用户名: 密码: 验证码:
锂离子二次电池正极材料LiFePO_4的改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为新型能源储能系统的锂离子二次电池由于优越的性能而备受关注,然而,现代的电池工业仍远未能达到获得同时具有高能量密度和高功率密度的“超级电池”的终极目标,所以新型电池材料的研究就显得极为重要。LiFePO4是一种新型的锂离子二次电池正极材料,它具有无毒、高热稳定性、循环性能优越的优点,因而被视为用于新一代电动交通工具、电子设备的最佳候选正极材料之一。但是,纯LiFePO4的电导率和离子迁移率均不理想,因而倍率性能较差。这一缺陷严重地影响了这一材料的实际应用。针对上述问题,本论文主要完成了如下工作:
     (1)固相反应法合成Li(Fe1-2xTix)PO4/C
     基于固相反应法发展了两种不同掺杂方法制备Li(Fe1-2xTix)PO4/C(x=0.02,0.04,0.06)。在此基础上,对Ti掺杂样品的电化学性能进行了系统的研究。结果表明,两种掺杂方法都能明显提高材料的电化学性能,但它们的作用并不完全相同。
     (2)碳热还原法制备Li(Fe1-2xZrx)PO4/C
     采用碳热还原法制备Li(Fe1-2xZrx)PO4/C (x=0.01,0.02,0.03,0.04,0.06).通过上述工艺,明显抑制了掺杂样品中的Li3PO4的杂相,材料的电化学性能得到明显提高,其中,在所研究的样品中,Li(Fe0.92Zr0.04)PO4/C具有最好的电化学性能和循环稳定性。
     (3)新型LiFePO4核壳结构的制备和形成机理研究
     制备了两种新型LiFePO4核壳结构:非化学计量比C@LiFePO4核壳和Ag@LiFePO4/C核壳结构,并对这两种结构的形成机理进行了探讨。
     本文采用一种优化的固相反应法制备了不同组分的非化学计量比C@LiFePO4核壳结构。材料显示出优越的库仑效率、优良的循环性能和较高的振实密度,能较好地满足高功率动力设备的需求。
     采用超声电沉积法制备了Ag@LiFePO4/C核壳结构。由于Ag具有较高的电导率并在材料中构成了三维导电网络,材料表现出优异的倍率性能和循环稳定性,可以作为一种潜在的新型正极复合材料。
     (4)新型LiFePO4-石墨烯材料的制备
     首次制备了两种新型LiFePO4-石墨烯复合材料:多孔LiFePO4-石墨烯材料和片层状LiFePO4-石墨烯材料。两种材料均体现出了多方面的优越性能,可以很好地满足高功率动力设备的需求。本文将此归因于材料内部具有的由石墨烯构成的三维导电网络和材料自身具有的特殊结构。
Lithium ion battery has a bright future as one of new power source technologies for its superior performance. But the global lithium-ion battery industry is far from developing an electric energy storage component suitable in both energy and power that will satisfy the demands of high power application, especially battery electric and hybrid vehicles. LiFePO4is widely regarded as one of the best candidate cathode materials for battery-using of electric or hybrid vehicles because of its advantages of non-toxicity, high thermal stability, low cost, good cycling performance.
     However, the pure LiFePO4material has very poor rate performance because of its both low electronic and ionic conductivity which limits its practical application as high power density and long-life batteries. In this dissertation, following works are carried out:
     (1.) To synthesis Li(Fe1-2XTix)PO4/C by solid-state reaction method
     Ti as the alien element was brought into the LiFePO4with two different methods to improve the performance of LiFePO4. Various Ti-doping LiFePO4of Li(Fe1-2XTix)PO4(x=0.02,0.04,0.06) were prepared by the two methods separately and the effect of Ti-doping to the electrochemical performances of the samples was systematically studied. The results indicate that although both methods can improve the electrochemical properties of the LiFePO4cathode material, the effects of them are obviously diverse.
     (2.) To synthesis Li(Fe1-2XZrx)PO4/C by carbon thermal reduction method
     A series of Li(Fe1-2xZrx)PO4/C (x=0.01,0.02,0.03,0.04,0.06) were prepared by carbon thermal reduction method. With this strategy, the impurity Li3PO4phase can be obviously reduced in the Zr-doped samples which result in the obvious improvement of their electrochemical performance comparing with the un-doped one. The best electrochemical performances were observed in Li(Feo.92Zro.o4)PO4/C as well as good cycle stability.
     (3.) Novel core-shell structure of LiFePO4shows good electrochemical properties Two novel core-shell structures of LiFePO4as nonstoichiometric C@LiFePO4core-shell and Ag@LiFePO4/C core-shell composites were fabricated with two different methods:Some kinds of nonstoichiometric C@LiFePO4core-shell composites are synthesized by a novel solid-state reaction method. All samples by this method show outstanding coulombic efficiency and good battery cycleability, along with high tap density, Which might meet the needs of high power applications.
     Ag@LiFePO4/C core-shell particles were prepared by a facile and one-step ultrasonic electrodeposition method for the first time. Due to the high electronic conductivity of the networks composited of Ag nanoparticles, high charge/discharge rates and cyclability of the LiFePO4/C electrodes were observed. As a result, the Ag@LiFePO4/C core-shell cathode material displays excellent electrochemical performances, indicating the potential application in high power situation of this core-shell composite cathode material.
     (4.) LiFePO4-graphene composites show excellent electrochemical properties
     Two hierarchical superstructure graphene-sheets based LiFePO4composites of porous LiFePO4/graphene and nanosheet LiFePO4/graphene were prepared for the first time. Due to the high-conductivity3D network formed by the evenly distributed graphene-sheets and special microstructures, these two novel composites show high-performance which might meet the demands of high-power and high-energy battery applications.
引文
[1]雷永泉,新能源材料天津天津大学出版社,2000
    [2]刘汉元,新能源革命(改变21世纪)北京中国言实出版社,2010
    [3]李国欣,新型化学电源导论上海上海复旦大学出版社,1992
    [4]J. M. Tarascon, M. Armand, Nature 359,414 (2001)
    [5]F. Orsini, A. Pasquier, J. Power Sources 81,918 (1999)
    [6]P. G. Bruce, B. Scrosati, J. M. Tarascon, Angew. Chem. Int. Ed.47,2930 (2008)
    [7]F. Y. Cheng, Z. L. Tao, J. Liang, et al. Chem. Mater.20,667 (2008)
    [8]J. M. Paulsen, J. R. Muller-Nehaus, J. R. Dahn, J. Electrochem.Soc.147,508 (2000) [9] A. G. Ritchie, C. O. Giwa, J. C. Lee, et al. J. Power Sources 80,98 (1999)
    [10]叶乃清,刘长久,沈上越,无机材料学报,2004,19(6):1217
    [11]A. Armstrong, P. G. Bruce. Nature 381,499 (1996)
    [12]阮艳莉,韩恩山,张西慧,电源技术,2003,27(4):400
    [13]F. Capitaine, P. Gravereau, C. Delmas, Solid State Ionics 89,197 (1996)
    [14]J. Kim, K. Amine, J. Power Sources 104,33 (2002)
    [15]C. Pouillerie, L. Croguennec, C. Delmas. Solid State Ionics 132,15 (2000)
    [16]K. K. Do, P. Muralidharan, H.W. Lee, et al. Nano Lett.8,3948 (2008)
    [17]H. Eiji, K. Tetsuichi, H. Itaru, et al. Nano Lett.9,1045 (2009)
    [18]Patoux S., Doeff M. M., Electrochem. Commun.6,767 (2004)
    [19]S. Myung, M. Lee, S. Komaba, et al. Electrochim. Acta 50,4800 (2005)
    [20]王海燕,黄可龙,刘素琴等,无机化学学报,2009,25(12):2090
    [21]乔敏,张海朗,稀有金属材料与工程,2009,38(9):1667
    [22]Z. H. Lu, Z. H. Chen, J. R. Dahn, Chem. Mater.15,3214 (2003)
    [23]杨志,李新海,王志兴等,电源技术,2009,133(10):869
    [24]丁燕怀,张平,龙志林,稀有金属材料与工程,2009,38(7):1227
    [25]Y. Koyama, I. Tanaka, T. Ohzuku, et al. J. Power Sources 119,644 (2003)
    [26]J. K. Ngala, N. A. Chermova, M. S. Whitingham, J. Mater. Chem.14,214 (2004)
    [27]Y. K. Sun, S. T. Myung, B. C. Park, et al. Nat. Mater.8,320 (2009)
    [28]A. K. Padhi, K. S. Naanjundawamy, J. B. Goodenough, J. Electrochem. Soc.144, 11884(1997)
    [29]A. K. Padhi, K. S. Naanjundawamy, C. Masquelier, et al. J. Electrochem. Soc. 144,1609 (1997)
    [30]J. Barker, M.Y. Saidi, US Patent 5,871,866. September 1996, issued February 1999
    [31]J. Barker, M.Y. Saidi, J. Swoyer, US Patent 6,387,568. April 2000, issued May 2002
    [32]S. Y. Chung, J. T. Bloking, Y. M. Chiang, Nat. Mater.1,123 (2002)
    [33]N. Jayaprakash, N. Kalaiselvi, Electrochem. Commun.9,620 (2007)
    [34]张丽,赵敏寿,王丹丹等,无机化学学报,2009,25(10):1724
    [35]G. X. Wang, S. Bewlay, S. A. Needham, J. Electrochem. Soc.153, A25 (2006)
    [36]R. Dominko, M. Bele, M. Gaberscek, et al. J. Eletrochem. Soc.153, A607 (2005)
    [37]余红明,郑威,曹高劭等,物理化学学报,2009,25(11):2186
    [38]P. P. Prosini, D. Zane, M. Pasquali, Electrochimi. Acta 46,3517 (2001)
    [39]A. Yamada, S. C. Chung, K. Hinokuma, J. Electrochem. Soc.148, A224 (2001)
    [40]D. Choi, P. N. Kumta, J. Power Sources 163,1064 (2007)
    [41]D. Choi, D. Wang, I. Bae, et al. Nano Lett.10,2799 (2010)
    [42]J. Hong, F. Wang, X. Wang, et al. J. Power Sources 196,3659 (2011)
    [43]J. Yu, K. M. Rosso, J. Liu, J. Phys. Chem. C 115,25001 (2011)
    [44]H. Huang, S. C. Yin, T. Kerr, L. F. Nazar, Adv. Mater.14,525 (2002)
    [45]Y. Sakurai, H. Araia, S. Okadaa, J. Power Sources 68,711 (1997)
    [46]S. L. Yun, S. Y. Chong, K. S. Yang, Electrochem. Comm.4,727 (2002)
    [47]Y.S. Lee, S. Sato, Y.K. Sun, J. Power Sources 1,119 (2003)
    [48]T. Matsumur, R. Kanno, Y. Ina, et al. J. Electrochem. Soc.149,1509 (2002)
    [49]郭文彦,王恩通,任引哲,山西师范大学学报,2007,21(3):62
    [50]Sanyo's Lithium Rechargeable Battery, JEC Battery Newsletter,3 (1989)
    [51]M. Cuisinier, J. F. Martin, N. Dupre, et al. Electrochem. Commun.12,238 (2010)
    [52]C. W. Kim, Park J. S., Lee K. S., J. Power Sources 1,144 (2006)
    [53]G. Arnold, J. Garehe, R. Hemme, et al. J. Power Sources 119,247 (2003)
    [54]N. Ravet, Y. Chouinard, J.F. Magnan, et al. J. Power Sources 97,503 (2001)
    [55]高旭光,胡国荣,彭忠东等,电池,2004,34(4):277
    [56]Y. Yamada, S. Chung, K. Hinokuma, et al. J. Electrochem. Soc.148,224 (2001)
    [57]M. Takahashi, S. Tobishima, K. Takei, et al. J. Power Source 97,508 (2001)
    [58]A. Anderson, B. Kalsk, L. Hgagstrom, et al. Solid State Ions 130,41 (2000)
    [59]A. Anderson, J. Thomas, B. Kalsk, et al. Electrochem. Solid-State Lett.2,66 (2000)
    [60]S. Okada, S. Sawa, M. Egashira, et al. J. Power Sources 97,430 (2001)
    [61]高旭光,胡国荣,彭忠东等,电池,2004,34(4):277
    [62]唐致远,韩彬,王健英等,电源技术,2005,29(8):556
    [63]陈亦可,电源技术,2003,27(5):487
    [64]B. Kang, G. Ceder, Nature 458,190 (2009)
    [65]S. Yang, P. Zavelji, M. Whittinghma, Electrochem. Commun.3,505 (2001)
    [66]S. Franger, F. Casr, C. Boubron, et al. Electrochem. Solid-State Lett.10, A231 (2002)
    [67]J. Ni, M. Morishitab, Y. Kawabe, J. Power Sources 195,2877 (2010)
    [68]戴永年,王平艳,杨斌等,中国专利:CN1752234
    [69]J. Barker, M.Y. Saidi, J.L. Swoyer, Electrochem. Solid-State Lett.3, A53 (2003)
    [70]C. H. Mi, X. B. Zhao, G. S. Cao, et al. J. Electrochem. Soc.13, A483 (2005)
    [71]唐子龙,罗绍华,张中太等,化学进展,2007,19(7):1460
    [72]F. Croce, A. D. Epifanio, J. Hassoun, et al. Electrochem. Solid-State Lett.5, A47 (2002)
    [73]D. Choi, P. Kumta, J. Power Sources 163,1064 (2007)
    [74]J. Yang, J. Xu, Electrochem. Solid-State Lett.7, A515 (2004)
    [75]W. Peng, L. Jiao, H. Gao, J. Power Sources 196,2841 (2011)
    [76]K.S. Park, J. T. Sona, H. T. Chungb, et al. Electrochem. Commun.5,839 (2003)
    [77]M. Higuchi, Y. Amuza, J. Power Sources 121,258 (2003)
    [78]A. Murugan, T. Muraliganth, A. Manthiram, J. Phys. Chem. C 37,14665 (2008)
    [79]G. Arnold, J. Garche, R. Hemmer, S. Strobele, et al. J. Power Sources 119,247 (2003)
    [80]S. W. Oh, H. J. Bang, S. T. Myung, Y. C. Bae, et al. J. Electrochem. Soc.6, A414 (2008)
    [81]M. H. Lee, J. Y. Kim, H. K. Song, Chem. Commun.36,6795 (2010)
    [82]S. H. Ju, Y. C. Kang, Mater. Chem. Phys.107,328 (2008)
    [83]M. R. Yang, T. H. Teng, S. H. Wu, J. Power Sources 159,307 (2006)
    [84]Z. Bakenov, I. Taniguchi, J. Electrochem. Soc.157, A430 (2010)
    [85]N. Ravet, A. Abouimrane, M. Armand, et al. Nat. Mater.2,702 (2003)
    [86]P. S. Herle, B. Ellis, N. Coombs, et al. Nat. Mater.3,147 (2004)
    [87]C. Delacourt, C. Wurm, L. Laffont, et al. Solid State Ionics 177,333 (2006)
    [88]D. Wang, H. Li, S. Shi, et al. Electrochim. Acta 14,2955 (2005)
    [89]S. Shi, L. Liu, C. Ouynag, et al. Physical Review B 68,195108 (2003)
    [90]G. X. Wang, S. L. Bewlya, K. Konststantinov, et al. Electrochim. Acta 50,443 (2004)
    [91]倪江峰,周恒辉,陈继涛等,物理化学学报,2004(6):582
    [92]J. Ni, H. Zhou, J. Chen, et al. Mater. Lett.18,2361 (2005)
    [93]P.P. Prosini, Zane D., Pasquali M., J. Power Sources 119,770 (2003)
    [94]X. L. Wu, L. Y. Jiang, F. F. Cao, et al. Adv. Mater.25,2710 (2009)
    [95]S. W. Oh, S. T. Myung, S. M. Oh, et al. Adv. Mater.43,4842 (2010)
    [96]Y. G. Wang, Y. R. Wang, E. J. Hosono, et al. Angew. Chem. Int. Edit.74,7461 (2008)
    [97]Z. H. Chen, J. R. Dahn, J. Electrochem. Soc.9, Al 184 (2002)
    [98]X. G. Gao, G. R. Hu, Z. D. Peng, et al. Chin. Chem. Lett.10,1256 (2007)
    [99]S. W. Oh, H. J. Bang, S. T. Myung, et al. J. Electrochem. Soc.155, A414 (2008)
    [100]Z. G. Lu, H. Cheng, M. F. Lo, et al. Adv. Func. Mater.18,3885 (2007)
    [101]C. H. Mi, Y. Cao, X. G. Zhang, et al. Powder Tech.3,301 (2008)
    [102]C. M. Doherty, R. A. Caruso, B. M. Smarsly, et al. Chem. Mater.13,2895 (2009)
    [103]Y. M. Wu, Z. H. Wen, J. H. Li, et al. Adv. Mater.9,1126 (2011)
    [104]Y. K. Zhou, J. Wang, Y. Y. Hu, et al. Chem. Commun.38,7151 (2010)
    [105]F. Y. Su, C. H. You, Y. B. He, et al. J. Mater. Chem.43,9644 (2010)
    [106]Y. Ding, Y. Jiang, F. Xu, et al. Electrochem. Commun.1,10 (2010)
    [107]X. F. Zhou, F. Wang, Y. M. Zhu, et al. J. Mater. Chem.10,3353 (2011)
    [108]G. X. Wang, H. Liu, J. A. Liu, et al. Adv. Mater.44,4944 (2010)
    [1]梁敬魁,粉末衍射法测定晶体结构(下册)北京科技出版社,2003
    [2]郭素枝,扫描电镜技术及其应用厦门厦门大学出版社,2006
    [3]杨南如,无机非金属材料测试方法武汉武汉理工大学出版社,1990
    [4]张大同,扫描电镜与能谱仪分析技术广州华南理工大学出版社,2009
    [5]叶恒强,透射电子显微学进展北京科学出版社,2003
    [6]X. L. Wu, L. Y. Jiang, F. F. Cao, et al. Adv. Mater.25,2710 (2009)
    [7]蓝闽波,纳米材料测试技术上海华东理工大学出版社,2009
    [8]胡谷平,曾春莲,黄滨,现代化学技术研究与实践北京化学工业出版社,2011
    [9]杨序钢,吴琪琳,拉曼光谱的分析与应用北京国防工业出版社,2008
    [10]孙以材,半导体测试技术北京冶金工业出版社,1984
    [11]谢孟贤,刘国维,半导体工艺原理北京国防工业出版社,1980
    [12]孙恒慧,包宗明,半导体物理实验北京高等教育出版社,1985
    [13]查全性,电极过程动力学导论(第三版)北京科学出版社,2002
    [1]S. Y. Chung, J. T. Bloking, Y. M. Chiang, Nat. Mater.1,123 (2002)
    [2]P. S. Herle, B. Ellis, N. Coombs, et al. Nat. Mater.3,147 (2004)
    [3]B. Kang, G. Ceder, Nature 458,190 (2009)
    [4]H. Liu, Q. Cao, L. J. Fu, et al. Electrochem. Comm.8,1553 (2006)
    [5]N. Jayaprakash, N. Kalaiselvi, Electrochem. Comm.9,620 (2007)
    [6]B. L. Ellis, W. R. Makahnouk, Y. M. Makimura, et al. Nat. Mater.6,749 (2007)
    [7]M. Thackeray, Nat. Mater.1,81 (2002)
    [8]K. S. Park, J. T. Son, H. T. Chung, et al. Electrochem. Comm.5,839 (2003)
    [9]R. Amin, C. T. Lin, J. B. Peng, et al. Adv. Funct. Mater.19,1697 (2009)
    [10]F. Gao, Z. Y. Tang, H. J. Xue, Electrochim. Acta 53,1939 (2007)
    [11]H. W. Liu, H. M. Yang, J. L. Li, Electrochim. Acta 55,1626 (2010)
    [12]Y. Y. Liu, C. B. Cao, Electrochim. Acta 55,4694 (2010)
    [13]Y. Y. Liu, C. B. Cao, J. Li, Electrochim. Acta 55,3921 (2010)
    [14]Y. G. Wang, Y. R. Wang, E. J. Hosono, et al. Angew. Chem. Int. Edit.47,7461 (2008)
    [15]Y. Zhang, C. S. Sun, Z. Zhou, Electrochem. Comm.11,1183 (2009)
    [16]H. M. Xie, R. S. Wang, J. R. Ying, et al. Adv. Mater.18,2609 (2006)
    [17]Y. C. Ge, X. D. Yan, J. Liu, et al. Electrochim. Acta 55,5886 (2010)
    [18]K. Amine, J. Liu, I. Belharouak, Electrochem. Comm.7,669 (2005)
    [19]Y. Yang, X. Z. Liao, Z. F. Ma, et al. Electrochem. Comm.11,1277 (2009)
    [20]Y. B. Xu, Y. J. Lu, L. Yan, et al. J. Power Sources 160,570 (2006)
    [21]F. Yu, J. J. Zhang, Y. F. Yang, et al. Electrochim. Acta 54,7389 (2009)
    [22]G. X. Wang, S. Bewlay, J. Yao, et al. Electrochem. Solid-State Lett.7, A503 (2004)
    [23]W. Q. Huang, Q. Cheng, X. Qin, Russ. J. Electrochem.46,359 (2010)
    [24]G. X. Wang, S. Bewlay, S. A. Needham, et al. J. Electrochem. Soc.153, A25 (2006)
    [25]G. X. Wang, H. Liu, J. A. Liu, et al. Adv. Mater.22,4944 (2010)
    [1]S. Y. Chung, J. T. Bloking, Y. M. Chiang, Nat. Mater.1,123 (2002)
    [2]C. Delmas, M. Maccario, L. Croguennec, et al. Nat. Mater.7,665 (2008)
    [3]P. S. Herle, B. Ellis, N. Coombs, et al. Nat. Mater.3,147 (2004)
    [4]B. Kang, G. Ceder, Nature 458,190 (2009)
    [5]S. W. Oh, S. T. Myung, S. M. Oh, et al. Adv. Mater.22,4842 (2010)
    [6]Y. M. Wu, Z. H. Wen, J. H. Li, Adv. Mater.23,1126 (2011)
    [7]S. Y. Chung, J. G. Kim, Y. M. Kim, et al. Adv. Mater.23,1398 (2011)
    [8]Z. G. Lu, H. Cheng, M. F. Lo, et al. Adv. Funct. Mater.17,3885 (2007)
    [9]C. H. Mi, Y. Cao, X. G. Zhang, et al. Powder. Technol.181,301 (2008)
    [10]E. S. Choi, D. H. Kim, C. H. Woo, et al. J. Nanosci. Nanotechnol.10,3416 (2010)
    [11]E. D. Jeong, H. J. Kim, C. W. Ahn, et al. J. Nanosci. Nanotechnol.9,4467 (2009)
    [12]P. Kumar, R. Venkateswarlu, M., M. Misra, et al. J. Nanosci. Nanotechnol.11, 3314(2011)
    [13]Y. G. Wang, Y. R. Wang, E. J. Hosono, et al. Angew. Chem. Int. Edit.74,7461 (2008)
    [14]H. H. Li, J. Jin, J. P. Wei, et al. Electrochem. Commun.11,95 (2009)
    [15]Y. Zhang, C. S. Sun, Z. Zhou, Electrochem. Commun.11,1183 (2009)
    [16]M. Abbate, S. M. Lala, L. A. Montoro, et al. Electrochem. Solid. State. Lett.8, A288 (2005)
    [17]R. Amin, C. T. Lin, J. Maier, Phys. Chem. Chem. Phys.10,3519 (2008)
    [18]R. Amin, C. T. Lin, J. B. Peng, et al. Adv. Funct. Mater.19,1697 (2009)
    [19]N. Jayaprakash, N. Kalaiselvi, Electrochem. Commun.9,620 (2007)
    [20]L. J. Li, X. H. Li, Z. X. Wang, L. Wu, et al. Chem. Lett.38,1182 (2009)
    [21]D. Y. Wang, H. Li, S. Q. Shi,et al. Electrochim. Acta 50,2955 (2005)
    [22]G. X. Wang, S. Bewlay, S. A. Needham, et al. J. Electrochem. Soc.153, A25 (2006)
    [23]G. X. Wang, S. Needham, J. Yao, et al. J. Power Sources 159,282 (2006)
    [24]L. Wu, X. H. Li, Z. X. Wang, et al. J. Power Sources 189,681 (2009)
    [25]S. H. Wu, M. S. Chen, C. J. Chien, et al. J. Power Sources 189,440 (2009)
    [26]C. L. Hu, H. H. Yi, H. S. Fang, et al. Mater. Lett.65,1323 (2011)
    [27]M. S. Islam, D. J. Driscoll, C. A. J. Fisher,et al. Chem. Mater.17,5085 (2005)
    [28]X. F. Ouyang, S. Q. Shi, C. Y. Ouyang, et al. Chin. Phys.16,3042 (2007)
    [29]J. Xu, G. Chen, Phys. B 405,803 (2010)
    [30]J. Barker, M.Y. Saidi, J.L. Swoyer, Electrochem. Solid-State Lett.3, A53 (2003)
    [31]G. X. Wang, S. Bewlay, J. Yao, et al. Electrochem. Solid-State Lett.7, A503 (2004)
    [32]Y. Chen, Z. L. Wan, C. Y. Yu, et al. Acta. Phys-Chim. Sin.24,1498 (2008)
    [33]Y. C. Ge, X. D. Yan, J. Liu, et al. Electrochim. Acta 55,5886 (2010)
    [34]R. Malik, D. Burch, M. Bazant, et al. Nano Lett.10,4123 (2010)
    [35]E. Hosono, T. Kudo, I. Honma, H. Matsuda,et al. Nano Lett.9,1045 (2009)
    [36]D. K. Kim, P. Muralidharan, H. W. Lee, et al. Nano Lett.8,3948 (2008)
    [37]H. W. Lee, P. Muralidharan, R. Ruffo, et al. Nano Lett.10,3852 (2010)
    [38]D. W. Choi, D. H. Wang, I. T. Bae, et al. Nano Lett.10,2799 (2010)
    [39]H. B. Gul, D. K. Jun, G. C. Park, et al. J. Nanosci. Nanotechnol.7,3980 (2007)
    [40]D. H. Kim, J. W. Kang, I. O. Jung, et al. J. Nanosci. Nanotechnol.8,5376 (2008)
    [41]D. H. Kim, J. S. Kim, J. W. Kang, et al. J. Nanosci. Nanotechnol.7,3949 (2007)
    [42]H. B. Kim, B. Park, Lee I., et al. J. Nanosci. Nanotechnol.8,5337 (2008)
    [43]J. S. Lim, D. H. Kim, V. Mathew, et al. J. Nanosci. Nanotechnol.11,1451 (2011)
    [44]G. Yang, H. M. Ji, H. D. Liu, et al. J. Nanosci. Nanotechnol.10,980 (2010)
    [45]X. K. Zhi, G. C. Liang, L. Wang, et al. J. Nanosci. Nanotechnol.10,7676 (2010)
    [46]M. R. Yang, W. H. Ke, J. Electrochem. Soc.155, A729 (2008)
    [47]C. H. Mi, X. G. Zhang, H. L. Li, J. Electroanal. Chem.602,245 (2007)
    [48]M. Thackeray, Nat. Mater.1,81 (2002)
    [1]K. Green, J. C. Wilson, Electron. & Comm. Eng. J.13,43 (2001)
    [2]S. Y. Chung, J. T. Bloking, Y. M. Chiang, Nat. Mater.1,123 (2002)
    [3]C. Delacourt, P. Poizot, J. M. Tarascon, et al. Nat. Mater.4,254 (2005)
    [4]C. Delmas, M. Maccario, L. Croguennec, et al. Nat. Mater.7,665 (2008)
    [5]B. Kang, G. Ceder, Nature 458,190 (2009)
    [6]P. S. Herle, B. Ellis, N. Coombs, et al. Nat. Mater.3,147 (2004)
    [7]S. W. Oh, S. T. Myung, S. M. Oh, et al. Electrochim. Acta 55,1193 (2010)
    [8]M. E. Zhong, Z. T. Zhou, Mater. Chem. Phys.119,428 (2010)
    [9]Y. G. Wang, Y. R. Wang, E. J. Hosono, et al. Angew. Chem. Int. Edit.47,7461 (2008)
    [10]M. M. Ren, Z. Zhou, X. P. Gao, et al. J. Phys. Chem. C 112,5689 (2008)
    [11]Y. Zhang, C. S. Sun, Z. Zhou, Electrochem. Commun.11,1183 (2009)
    [12]B. Zhao, Y. Jiang, H. J. Zhang, et al. J. Power Sources 189,462 (2009)
    [13]H. M. Xie, R. S. Wang, J. R. Ying, et al. Adv. Mater.18,2609 (2006)
    [14]Y. L. Cao, L. H. Yu, T. Li, et al. J. Power Sources 172,913 (2007)
    [15]W. X. Peng, L. F. Jiao, H. Y. Gao, et al. J. Power Sources 196,2841 (2011)
    [16]I. Belharouak, C. Johnson, K. Amine, Electrochem. Comm.7,983 (2005)
    [17]X. G. Gao, G. R. Hu, Z. D. Peng, et al. Electrochim. Acta 54,4777 (2009)
    [18]P. Axmann, C. Stinner, M. Wohlfahrt-Mehrens, et al. Chem. Mater.21,1636 (2009)
    [19]M. Cuisinier, J. F. Martin, N. Dupre, et al. Electrochem. Comm.12,238 (2010)
    [20]X. Xia, Z. X. Wang, L. Q. Chen, Electrochem. Comm.10,1442 (2008)
    [21]F. Croce, A. D. Epifanio, J. Hassoun, et al. Electrochem. Solid-State Lett.5, A47 (2002)
    [22]Z. G. Lu, H. Cheng, M. F. Lo, et al. Adv. Funct. Mater.17,3885 (2007)
    [23]C. H. Mi, Y. Cao, X. G. Zhang, et al. Powder. Technol.181,301 (2008)
    [24]K. S. Park, J. T. Son, H. T. Chung, et al. Solid State Comm.129,311 (2004)
    [25]陆佩文,硅酸盐物理与化学南京东南大学出版社,1998
    [26]严群,材料科学基础北京国防工业出版社,2009
    [27]闵乃本,晶体生长的物理基础上海上海科学技术出版社,1982
    [28]冯若,超声手册南京南京大学出版社,1999
    [29]冯若,李化茂,声化学及其应用合肥安徽科技出版社,1992
    [30]应崇福,超声学北京科学出版社,1990
    [31]李廷盛,尹其光,超声化学北京科学出版社,1995
    [32]许文林,王雅琼,孙彦平,太原科技,1995(4):6
    [33]R.J. Simpson, Nature 186,207 (1965)
    [34]程敬泉,银、金纳米材料的超声化学、电化学制备与表征天津天津大学2005,6
    [1]H. Wang, L. F. Cui, Y. Yang, et al. J. Am. Chem. Soc.40,13978 (2010)
    [2]G. Yu, L. Hu, M. Vosgueritchian, et al. Nano Lett.7,2905 (2011)
    [3]H. Wang, Y. Yang, Y. Liang, et al. Nano Lett.7,2644 (2011)
    [4]H. Wang, Y. Yang, Y. Liang, et al. Angew. Chem. Int. Edit.32,7364 (2011)
    [5]J. S. Chen, P. Chen, Y. Wang, Nanoscale 5,2158 (2011)
    [6]X. Zhao, C. Hayner, M. Kung, et al. Adv. Ener. Mater.6,1079 (2011)
    [7]Y. M. Wu, Z. H. Wen, J. H. Li, Adv. Mater.9,1126 (2011)
    [8]F. Yu, J. J. Zhang, Y. F. Yang, et al. J. Mater. Chem.48,9121 (2009)
    [9]Y. K. Zhou, J. Wang, Y. Y. Hu, et al. Chem. Commun.38,7151 (2010)
    [10]F. Y. Su, C. H. You, Y. B. He, et al. J. Mater. Chem.43,9644 (2010)
    [11]S. Yang, X. Feng, K. Muellen, Adv. Mater.31,3575 (2011)
    [12]Y. Ding, Y. Jiang, F. Xu, et al. Electrochem. Commun.1,10 (2010)
    [13]X. F. Zhou, F. Wang, Y. M. Zhu, et al. J. Mater. Chem.10,3353 (2011)
    [14]C. S. Li, S. Y. Zhang, F. Y. Cheng, et al., Nano Res.3,242 (2008)
    [15]B. Kang, G. Ceder, Nature 458,190 (2009)
    [16]A. V. Murugan, T. Muraliganth, A. Manthiram, J. Phys. Chem. C 37,14665 (2008)
    [17]G. X. Wang, H. Liu, J. A. Liu, et al. Adv. Mater.22,4944 (2010)
    [18]S. Y. Chung, J. T. Bloking, Y. M. Chiang, Nat. Mater.1,123 (2002)
    [19]R. Liu, J. Duay, S. B. Lee, Chem. Comm.5,1384 (2011)
    [20]J. S. Chen, L. A. Archer, X. W. Lou, J. Mater. Chem.27,9912 (2011)
    [21]J. S. Chen, X. W. Lou, Chem. Sci.11,2219 (2011)
    [22]J. Liu, J. S. Chen, X. Wei, et al., Adv. Mater.8,998 (2011)
    [23]B. Sun, B. Wang, D. Su, et al., Carbon 2,727 (2012)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700