. N. Girard, et al. Thermoelectric properties of nanostructured (Pbl-mSnmTe)(1-x) (PbS)(x) with Pb and Sb precipitates. Thermoelectric Power Generation,2008.1044: 101-106.
    [53]Y. Gelbstein, et al. Annealing effects on powder metallurgy based Pb1-xSnxTe materials for thermoelectric applications. High-Performance Ceramics Ⅳ, Pts 1-3,2007:860-863.
    [54]Y. Gelbstein, Z. Dashevsky, and M. P. Dariel. Powder metallurgical processing of functionally graded p-Pb1-xSnxTe materials for thermoelectric applications. Physica B-Condensed Matter,2007.391(2):256-265.
    [55]P. F. P. Poudeu, et al. Effects of antimony on the thermoelectric properties of the cubic Pb9.6SbyTe10-xSex materials. Materials and Technologies for Direct Thermal-to-Electric Energy Conversion,2006.886:195-200.
    [56]Y. Gelbstein, et al. Development of p-Pbl-xSnxTe functionally graded materials. ICT'06: XXV International Conference on Thermoelectrics. Proceedings, 2006:418-421.
    [57]Cui, J. L. Preparation and electrical properties of ternary compound (PbTe)(1-x)(SnTe)(x) with nanocrystallines. High-Performance Ceramics Iii, Pts 1 and 2,2005.280-283: 389-392.
    [58]S. V. Ovsyannikov and V. V. Shchennikov Thermomagnetic and thermoelectric properties of semiconductors (PbTe, PbSe) at ultrahigh pressures. Physica B-Condensed Matter,2004.344(1-4):190-194.
    [59]N. Bouad, et al. Mechanical alloying of a thermoelectric alloy:Pb0.65Sn0.35Te. Journal of Solid State Chemistry,2004.177(1):221-226.
    [60]H. Kohri, I. A. Nishida, and I. Shiota Improvement of thermoelectric properties for n-type PbTe by adding Ge. Functionally Graded Materials Vii,2003.423-4:381-384.
    [61]J. L. Cui and X. B. Zhao. The design and properties of pseudobinary alloys (PbTe)(1-x)-(SnTe)(x) with gradient composition. Materials Letters,2003.57(16-17): 2466-2471.
    [62]J. L. Cui and X. Qian. Optimization and properties of graded pseudo-binary alloys (PbTe)(1-x)-(SnTe)(x) prepared by spark plasma sintering. Functionally Graded Materials Vii,2003.423-4:367-371.
    [63]J. L. Cui and X.B. Zhao, Thermoelectric properties of Ag doped pseudo-binary alloys (PbTe)(1-x)(SnTe)(x). Rare Metal Materials and Engineering,2002.31(6):415-418.
    [64]T. Tanaka, S. Nakamura. Observation of Distinct Metallic Conductivity in NaCo204. J. Appl. Phys., (1994)33:581-582.
    [65]I. Terasaki, Y. Sasago and K. Uchinokura Large thermoelectric power in NaCo2O4 single crystals. Physical Review B,1997.56(20):R12685.
    [66]T. Nagira, M. Ito, S. Katsuyama, K. Majima and H. Nagai Thermoelectric properties of (Na1-yMy)xCo2O4 (M=K, Sr, Y, Nd, Sm and Yb; y=0.01-0.35). Journal of Alloys and Compounds,2003.348(1-2):263-269.
    [67]H. Yakabe, K. Fujita, K. Nakamura. and K. Kikuchi Thermoelectric properties of NaxCo02(x approximately equals 0.5) system; focusing on partially substituting effect.17th International Conference on Thermoelecrics. Nagoya, Jpn:IEEE, Piscataway, NJ, USA,1998:551-558.
    [68]K. Fujita, T. Mochida and K. Nakamura High-temperature thermoelectric properties of NaxCoO2-λ single crystals. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,2001.40(7):4644-4647.
    [69]M. Ito, T. Nagira, D. Furumoto, S. Katsuyama and H. Nagai Synthesis of NaxCo2O4 thermoelectric oxides by the polymerized complex method. Scripta Materialia, 2003.48(4):403-408.
    [70]S. Li. R. Funahashi, I. Matsubara. H. Yamada. K. Ueno and S. Sodeoka Synthesis and thermoelectric properties of the new oxide ceramics Ca3-xSrxCo4O9+λ(x=0.0-1.0). Ceramics International,2001.27(3):321-324.
    [71]B. C. Sales, D. Mandrus and R.K. Williams. Filled Skutterudite Antimonides:A New Class of Thermoelectric Materials. Science,1996.272(5266):1325-1328.
    [72]J. Yang, et al. Solubility study of Yb in n-type skutterudites YbxCo4Sb12 and their enhanced thermoelectric properties. Physical Review B,2009.80(11).
    [73]H. Li, et al. High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase. Applied Physics Letters,2009.94(10).
    [74]D. Li, et al. Synthesis and high temperature thermoelectric properties of calcium and cerium double-filled skutterudites Ca0.1CexCo4Sb12. Journal of Physics D-Applied Physics,2009.42(10).
    [75]Z. Xiong, et al. High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy. Acta Materialia,2010.58(11): 3995-4002.
    [76]X. Y. Zhao, et al. Synthesis of YbyCo4Sb12/Yb2O3 composites and their thermoelectric properties. Applied Physics Letters,2006.89(9).
    [77]D. T. Morelli, T. Caillat and J. Fleurial Low-temperature transport of p-type CoSb3. Physical Review B,1995.51:9622-9628.
    [78]P. C. Zhai, W. Y. Zhao, Y. Li, L. S. Liu, X. F. Tang, Q. J. Zhang and M. Niino Nanostructures and enhanced thermoelectric properties in Ce-filled skutterudite bulk materials. Applied Physics Letters,2006.89(5):052111.
    [79]X. F. Tang, L. D. Chen, T. Goto, T. Hirai and R. Z. Yuan Synthesis and thermoelectric properties of filled skutterudite compounds CeyFexCo4-xSb12 by solid state reaction. Journal of Materials Science,2001.36(22):5435-5439.
    [80]B. C. Sales, B. C. Chakoumakos and D. Mandrus Thermoelectric properties of thallium-filled skutterudites. Physical Review B,2000,61(4):2475-2481.
    [81]L. D. Hicks and M. S Dresselhaus. Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B,1993.47(19):12727.
    [82]T. Koga, O. Rabin and M. S. Dresselhaus Thermoelectric figure of merit of Bi/Pb1-xEuxTe superlattices. Physical Review B,2000.62(24):16703-16706.
    [83]R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O'Quinn Thin-film thermoelectric devices with high room-temperature figures of merit. Nature,2001.413(6856):597-602.
    [84]A. F Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling.1957. Infosearch, London.
    [85]J. Jiang, et al. Effect of TeI4 content on thermoelectric properties of n-type Bi2(Te,Se)3 materials prepared by spark plasma sintering. High-Performance Ceramics Iii, Pts 1 and 2,2005.280-283:393-396.
    [86]J. Jiang, et al. Thermoelectric properties of p-type (Bi2Te3)(x)(Sb2Te3)(1-x) crystals prepared via zone melting. Journal of Crystal Growth,2005.277(1-4):258-263.
    [87]K. F. Hsu, et al. Cubic AgPbmSbTe2+m:Bulk Thermoelectric Materials with High Figure of Merit. Science,2004.303:818-821.
    [88]J. P. Heremans, et al. Enhancement of Thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science,2008.321:554-557.
    [89]K. Biswas, et al. Strained Endotaxial Nanostructures with High Thermoelectric Figure of Merit, Nature Chemistry,2011.3:160-166.
    [90]Y. Z. Pei, et al. Convergence of Electronic Bands for High Performance Bulk Thermoelectrics. Nature,2011.66(473):66-69.
    [91]X. Shi, W. Zhang, L. D. Chen, et al. Filling fraction limit for intrinsic voids in crystals: Doping in skutterudites. Physical Review Letters,2005.95(18):4.
    [92]X. Shi, W. Zhang, L. D. Chen, et al. Thermodynamic analysis of the filling fraction limits for impurities in CoSb3 based on ab initio calculations. Acta Materialia, 2008.56(8):1733-1740.
    [93]X. Shi, et al. Multiple-filled skutterudites:High thermoelectric figure of merit through separately optimizing electrical and thermal transports. Journal of the American Chemistry Society,2011.133(20):7837-7846.
    [94]V. K. Zaitsev, M. I. Fedorov, I. S. Eremin and E. A. Gurieva. Thermoelectric Handbook:Macro to Nano. D. M. Rowe, CRC Taylor & Francis,2006.
    [95]G. A. Slack, In CRC Handbook of Thermoelectrics. D. M. Rowe (CRC Press:Boca Raton, FL,1995)406.
    [96]V. K. Zaitsev, et al. Highly Effective Mg2Si1-xSnxThermoelectrics. Physical Review B,2006.74:045207.
    [97]Y. Isoda, et al. Thermoelectric Properties of Sb-doped MgaSi0.5Sn0.5. Proceedings of the 25th International Conference on Thermoelectrics,2006:406.
    [98]Q. Zhang, et al. High Figures of Merit and Natural Nanostructures in Mg2Sio.4Sno.6 based Thermoelectric Materials. Appllied Physics Letters,2008.93:102109.
    [99]W. Liu, X. F. Tang and J. Sharp. Low-temperature Solid State Reaction Synthesis and Thermoelectric Properties of High-performance and Low-cost Sb-doped Mg2Sio.6Sno.4. Journal of Physics D:Applied Physics,2010:085406.
    [100]W. Liu, X. F. Tang, H. Li, J. Sharp, X. Y. Zhou and C. Uher. Optimized thermoelectric properties of Sb-doped Mg2(1+Z)Si0.5-ySn0.5Sby through adjustment of the Mg content. Chemistry of Materials,2011.23:5256-5363.
    [101]W. Liu, X. J. Tan, K. Yin, H. J. Liu, X. F. Tang, J. Shi, Q. J. Zhang and C. Uher. Convergence of Conduction Bands as a means of Enhancing Thermoelectric Performance of n-type Mg2Si1-xSnx Solid Solutions. Physical Review Letters,2012.
    [102]I. Aoyama, M. I. Fedorov, V. K. Zaitsev, et al. Effects of Ge Doping on Microstructure of MnSi in MnSi1.73 and on their Thermoelectric Transport Properties. Japanese Journal of Applies Physics Part 1-Regular Paper Brief Communications & Review Papers,2005.44: 8562-8570.
    [103]W. H. Luo, H. Li, Y. G. Yan, Z. B. Lin, X. F. Tang, Q. J. Zhang and C. Uher. Rapid Synthesis of High Thermoelectric Performance Higher Manganese Silicide with in-situ Formed Nano-phase of MnSi. Intermetallics,2011.19(3):404-408.
    [104]I. Jung, D. Kang, W. Park, N. Kim. Thermodynamic modeling of the Mg-Si-Sn system. CALPHAD,2007.31(2):192-200.
    [105]I. Jung and J. Kim. Thermodynamicmodeling of the Mg-Ge-Si, Mg-Ge-Sn, Mg-Pb-Si and Mg-Pb-Sn systems. Journal of Alloys and Compounds,2010,494(1-2):137-147.
    [106]P.M. Lee. Electronic structure of magnesium silicide and magnesium germanide. Physical Review,1964.135:A4111-A1114.
    [107]J. L. Corkill and M. L. Cohen. Structural, Bonding, and Electronic Properties of ⅡA-Ⅳ Antifluorite Compounds. Physical Review B,1993.48:17138-17144.
    [108]G. H. Grosch and K. J. Range. Studies on AB2-type Intermetallic Compounds, I. Mg2Ge and Mg2Sn:Single-crystal Structure Refinement and ab Initio Calculations. Journal of Alloys and Compounds,1996.235(2):250-255.
    [109]P. Baranek, J. Schamps and I. Noiret. Ab Initio Studies of Electronic Structure, Phonon Modes, and Elastic Properties of Mg2Si. Journal of Physical Chemistry B,1997.101: 9147-9152.
    [110]V. K. Zaitsev, et al. Thermoelectrics of n-type With ZT>1 Based on Mg2Si-Mg2Sn Solid Solutions.24th International Conference on Thermoelectrics,2006.
    []V. K. Zaitsev, et al. Some Features of the Conduction Band Structure, Transport and Optical Properties of n-type Mg2Si-Mg2Sn Alloys.21th International Conference on Thermoelectrics,2002.
    [112]J. Tobola, S. Kaprzyk and H. Scherrer. Mg-Vacancy-Induced Semiconducting Properties in Mg2Si1-xSbx from Electronic Structure Calculations. Journal of Electronic Materials, 2010.
    [113]H. Ihou-Mouko, C. Mercier, J. Tobola, G. Pont and H. Scherrer. Thermoelectric Properties and Electronic Structure of p-type Mg2Si and Mg2Sio.6Geo.4 Compounds Doped with Ga. Journal of Alloys and Compounds,2011.509(23):6503-6508.
    [114]M. I. Fedorov, V. K. Zaitsev, M. V. Vedernikov. Some Peculiarities of Development of Efficient Thermoelectrics Based on Silicon Compounds.25th International Conference on Thermoelectrics,2006.
    [115]J. Tani, H. Kido. Thermoelectric Properties of Al-doped Mg2Si1-xSnx (x≤0.1). Journal of Alloys and Compounds,2008.466:335-340.
    [116]J. Tani, H. Kido. Thermoelectric Properties of Sb-doped Mg2Si Semiconductors. Intermetallics,2007.15:1202-1207.
    [117]J. Tani, H. Kido. Thermoelectric Properties of Bi-doped Mg2Si Semiconductors. Physica B,2005.364:218-224.
    [118]Y. Isoda, et al. The Effect of Bi doping on Thermoelectric Properties of Mg2Sio.5Sno.5. Proceedings of the 26th International Conference on Thermoelectrics, 2007:251.
    [119]W. J. Luo, et al. Fabrication and Thermoelectric Properties of Mg2Si1-xSnx(0≤x≤1.0) Solid Solutions by Solid State Reaction and Spark Plasma Sintering. Material Science and Engineer B,2009.157(1-3):96-100.
    [120]S. Bux, M. T. Yeung, E. S. Toberer, G. J. Snyder, R. B. Kaner and J. P. Fleurial. Mechanochemical Synthesis and Thermoelectric Properties of High Quality Magnesium Silicide. Journal of Materials Chemistry,2011.21:12259-12266.
    [121]H. L. Gao, T. J. Zhu, X. X. Liu, L. X. Chen and X. B. Zhao. Flux Synthesis and Thermoelectric Properties of Eco-friendly Sb doped Mg2Sio.5Sno.5 Solid Solutions for Energy Harvesting. Journal of Materials Chemistry.2011.21:5933-5937.
    [122]Q. Zhang, X. B. Zhao, H. Yin, T. J. Zhu. Thermoelectric Performance of Mg2-xCaxSi Compounds. Journal of Alloys and Compounds,2007.464(1-2):9-12.
    [123]Q. Zhang, J. He, X. B. Zhao, S. N. Zhang, T. J. Zhu, H. Yin and T. M. Tritt. In Situ Synthesis and Thermoelectric Properties of La-doped Mg2(Si, Sn) Composites. Journal of Physics D:Applied Physics,2008.41:185103.
    [124]Q. Zhang, T. J. Zhu, A. J. Zhou, H. Yin and X. B. Zhao. Preparation and Thermoelectric Properties of Mg2Si1-xSnx. Phycial Script,2007. T129:123-126.
    [125]Q. Zhang, H. Yin, X. B. Zhao, J. He,X. H. Ji, T. J. Zhu and T. M. Tritt. Thermoelectric Propertiesof n-type Mg2Si0.6-ySbySno.4 Compounds. Physical Status Solidi (a),2008.
    [126]Z. L. Du, T. J. Zhu, et al. Roles of Interstitial Mg in Improving Thermoelectric Properties of Sb-doped Mg2Sio.4Sn0.6 Solid Solutions.2012.
    [127]G. S. Nolas, D. Wang and M. Beekman. Transport Properties of Polycrystalline Mg2Si1-ySby(0≤y≤0.04). Physical Review B,2007.76:235204.
    [128]W. Liu, Q. Zhang, X. F. Tang, H. Li and J. Sharp. Thermoelectric Properties of Sb-doped Mg2Sio.3Sno.7. Journal of Electronic Materials,2011.40(5):1062-1066.
    [129]Y. Noda, H. Kon, Y. Furukawa, N. Otsuka, I. A. Nishida and K. Masumoto. Preparation and Thermoelectric Properties of Mg2Si1-xGex (x=0-0.4) Solid Solution Semiconductors. Materials Transactions, JIM 1992.33(9):845-850.
    [130]Y. Noda, H. Kon, Y. Furukawa, I. A. Nishida and K. Masumoto. Temperature Dependence of Thermoelectric Properties of Mg2Sio.6Ge0.4. Materials Transactions, JIM 1992.33(9):851-855.
    [131]G. N. Isachenko, V. K. Zaitsev, M. I. Fedorov, et al. The Study of P-type Material Based on Sn-rich Mg2Si-Mg2Sn Solid Solution. In Proceedings of the 26th International Conference onThermoelectrics,2007.248-50.
    [132]M. I. Fedorov, V. K. Zaitsev, G. N. Isachenko, et al. Kinetic Properties of p-type Mg2Ge0.4Sn0.6 Solid Solutions. In Proceedings of the 24th International Conference on Thermoelectrics,2005.110-113.
    [133]M. I. Fedorov, V. K. Zaitsev, I. S. Eremin, et al. Transport Properties of Mg2X0.4Sn0.6 Solid Solutions (X= Si, Ge)with p-type Conductivity. Phys Solid State,2006.48: 1486-1890.
    [134]N. Savvides and H. Y. Chen. Thermal Conductivity and Other Transport Properties of Mg2Sn:Ag Crystals. Journal of Electronic Materials,2010.
    [135]H. Y. Chen and N. Savvides. Microstructure and Thermoelectric Properties of n-and p-type doped Mg2Sn Compounds Prepared by the Modified Bridgman Method. Journal of Electronic Materials,2009.38(7):1056-1060.
    [136]T. Sakamoto, T. Iida, A. Matsumoto et al. Thermoelectric Characteristics of a Commercialized Mg2Si Source Doped with Al, Bi, Ag, and Cu. Journal of Electronic Materials,2010.39(9):1708-1713.
    [137]Y. Isoda, S. Tada, T. Nagai, et al. Thermoelectric Properties of p-type Mg2.ooSio.25Sno.75 with Li and Ag Double Doping. Journal of Electronic Materials,2010.
    [138]X. Y. Zhou, G. Y. Wang, et al. Thermoelectric Performance of Sb-and La-Doped Mg2Sio.5Geo 5. Journal of Electronic Materials,2012.
    [139]W. J. Luo, M. J. Yang, Q. Shen, H. Y. Jiang and L. M. Zhang. Effect of Bi Doping on the Thermoelectric Properties of Mg2Sio.5Sno.5 Compounds. Advanced Materials Research,2009. (66):33-36.
    [140]M. Akasaka, T. Iida, K. Nishio and Y. Takanashi. Composition Dependent Thermoelectric Properties of Sintered Mg2Si1-xGex (x=0 to 1) Initiated From a Melt-grown Polycrystalline Source.2007.515(22):8237-8241.
    [141]M. Riffel, J. Schilz. Mechanically Alloyed Mg2Si1-xSnx Solid Solution as Thermoelectric Materials. In 15th International Conference on Thermoelectrics, Pasadena, California: IEEE,1996:133-136.
    [142]C. R. Clark, C. Wright, et al. Synthesis of Mg2X (X=Si, Ge, or Sn) Intermetallics by Mechanically Alloying. Materials Letters,1997.33:71-75.
    [143]R. B. Song, T. Aizawa, J. Q. Sun. Synthesis of Mg2Si1-xSnx Solid Solution as Thermoelectric Materials by Bulk Mechanical Alloying and Hot Pressing. Materials Science and Engineering B,2007.136(1):111-117.
    [144]T. Aizawa, R. B. Song. Mechanically Induced reaction for Solid-state S Synthesis of Mg2Si and Mg2Sn. Intermetallics,2006.14(4):382-391.
    [145]G. H. Li and Q. P. Kong, Scr.Metall. Mater,1995.32,1435-1440.
    [146]X. Niu and L. Lu. Advanced Performance Materials. Formation of magnesium silicide by mechanical alloying,1997.4,275-283.
    [147]A. F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling.1957. Infosearch, London.
    [148]J. Androulakis, C. Lin. M. G. Kanatzidis. et al. Spinodal Decomposition and Nucleation and Growth as a Means to Bulk Nanostructured Thermoelectrics:Enhanced Performance in Pb1-xSnxTe-PbS. Journal of American Chemistry Society,2007.129: 9780-9787.
    [149]O. Kubaschewski and E. Evans. Metallugrical Thermochemistry [M].3rd Edition, London:Pergamon Press,1958.
    [150]T. Dasgupta, C. Stiewe, A. J. Zhou, L. Boettcher and E. Mueller. Effect of Vacancies on the Thermoelectric Properties of Mg2Si1-xSbx (0≤x≤0.1). Physical Review B, 2011.83:235207.
    [151]A. Kato, T. Yagi and N. Fukusako. First-principles Studies of Intrinsic Point Defects in Magnesium Silicide. Journal of Physics:Condensed Matter,2009.21:205801.
    [152]Y. I. Ravich, B. A. Efimova and I. A. Smirnov. In Semiconducting Lead Chalcogenides, Plenum,1970.
    [153]D. G. Cahill, S. K. Watson and R. O. Pohl. Lower Limit to the Thermal Conductivity of Disordered Crystals. Physical Review B,1992.46,6131-6140.
    [154]M. Cutler and N. F. Mot. Observation of Anderson Localization in an Electron Gas. Phys. Rev,1969.181,1336.
    [155]E. S. R. Gopal. In Specific Heats at Low Temperatures. Plenum Press, New York, 1966.
    [156]M. Ahrens, et al. Effective masses of electrons in n-type SrTiO3 determined from low-temperature specific heat capacities. Phys. B,2007.393,239.
    [157]C. Wood. Materials for thermoelectric energy conversion. Rep. Prog. Phys,1988.51, 459.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700