用户名: 密码: 验证码:
低介微波介质陶瓷及BST基铁电陶瓷的凝胶注模制备技术及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在阅读大量文献的基础上,结合科研项目的实际需要,本文以0.9Al2O3-0.1TiO2和90wt.%(0.75ZnAl2O4-0.25TiO2)-10wt.%MgTiO3(ZTM)(?)氐介微波介质陶瓷以及45wt%Ba0.6Sr0.4TiO3-55wt%MgO (BSTM)铁电陶瓷为研究对象,采用凝胶注模工艺制备了这三类陶瓷材料,系统研究了制备方法对这些陶瓷材料相组成、微观结构以及相关性能的影响。
     首先在简单介绍陶瓷浆料流变学特性及丙烯酰胺凝胶体系凝胶固化原理的基础上,研究了pH值、分散剂以及固相含量对陶瓷浆料的流变学特性的影响,并研究了环境温度、引发剂和催化剂加入量以及单体浓度对陶瓷浆料凝胶固化速率的影响。
     采用水基凝胶注模工艺和干压法制备了0.9Al2O3-0.1TiO2陶瓷。研究了制备工艺对0.9Al2O3-0.1TiO2陶瓷的相组成、微观结构以及微波介电性能的影响。通过采用合适的粉体预烧温度和连续缓慢的降温处理,消除了Al2TiO5第二相,在最终制备得到的0.9Al2O3-0.1TiO2陶瓷中只存在A12O3和Ti02两相。与干压法相比,采用水基凝胶注模工艺制备的0.9Al2O3-0.1TiO2陶瓷的气孔较少、晶粒较大且分布更加均匀。此外,采用水基凝胶注模工艺制备0.9Al2O3-0.1TiO2陶瓷能够有效改善其微波介电性能。基于分步干燥法和缓慢的排胶制度,采用水基凝胶注模工艺制备了完整的大尺寸、复杂形状的0.9Al2O3-0.1TiO2陶瓷部件。
     采用水基凝胶注模工艺和干压法制备了ZTM陶瓷。研究了制备工艺对ZTM陶瓷的相组成、微观结构以及微波介电性能的影响。结果表明,无论采用哪种制备方法,制备的ZTM陶瓷的相组成都是一样的。与干压法相比,采用水基凝胶注模工艺制备的ZTM陶瓷的气孔较少、晶粒较大且分布更加均匀。此外,采用水基凝胶注模工艺制备ZTM陶瓷不但可以有效改善其微波介电性能,而且还能够在一定程度上降低其烧结温度。基于分步干燥法和缓慢的排胶制度,采用水基凝胶注模工艺制备了ZTM微波介质天线基板,最后制备出可以满足实际应用要求的GPS天线。
     采用水基、半水基凝胶注模工艺以及干压法制备了BSTM铁电陶瓷。研究了制备工艺对BSTM陶瓷的相组成和微观结构的影响。结果表明,无论采用哪种制备方法,制备的BSTM陶瓷的相组成都是一样的。同时,采用水基和半水基凝胶注模工艺制备的BSTM陶瓷的微观结构都比较均匀。
     采用非水基凝胶注模工艺和干压法制备了BSTM陶瓷。研究了制备工艺对BSTM陶瓷的相组成、微观结构以及介电性能的影响。结果表明,无论采用哪种制备方法,制备的BSTM陶瓷的相组成都是一样的。与干压法相比,采用非水基凝胶注模工艺制备的BSTM陶瓷的微观结构更加均匀。此外,采用非水基凝胶注模工艺制备BSTM陶瓷不但能够改善其性能的稳定性,而且还能够在一定程度上改善其介电性能。
     采用水基凝胶注模工艺辅助固相反应法(AGASSM)与固相反应法(SSM)制备了BSTM陶瓷粉体。研究了陶瓷粉体制备方法对制备的陶瓷粉体的相组成和微观结构的影响。随后采用干压法成型,研究了陶瓷粉体制备方法对最终制备的BSTM陶瓷的相组成、微观结构以及介电性能的影响。结果表明,与SSM相比,采用AGASSM制备的BSTM陶瓷粉体粒径更小(Dav=1.00μm)、呈球状,而且分布更加均匀。无论采用哪种粉体制备方法,制备的BSTM陶瓷粉体以及用该陶瓷粉体干压成型的BSTM陶瓷的相组成都是完全一样的。与SSM相比,采用AGASSM制备的陶瓷粉体干压成型的BSTM陶瓷的微观结构更加均匀。此外,采用AGASSM制备陶瓷粉体可以改善BSTM陶瓷的介电性能,并能够在一定程度上降低其烧结温度。
     采用改进的水基凝胶注模工艺辅助固相反应法(IAGASSM)、AGASSM和SSM制备了BSTM陶瓷粉体。研究了陶瓷粉体制备方法对制备的陶瓷粉体的相组成和微观结构的影响。随后采用干压法成型,研究了陶瓷粉体制备方法对最终制备的BSTM陶瓷的相组成、微观结构以及介电性能的影响。结果表明,与SSM和AGASSM相比,采用IAGASSM制备的BSTM陶瓷粉体的粒径最小(Dav=0.83μm),而且分布最均匀。无论采用哪种粉体制备方法,制备的BSTM陶瓷粉体以及用该陶瓷粉体干压成型的BSTM陶瓷的相组成都是完全一样的。与SSM和AGASSM相比,采用IAGASSM制备的陶瓷粉体干压成型的BSTM陶瓷的微观结构最均匀。此外,采用IAGASSM制备陶瓷粉体可以显著改善BSTM陶瓷的介电性能,并能够在一定程度上降低其烧结温度。
Based on studying lots of relevant research papers and the requirements of our research programs, in this dissertation, the0.9Al2O3-0.1TiO2,90wt.%(0.75ZnAl2O4-0.25TiO2)-10wt.%MgTiO3(ZTM) low-permittivity microwave dielectric ceramics, and45wt%Ba0.6Sr0.4TiO3-55wt%MgO (BSTM) ferroelectric ceramics were prepared by gelcasting. The effects of different preparation methods on the phase compositions, microstructures and relevant properties of the prepared ceramic materials were systematically investigated.
     Based on the simple introductions for the rheology properties of ceramic slurry and the solidification theory of acrylamide gelcasting system, the effects of pH value, dispersant and solids loading on the rheology properties of ceramic slurry and environmental temperature, initiator and catalyst contents, and monomer concentration on the solidification rate of ceramic slurry were all investigated.
     The0.9Al2O3-0.1TiO2ceramics were prepared by aqueous gelcasting and dry pressing. The effects of different preparation methods on the phase compositions, microstructures and microwave dielectric properties of0.9Al2O3-0.1TiO2ceramics were investigated. With adopting proper powder calcining temperature and continuous and slow cooling treatment, the Al2TiO5secondary phase is eliminated, and there are only Al2O3and TiO2phases. Compared with dry pressing, there are fewer pores, larger grains and more uniform grain distribution in the0.9Al2O3-0.1TiO2ceramics prepared by aqueous gelcasting. Moreover, adopting aqueous gelcasting to prepare0.9Al2O3-0.1TiO2ceramics could effectively improve their microwave dielectric properties. Based on stepped drying and slow binder removal, some intact, large dimension and complex shaped0.9Al2O3-0.1TiO2components were prepared by aqueous gelcasting.
     The ZTM ceramics were prepared by aqueous gelcasting and dry pressing. The effects of different preparation methods on the phase compositions, microstructures and microwave dielectric properties of ZTM ceramics were investigated. The results demonstrate that the phase compositions of the ZTM ceramics are the same no matter what preparation method is adopted. Compared with dry pressing, there are fewer pores, bigger grains and more uniform grain distribution in the ZTM ceramics prepared by aqueous gelcasting. Furthermore, adopting aqueous gelcasting to prepare ZTM ceramics could not only improve their microwave dielectric properties effectively, but also decrease their sintering temperature in some extent. Based on stepped drying and slow binder removal, the ZTM microwave dielectric antenna substrates were prepared by aqueous gelcasting, and then a GPS antenna was fabricated, which meets the requirements of real application.
     The BSTM ferroelectric ceramics were prepared by aqueous gelcasting, semi-aqueous gelcasting and dry pressing. The effects of different preparation methods on the phase compositions and microstructures of the BSTM ceramics were investigated. The results demonstrate that the phase compositions of the BSTM ceramics are the same no matter what preparation method is adopted. Meanwhile, the microstructures of the BSTM ceramics prepared by aqueous and semi-aqueous gelcasting are all uniform.
     The BSTM ceramics were prepared by non-aqueous gelcasting and dry pressing. The effects of different preparation methods on the phase compositions, microstructures and dielectric properties of the BSTM ceramics were investigated. The results demonstrate that there is no influence on the phase compositions whatever preparation method is adopted. Compared with dry pressing, the microstructures of the BSTM ceramics prepared by non-aqueous gelcasting are more uniform. Moreover, adopting non-aqueous gelcasting to prepare the BSTM ceramics could acquire the ones with more stable dielectric properties and could improve their dielectric properties in some extent.
     The BSTM ceramic powders were prepared by aqueous gelcasting-assisted solid-state method (AGASSM) and solid-state method (SSM). The effects of different ceramic powder preparation methods on the phase compositions and microstructures of the ceramic powders were investigated. Subsequently, adopting the dry pressing method to form samples, the effects of different ceramic powder preparation methods on the phase compositions, microstructures and dielectric properties of the BSTM ceramics were investigated. The results demonstrate that the BSTM ceramic powders prepared by AGASSM are more uniform with smaller (Dav=1.00μm) and more sphere-like particles than those prepared by SSM. The phase compositions of the prepared BSTM ceramic powders and the BSTM ceramics from the prepared ceramic powders are the same no matter what ceramic powder preparation method is adopted. Compared with SSM, the microstructures of the BSTM ceramics from ceramic powders prepared by AGASSM are more uniform. Furthermore, adopting AGASSM to prepare ceramic powders could not only improve the dielectric properties of the BSTM ceramics, but also decrease their sintering temperature.
     The BSTM ceramic powders were prepared by improved aqueous gelcasting-assisted solid-state method (IAGASSM), AGASSM and SSM. The effects of different ceramic powder preparation methods on the phase compositions and microstructures of the BSTM ceramic powders were investigated. Subsequently, adopting the dry pressing method to form samples, the phase compositions, microstructures and dielectric properties of the BSTM ceramics were investigated. The results demonstrate that the BSTM ceramic powders prepared by IAGASSM are the most uniform with the smallest particles (Dav=0.83μm) than those prepared by SSM and AGASSM. The phase compositions of the prepared BSTM ceramic powders and the BSTM ceramics from the prepared ceramic powders are the same no matter what ceramic powder preparation method is adopted. Compared with SSM and AGASSM, the microstructures of the BSTM ceramics from ceramic powders prepared by IAGASSM are the most uniform. Moreover, compared with SSM and AGASSM, adopting IAGASSM to prepare ceramic powders could not only improve the dielectric properties of the BSTM ceramics dramatically, but also decrease their sintering temperature.
引文
[1]毕见强,赵萍,邵明梁,等.特种陶瓷工艺与性能.哈尔滨:哈尔滨工业大学出版社,2008.
    [2]郭景坤,寇华敏,李江.高温结构陶瓷研究浅论.北京:科学出版社,2011.
    [3]徐政,倪宏伟.现代功能陶瓷.北京:国防工业出版社,1998.
    [4]Huang Y., Zhang L. M., Yang J. L., et al. Research progress of new colloidal forming processes for advanced ceramics. J. Chin. Ceram. Soc.,2007,35(2): 129-136.
    [5]Lange F. F. Powder processing science and technology for increased reliability. J. Am. Ceram. Soc.,1989,72(1):3-15.
    [6]Binner J. G. P., McDermott A. M., Yin Y., et al. In situ coagulation moulding:a new route for high quality, net shape ceramics. Ceram. Int.,2006,32(1):29-35.
    [7]Prabhakaran, Raghunath KS, Melkeri A. Novel coagulation method for direct coagulation casting of aqueous alumina slurries prepared using poly(acrylate) dispersant. J. Am. Ceram. Soc.,2008,91(2):615-619.
    [8]Falkowski P, Bednarek P, Danelska A. Application of monosaccharides derivatives in colloidal processing of aluminum oxide. J. Eur. Ceram. Soc.,2010,30(14): 2805-2811.
    [9]Jung Y. S., Paik U., Pagnoux C., et al. Consolidation of aqueous concentrated silicon nitride suspension by direct coagulation casting. Mater. Sci. Eng. A,2003, 342(1-2):93-100.
    [10]Bergstrom L. Method for forming ceramic powders by temperature induced flocculation. US Patent,5340532,1994.
    [11]Franks G. V., Velamakanni B. V., Lange F. F. Vibraforming and in-situ flocculation of consolidated, coagulated, alumina slurries. J. Am. Ceram. Soc.,1995,78(5): 1324-1328.
    [12]Graule T. J., Baader F. H., Gauckler L. J. Shaping of ceramic green compacts direct from suspensions by enzyme catalyzed reactions. Ceram. Forum Int.,1994,71(6): 317-323.
    [13]Gauckler L. J., Graule T. J., Baader F. H. Ceramic forming using enzyme catalysed reactions. Mater. Chem. Phys.,1999,61(1):78-102.
    [14]Young A. C., Omatete O.O., Janney M. A., et al. Gelcasting of alumina. J. Am. Ceram. Soc.,1991,74(3):612-618.
    [15]Omatete O. O., Janney M. A., Nunn S. Gelcasting:from laboratory development towards industrial production. J. Eur. Ceram. Soc,1997,17(2-3):407-413.
    [16]Janney M. A., Omatete O. O., Walls C. A., et al. Development of low-toxicity gelcasting systems. J. Am. Ceram. Soc.,1998,81(3):581-591.
    [17]Omatete O. O., Janney M. A., Strelow R. A. Gelcasting-a new ceramic forming process. Am. Ceram. Soc. Bull.,1991,70(10):1641-1649.
    [18]卜景龙,刘开琪,王志发,等.凝胶注模成型制备高温结构陶瓷.北京:化学工业出版社,2008.
    [19]Janney M. A., Nunn S. D., Walls C. A., et al. The handbook of ceramic engineering. New York:Marcel Dekker,1998.
    [20]Kokabi M., Babaluo A. A., Barati A. Gelation process in low-toxic gelcasting systems. J. Eur. Ceram. Soc.,2006,26(15):3083-3090.
    [21]Dhara S., Kamboj R. K., Pradhan M. Shape forming of ceramics via gelcasting of aqueous particulate slurries. Bull. Mater. Sci.,2002,25(6):565-568.
    [22]Kamboj R. K., Dhara S., Bhargava P. Machining behaviour of green gelcast ceramics. J. Eur. Ceram. Soc.,2003,23(7):1005-1011.
    [23]Nunn S. D., Kirby G. H. Green machining of gelcast ceramic materials. Ceram. Eng. Sci. Proc.,1996,17(3):209-213.
    [24]Cai K., Huang Y, Yang J. L. Alumina gelcasting with a new low-toxicity system. Key Eng. Mater.,2002,224(2):643-646.
    [25]Morissette S. L., Lewis J. A. Chemorheology of aqueous-based alumina-poly(vinyl alcohol) gelcasting suspensions. J. Am. Ceram. Soc.,1999,82(3):521-528.
    [26]Xie Z. P., Huang Y, Chen Y. L. A new gelcasting of ceramics by reaction of sodium algnite and calcium iodateat increased temperatures. J. Mater. Sci. Lett.,2001, 20(3):1255-1257.
    [27]Xie Z. P., Wang X., Jia Y, et al. Ceramic forming based on gelation principle and process of sodium alginate. Mater. Lett.,2003,57(9-10):1635-1641.
    [28]Wang X., Xie Z. P., HuangY. Gelcasting of silicon carbide based on gelation of sodium alginate. Ceram. Int.,2002,28(8):865-871.
    [29]Akhondi H., Taheri-Nassaj E., Sarpoolaky H. Gelcasting of alumina nanopowders based on gelation of sodium alginate. Ceram. Int.,2009,35(3):1033-1037.
    [30]Jia Y, Kanno Y, Xie Z. P. Fabrication of alumina green body through gelcasting process using alginate. Mater. Lett.,2003,57(16-17):2530-2534.
    [31]Studart A. R., Pandolfelli V. C., Tervoort E. Gelling of alumina suspensions using alginic acid salt and hydroxyaluminium diacetate. J. Am. Ceram. Soc.,2002,85(11): 2711-2718.
    [32]Santacruz I., Nieto M. I., Moreno R. Alumina bodies with near-to-theoretical density by aqueous gelcasting using concentrated agarose solutions. Ceram. Int., 2005,31(3):439-445.
    [33]Potoczek M. Hydroxyapatite foams produced by gelcasting using agarose. Mater. Lett.,2008,62(6-7):1055-1057.
    [34]Potoczek M., Zima A., Paszkiewicz Z. Manufacturing of highly porous calcium phosphate bioceramics via gel-casting using agarose. Ceram. Int.,2009,35(6): 2249-2254.
    [35]Vandeperre L. J., DeWilde A. M., Luyten J. Gelatin gelcasting of ceramic components. J. Mater. Process Technol.,2003,135(2-3):312-331.
    [36]Millan A. J., Nieto M. I., Moreno R. Aqueous gel-forming of silicon nitride using carrageenans. J. Am. Ceram. Soc.,2001,84(1):62-64.
    [37]Winter H. H. Polymer gels, materials that combine liquid and solid properties. MRS Bull.,1991,16(8):44-48.
    [38]Ward A. G., Courts A. The science and technology of gelatinee. London:Academic Press,1977.
    [39]Yoon B. H., Koh Y. H., Park C. S. Generation of large pore channels for bone tissue engineering using camphene-based freeze casting. J. Am. Ceram. Soc.,2007,90(6): 1744-1752.
    [40]Deville S., Saiz E., Nalla R. K., et al. Freezing as a path to build complex composites. Science,2006,311(5760):515-518.
    [41]Deville S., Saiz E., Tomsia A. P. Ice-templated porous alumina structures. Acta Mater.,2007,55(6):1965-1974.
    [42]Araki K., Halloran J. W. Porous ceramic bodies with interconnected pore channels by a novel freeze casting technique. J. Am. Ceram. Soc.,2005,88(5):1108-1114.
    [43]Zhang Y. M., Hu L. Y., Han J. C. Freeze casting of aqueous alumina slurries with glycerol for porous ceramics. Ceram. Int.,2010,36(2):617-621.
    [44]Munch E., Saiz E., Deville S. Architectural control of freeze-cast ceramics through additives and templating. J. Am. Ceram. Soc.,2009,92(7):1534-1539.
    [45]Barati A., Kokabi M., Famili MHN. Drying of gelcast ceramic parts via the liquid desiccant method. J. Eur. Ceram. Soc.,2003,23(13):2265-2272.
    [46]Huang Y, Ma L. G, Yang J. L. Improving the homogeneity and reliability of ceramic parts with complex shapes by pressure-assisted gel-casting. Mater. Lett., 2004,58(30):3893-3897.
    [47]Zhao L., Yang J. L., Huang Y. Influence of minute metal ions on the idle time of acrylamide polymerization in gelcasting of ceramics. Mater. Lett.,2002,56(6): 990-994.
    [48]Ma L. G., HuangY, Yang J. L. Control of the inner stresses in ceramic green bodies formed by gelcasting. Ceram. Int.,2006,32(2):93-98.
    [49]Ma L. G., Huang Y, Yang J. L. Effect of plasticizer on the cracking of ceramic green body in gelcasting. J. Mater. Sci. Lett.,2005,40(18):4947-4949.
    [50]Ghosal S., Emami-Naeini A., Harn Y P., et al. A physical model for the drying of gelcast ceramics. J. Am. Ceram. Soc.,1999,82(3):513-520.
    [51]Yu J. L., Wang H. J., Zhang J. Effect of monomer content on physical properies of silicon nitride ceramic green body prepared by gelcasting. Ceram. Int.,2009,35(3): 1039-1044.
    [52]Barati A., Kokabi M., Famili N. Modeling of liquid desiccant drying method for gelcast ceramic parts. Ceram. Int.,2003,29(2):199-207.
    [53]Odian G G. Principles of polymerization. New York:John Wiley and Sons,1991.
    [54]Landham R. R., Nahass P., Leung D. K. Potential use of polymerizable solvents and dispersants for tape casting of ceramics. Am. Ceram. Soc. Bull.,1987,66(10): 1513-1516.
    [55]Ma J. T., Xie Z. P., Huang Y. Gelcasting of ceramic suspension in acrylamide/polyethylene glycol systems. Ceram. Int.,2002,28(8):859-864.
    [56]Janney M. A., Omatete O.O. Method for molding ceramic powder using a water-based gelcasting process. US Patent,5145908,1992.
    [57]Ma J. T., Xie Z. P., Huang Y. Gelcasting of alumina ceramics in the mixed acrylamide and polyacrylamide systems. J. Eur. Ceram. Soc.,2003,23(13): 2273-2279.
    [58]Ma J. T., Xie Z. P., Miao H. Z. Elimination of surface spallation of alumina green bodies prepared by acrylamide-based gelcasting via poly(vinylpyrrolidone). J. Am. Ceram. Soc.,2003,86(2):266-272.
    [59]Guo D., Cai K., Huang Y, et al. Water based gelcasting of lead zirconate titanate. Mater. Res. Bull.,2003,38(5):807-816.
    [60]Guo D., Cai K., Li L., et al. Gelcasting of PZT. Ceram. Int.,2003,29(4):403-406.
    [61]Zhou D., Li H., Gong S., et al. Sodium bismuth titanate-based lead-free piezoceramics prepared by aqueous gelcasting. J. Am. Ceram. Soc.,2008,91(9): 2792-2796.
    [62]Kim B. S., Sekino T., Yamamoto Y, et al. Gelcasting process of Al2O3/Ni nanocomposites. Mater. Lett.,2004,58(1-2):17-20.
    [63]Xia C. R., Fang X. H., Zhang G. G., et al. Preparation and characterization of SrFeC0.5O3.25+δ by gelcasting. Mater. Res. Bull.,2001,36(9):1587-1594.
    [64]Hisashi K., Yoshiaki K., Satoshi T., et al. Fabrication of c-axis oriented Zn0.98Al0.02O by a high-magnetic-field via gelcasting and its thermoelectric properties. J. Ceram. Soc。 Jpn.,2006,114(1335):1085-1088.
    [65]Gong S. P., Zheng Z. P., Zhou D. X., et al. Preparation of BaTiO3-based chip thermistors by gelcasting approach. Mater. Sci. Eng. B,2003,99(1-3):408-411.
    [66]Alford N. M., Penn S. J. Sintered alumina with low dielectric loss. J. Appl. Phys., 1996,80(10):5895-5898.
    [67]Huang C. L., Wang J. J., Yen F. S., et al. Microwave dielectric properties and sintering behavior of nano-scaled (α+θ)-Al2O3 ceramics. Mater. Res. Bull.,2008, 43(6):1463-1471.
    [68]Ohishi Y., Miyauchi Y., Ohsato H., et al. Controlled temperature coefficient of resonant frequency of Al2O3-TiO2 ceramics by annealing treatment. Jpn. J. Appl. Phys.,2004,43(6A):749-751.
    [69]Miyauchi Y, Ohishi Y, Miyake S., et al. Improvement of the dielectric properties of rutile-doped Al2O3 ceramics by annealing treatment. J. Eur. Ceram. Soc.,2006, 26(10-11):2093-2096.
    [70]Ohishi Y, Miyauchi Y., Kakimoto K. I., et al. Microwave dielectric properties of Al2O3-TiO2 improved by addition of ZnO. Ferroelectrics,2005,327(1):27-31.
    [71]Dai Y, Guo T., Pei X., et al. Effects of MCAS glass additives on dielectric properties of Al2O3-TiO2 ceramics. Mater. Sci. Eng. A,2008,475(1-2):76-80.
    [72]Tzou W. C., Chen Y C., Chang S. L., et al. Microwave dielectric characteristics of glass-added (1-x)Al2O3-xTi02 ceramics. Jpn. J. Appl. Phys.,2002,41(12): 7422-7425.
    [73]Surendran K. P., Santha N., Mohanan P., et al. Temperature stable low loss ceramic dielectrics in (1-x)ZnAl2O4-xTiO2 system for microwave substrate applications. Eur. Phys. J. B,2004,41(3):301-306.
    [74]Lei W., Lu W. Z., Zhu J. H., et al. Microwave dielectric properties of ZnAl2O4-TiO2 spinel-based composites. Mater. Lett.,2007,61(19-20):4066-4069.
    [75]Lei W., Lu W. Z., Zhu J. H., et al. Effects of heating rate on microwave dielectric properties of (1-x)ZnAl2O4-xTiO2(x=0.21) ceramics. Ceram. Int.,2009,35(1): 277-280.
    [76]Lu W. Z., Lei W., Zhu J. H., et al. Calcining temperature dependence of microwave dielectric properties of (1-x)ZnAl2O4-xTiO2(x=0.21) ceramics. Jpn. J. Appl. Phys., 2007,46(29):724-726.
    [77]Lei W., Lu W. Z., Zhu J. H., et al. Modification of ZnAl2O4-based low-permittivity microwave dielectric ceramics by adding 2MO-TiO2(M=Co, Mg, and Mn). J. Am. Ceram. Soc.,2008,91(6):1958-1961.
    [78]Lei W., Lu W. Z., Liu D., et al. Phase evolution and microwave dielectric properties of (1-x)Zn2A104-xMg2Ti04 Ceramics. J. Am. Ceram. Soc.,2009,92(1):105-109.
    [79]Lei W., Lu W. Z., Wang X. C., et al. Synthesis of (1-x)ZnAl2O4-xTiO2 microwave dielectric ceramics by molten-salt process. J. Alloys Compd.,2010,508(2): 507-511.
    [80]Lei W., Lu W. Z., Wang X. H., et al. Phase composition and microwave dielectric properties of Zn2AlO4-Co2TiO4 low-permittivity ceramics with high quality factor. J. Am. Ceram. Soc.,2011,94(1):20-23.
    [81]Watanabe M., Ogawa H., Ohsato H., et al. Microwave dielectric properties of Y2Ba(Cu1-xZnx)O5 solid solutions. Jpn. J. Appl. Phys.,1998,37(9B):5360-5363.
    [82]Mori K., Ogawa H., Kan A., et al. Microwave dielectric property-microstructure relationships in Y2Ba(Cu1-xMgx)O5 solid solutions. J. Eur. Ceram. Soc.,2004,24(6): 1749-1753.
    [83]Kan A., Ogawa H., Ohsato H. Microwave dielectric properties of Y2BaCuO5 compound substituted Ni for Cu. Mater. Sci. Eng. B,2001,79(2):180-182.
    [84]Kan A., Ogawa H., Ohsato H., et al. Influence of M(M=Zn and Ni) substitution for Cu on microwave dielectric characteristics of Yb2Ba(Cu1-xMx)O5 solid solutions. Jpn. J. Appl. Phys.,2001,40(9B):5774-5778.
    [85]Kan A., Ogawa H., Ohsato H. Role of Zn substitution for Cu on the microwave dielectric properties and crystal structure of Eu2Ba(Cu1-xZnx)O5 solid solutions. Physica B:Condensed Matter,2002,322(3-4):403-407.
    [86]Kan A., Ogawa H., Watanabe M., et al. Microwave dielectric properties of Sm2Ba(Cu1-xZnx)O5(x=0 to 1) solid solutions. Jpn. J. Appl. Phys.,1999,38(9B): 5629-5632.
    [87]Kan A., Ogawa H., Sugishita J. Effects of Dy substitution for Y on microwave dielectric properties of High-Q R2O3-BaO-ZnO(R=Y and Dy) system. J. Eur. Ceram. Soc.,2004,24(6):1741-1744.
    [88]Ogawa H., Kan A., Yokota S., et al. Microwave dielectric properties and crystal structure refinements in M(M=Sr,Ca) doped Nd2(Ba1-xMx)ZnO5 solid solutions. J. Eur. Ceram. Soc.,2001,21(10-11):1731-1734.
    [89]朱建华,吕文中,梁飞,等.新型低介微波介质陶瓷的结构及性能.电子元件与材料,2006,25(3):9-11.
    [90]Yoon S. H., Kim D. W., Cho S. Y., ct al. Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. J. Eur. Ceram. Soc.,2006,26(10-11):2051-2054.
    [91]Park I. H., Kim B. S., Kim K. Y., et al. Microwave dielectric properties and mixture behavior of CaWO4-Mg2SiO4 ceramics. Jpn. J. Appl. Phys.,2001,40(8): 4956-4960.
    [92]Guo Y. P., Ohsato H., Kakimoto K. I. Characterization and dielectric behavior of willemite and TiO-doped willemite ceramics at millimeter-wave frequency. J. Eur. Ceram. Soc.,2006,26(10-11):1827-1830.
    [93]Andou M., Tsunooka T., Higashida Y, et al. Development of high Q forsterite ceramics for high-frequency applications. In:The 2nd International Conference on Microwave Materials and Their Applications. York, UK:September 1-3,2002.
    [94]Tsunooka T., Androu M., Higashida Y, et al. Effects of TiO2 on sinterability and dielectric properties of high-Q forsterite ceramics. J. Eur. Ceram. Soc.,2003, 23(14):2573-2578.
    [95]Tsunooka T., Sugiyama T., Ohsato H., et al. Development of forsterite with high Q and zero temperature coefficient τf for millimeterwave dielectric ceramics. Key Eng. Mater.,2004,269:199-202.
    [96]Shin H., Shin H. K., Jung H. S., et al. Phase evolution and dielectric properties of MgTi2O5 ceramic sintered with lithium borosilicate glass. Mater. Res. Bull.,2005, 40(11):2021-2028.
    [97]Ovchar O. V., V'yunov O. I., Durilin D. A., et al. Synthesis and microwave dielectric properties of MgO-TiO2-SiO2 ceramics. Inorganic Mater.,2004,40(10): 1116-1121.
    [98]叶珣.Al2O3-TiO2系低介微波介质陶瓷的研究:[硕士学位论文].电子科学与技术系,华中科技大学,2007.
    [99]刘丹.Zn2AlO4-Li4Ti5O12系低介微波介质陶瓷的研究:[硕士学位论文].电子科学与技术系,华中科技大学,2008.
    [100]雷文.Zn2AlO4基低介电常数微波介质陶瓷的结构与性能:[博士学位论文].电子科学与技术系,华中科技大学,2008.
    [101]何建平.钛酸锶钡结构及其极化特性的第一性原理计算与实验研究:[博士学位论文].电子科学与技术系,华中科技大学,2012.
    [102]Mueller C. H., Romanofsky R. R., Miranda F. A. Ferroelectric thin film and broadband satellite systems. IEEE Potentials,2001,20(2):36-39.
    [103]Kozyrev A. B., Samoilova T. B., Golovkov A. A., et al. Nonlinear behabior of thin film SrTiO3 capacitors at microwave frequencies. J. Appl. Phys.,1998,84(6): 3326-3332.
    [104]Li H. C., Si W., West A. D., et al. Near single crystal-level dielectric loss and nonlinearity in pulsed laser deposited SrTiO3 thin films. Appl. Phys. Lett.,1998, 73(2):190-192.
    [105]Gevorgian S. S., Kollberg E. L. Do we really need ferroelectrics in paraelectric phase only in electrically controlled microwave devices? IRE Trans. MTT,2001, 49(11):2117-2124.
    [106]Chen C. L., Feng H. H., Zhang Z., et al. Epitaxial ferroelectric Ba0.5Sr0.5TiO3 thin films for room-temperature tunable element applications. Appl. Phys. Lett.,1999, 75(3):412-414.
    [107]Outzourhit A., Trefny J. U., Kito T., et al. Tunability of the dielectric constant of Ba0.1Sr0.9TiO3 ceramics in the paraelectric state. J. Mater. Res.,1995,10(6): 1411-1417.
    [108]Sengupta L., Ngo E., Stowell S., et al. Ceramic ferroelectric composite material-BSTO-MgO. US Patent,5427988,1995.
    [109]Sengupta L. Ceramic ferroelectric composite material-BSTO-magnesium based compound. US Patent,5635434,1997.
    [110]Zhang J., Zhai J., Chou X., et al. Dielectric abnormities in Ba0.6Sr0.4TiO3-MgAl2O4 composite ceramics. J. Am. Ceram. Soc.,2008,91(10):3258-3262.
    [111]Chou X., Zhai J., Yao X. Dielectric tunable properties of low dielectric constant Ba0.5Sr0.5TiO3-Mg2TiO4 microwave composite ceramics. Appl. Phys. Lett.,2007, 91(2):122908.
    [112]Zhang M., Zhai J., Zhang J., et al. Effect of MgWO4 content on properties of composite ceramics for tunable microwave applications. Mater. Res. Bull.,2011,46(7):1102-1106.
    [113]Zhang M., Zhai J., Shen B., et al. MgO doping effects on dielectric properties of Ba0.55Sr0.45TiO3 ceramics. J. Am. Ceram. Soc.,2011,94(11):3883-3888.
    [114]Chang W., Sengupta L. MgO-mixed Ba0.6Sr0.4TiO3 bulk ceramics and thin films for tunable microwave applications. J. Appl. Phys.,2002,92(7):3941-3946.
    [115]汪小红,吕文中,刘坚,等.MgO对Ba0.6Sr0.4TiO3铁电陶瓷材料结构及低频特性的影响.硅酸盐学报,2004,32(6):738-742.
    [116]Chiu. L. H., Sengupta L., Stowell S., et al. Ceramic ferroelectric composite materials with enhanced electronic properties BSTO-Mg based compound-rare earth oxide. US Patent,6074971,2000.
    [117]Wang X. H., Lu W. Z., Liu J., et al. Effects of La2O3 additions on properties of Bao.6Sro.4Ti03-MgO ceramics for phase shifter applications. J. Eur. Ceram. Soc., 2006,26(10-11):1981-1985.
    [118]Teoh L. G., Lee Y. C., Huang Y. L., et al. Influence of 4ZnO-B2O3 addition on dielectric properties and microstructures of barium strontium titanate. Int. J. Appl. Ceram. Technol.,2010,7(S1):E71-E79.
    [119]Rhim S. M., Hong S., Bak H., et al. Effects of B2O3 addition on the dielectric and ferroelectric properties of Ba0.7Sr0.3TiO3 ceramics. J. Am. Ceram. Soc.,2000,83(5): 1145-1148.
    [120]Liang X., Wu W., Meng Z. Dielectric and tunable characteristics of barium strontium titanate modified with Al2O3 addition. Mater. Sci. Eng. B,2003,99(1-3): 366-369.
    [121]Wu L., Wu S., Chang F. C., et al. DC field dependence of dielectric constant and loss factor of Al2O3 doped barium strontium titanate for application in phased array antennas. J. Mater. Sci.,2000,35(23):5945-5950.
    [122]Liang R. H., Dong X. L., Chen Y, et al. Effect of ZrO2 doping on the tunable and dielectric properties of Ba0.55Sr0.45TiO3/MgO composites for microwave tunable application. Mater. Res. Bull.,2006,41(7):1295-1302.
    [123]杨涛.大尺寸Ba1-xSrxTiO3基铁电陶瓷薄板的制备与性能研究:[硕士学位论文].电子科学与技术系,华中科技大学,2006.
    [124]李闯.一步合成法制备(Ba, Sr)TiO3铁电材料:[硕士学位论文].电子科学与技术系,华中科技大学,2007.
    [125]潘磊.钛酸锶钡调谐材料的低频介电性能及其改性研究:[硕士学位论文].电子科学与技术系,华中科技大学,2007.
    [126]Wang L. Y., Tang G. Y., Xu Z. K. Preparation and electrical properties of multilayer ZnO varistors with water-based tape casting. Ceram. Int.,2009,35(1):487-492.
    [127]朱建华.钙钛矿添加剂对钨青铜型微波介质陶瓷的固溶调控研究:[博士学位论文].电子科学与技术系,华中科技大学,2007.
    [128]Hakki B. W., Coleman P. D. A dielectric resonant method of measuring inductive capacitance in the millimeter range. IRE Trans. MTT,1960,8(4):402-410.
    [129]Kobayashi Y., Katoh M. Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method. IRE Trans. MTT,1985, 33(7):586-592.
    [130]吕文中,赖希伟.平行板谐振法测量微波介质陶瓷介电性能.电子元件与材料,2003,22(5):4-6.
    [131]谢甜甜.胶态成型固化特性及其应用技术研究:[博士学位论文].电子科学与技术系,华中科技大学,2009.
    [132]陈大明.先进陶瓷材料的注凝技术与应用.北京:国防工业出版社,2011.
    [133]Templeton A., Wang X., Penn S. J., et al. Microwave dielectric loss of titanium oxide. J. Am. Ceram. Soc.,2000,83(1):95-100.
    [134]Surendran K. P., Sebastian M. T., Manjusha M. V., et al. A low loss, dielectric substrate in ZnAl2O4-TiO2 system for microelectronic applications, J. Appl. Phys., 2005,98(4):044101.
    [135]Zheng Y., Zhao X., Lei W., et al. Effects of Bi2O3 addition on the microstructures and microwave dielectric characteristics of Ba6-3x(Sm0.2Nd0.8)8+2xTi18O54(x=2/3) ceramics. Mater. Lett.,2006,60(4):459-463.
    [136]Huang C. L., Hsu C. S., Lin R. J. Improved high-Q) microwave dielectric resonator using ZnO and WO3-doped Zr0.8Sn0.2TiO4 ceramics. Mater. Res. Bull.,2001,36(11): 1985-1993.
    [137]Surendran K. P., Bijumon P. V., Mohanan P., et al. (1-x)MgAl2O4-xTiO2 dielectrics for microwave and millimeter wave applications. Appl. Phys. A,2005,81(4): 823-826.
    [138]Bian J. J., Yan K., Gao H. B. Effect of TiO2 addition on the microwave dielectric properties of La2/3(Mg1/2W1/2)O3. Mater. Chem. Phys.,2006,96(2-3):349-352.
    [139]Chaouchi A., Marinel S., Aliouat M., et al. Low temperature sintering of ZnTiO3/TiO2 based dielectric with controlled temperature coefficient. J. Eur. Cream. Soc.,2007,27(7):2561-2566.
    [140]Cesarano Ⅲ. J., Aksay I. A. Processing of highly concentrated aqueous α-A12O3 suspensions stabilized with polyelectrolytes. J. Am. Ceram. Soc.,1988,71(12): 1062-1067.
    [141]Xie Z. P., Cheng Y. B., Huang Y. Formation of silicon nitride bonded silicon carbide by aqueous gelcasting. Mater. Sci. Eng. A,2003,349(1-2):20-28.
    [142]Dong M. J., Mao X. J., Zhang Z. Q., et al. Gelcasting of SiC using epoxy resin as gel former. Ceram. Int.,2009,35(4):1363-1366.
    [143]Franks G. V., Velamakanni B. V., Lange F. F. Vibraforming and in situ flocculation of consolidated, coagulated, alumina slurried. J. Am. Ceram. Soc.,1995,78(5): 1324-1328.
    [144]Chen W., Kinemuchi Y, Tamura T., et al. Fabrication of textured ferroelectric ceramics by magnetic alignment via gelcasting. J. Eur. Ceram. Soc.,2007,27(2-3): 655-661.
    [145]Guo D., Cai K., Li L., et al. Application of gelcasting to the fabrication of piezoelectric ceramic parts. J. Eur. Ceram. Soc.,2003,23(7):1131-1137.
    [146]Guo D., Li L., Cai K., et al. Rapid prototyping of piezoelectric ceramics via selective laser sintering and gelcasting. J. Am. Ceram. Soc.,2004,87(1):17-22.
    [147]Zhu J. H., Kipkoech E. R., Lu W. Z. Effects of LnA103 (Ln=La, Nd, Sm) additives on the properties of Ba4.2Nd9.2Ti18O54 ceramics. J. Eur. Ceram. Soc.,2006,26(10): 2027-2030.
    [148]Kong L. B., Li S., Zhang T. S., et al. Electrically tunable dielectric materials and strategies to improve their performances. Prog. Mater. Sci.,2010,55(8):840-893.
    [149]Zhang J. J., Zhai J. W., Zhang M. W., et al. Structure-dielectric properties relationship in Mg-Mn Co-doped Ba0.4Sr0.6TiO3/MgAl2O4 tunable microwave composite ceramics. J. Phys. D:Appl. Phys.,2009,42(7):075414.
    [150]Liang R. H., Dong X. L., Chen Y., et al. Improvement of microwave loss tangent and tunability of Ba0.55Sr0.45TiO3/MgO composites using the heterogeneous precipitation method. J. Am. Ceram. Soc.,2006,89(10):3273-3276.
    [151]Zhou L., Vilarinho P. M., Baptista J. L. Dielectric properties of bismuth doped Ba1-xSrxTiO3 ceramics. J. Eur. Ceram. Soc.,2001,21(4):531-534.
    [152]Radhapiyari L., Thakur O. P., Prakash C. Structural and dielectric properties of the system Ba1-xSrxFe0.01Ti0.99O3. Mater. Lett.,2003,57(12):1824-1829.
    [153]Zhang M., Zhai J., Shen B., et al. Dielectric and tunable characteristics of Bao.4Sro.6Ti03-BaW04 composite ceramics for microwave applications. Mater. Res. Bull.,2011,46(7):1045-1050.
    [154]Shannon R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A,1976,32:751-767.
    [155]Mathur S., Veith M., Haas M., et al. Single-source sol-gel synthesis of nanocrystalline ZnAl2O4:structural and optical properties. J. Am. Ceram.Soc.,2001, 84(9):1921-1928.
    [156]Wei X., Chen D. Synthesis and characterization of nanosized zinc aluminate spinel by sol-gel technique. Mater. Lett.,2006,60(6):823-827.
    [157]Zhai Y., Ye C., Xia F., et al. Preparation of La0.8Sr0.2Ga0.83Mg0.17O2.815 powders by microwave-induced poly(vinyl alcohol) solution polymerization. J. Power Sources, 2006,162(1):146-150.
    [158]Chen Z. Z., Shi E. W., Zheng Y. Q., et al. Particle size control and dependence on precursor pH:synthesis uniform submicrometer zinc aluminate particles. J. Am. Ceram. Soc.,2005,88(1):127-133.
    [159]Kumar A., Devi P. S., Sharma A. D., et al. A novel spray-pyrolysis technique to produce nanocrystalline lanthanum strontium manganite powder. J. Am. Ceram. Soc.,2005,88(4):971-973.
    [160]Valenzuela M. A., Bosch P., Aguilar-Rios G., et al. Comparison between sol-gel, coprecipitation and wet mixing synthesis of ZnAl2O4. J. Sol-Gel Sci. Technol., 1997,8(1-3):107-110.
    [161]Kang CH. Y., Kusaba H., Yahiro H., et al. Preparation, characterization and electrical property of Mn-doped ceria-based oxides. Solid State Ionics,2006, 177(19-25):1799-1802.
    [162]Zhang S. W., Jayaseelan D. D., Bhattacharya G, et al. Molten salt synthesis of magnesium aluminate (MgAl2O4) spinel powder. J. Am. Ceram. Soc.,2006,89(5): 1724-1726.
    [163]Yang Z. P., Chang Y. F., Li H. Piezoelectric and dielectric properties of PZT-PZN-PMS ceramics prepared by molten salt synthesis method. Mater. Res. Bull.,2005,40(12):2110-2119.
    [164]Li Z. S., Zhang S. W., Lee W. E. Molten salt synthesis of zinc aluminate powder. J. Eur. Ceram. Soc.,2007,27(12):3407-3412.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700