用户名: 密码: 验证码:
基于静电纺纤维的先进锂离子电池隔膜材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可充电锂离子电池具有比能量大,工作电压高,循环寿命长,无记忆效应,安全性能好且能快速充放电等优点,因此近年来成为新型电源技术研究的热点。隔膜是锂离子电池的重要组成部分,在电池中起着隔离正、负电极并使电池内的电子不能自由穿过,但允许电解液中的离子在正负电极间自由通过的作用。隔膜性能的优劣决定电池的界面结构、内阻等,直接影响电池的容量、循环性能以及安全性能等特性。性能优异的隔膜对提高电池的综合性能具有重要的作用。
     本论文主要研究用静电纺丝法制备和改性先进锂离子电池隔膜材料,包括以下几个部分的内容:(1)用静电纺丝和高温固相反应相结合的方法以及溶胶-凝胶法制备钙钛矿型锂快离子导体陶瓷纳米材料锂镧钛氧化物LLTO;(2)静电纺锂镧钛氧化物La0.55Li0.35TiO3(简称LLTO)/聚丙烯腈Polyacrylonitrile(简称PAN)复合纤维膜的制备及其电化学性能的研究;(3)静电纺磷酸锂铝钛Li1.4Al0.4Ti1.6(PO4)3(简称LATP)/PAN复合纤维膜的制备及其电化学性能的研究;(4)静电纺聚偏氟乙烯Polyvinylidene Fluoride(简称PVDF)纤维改性商用Celgard 2400聚丙烯微孔隔膜的研究。
     本论文采用静电纺丝和高温固相反应相结合的方法以及溶胶-凝胶法等两种方法制备钙钛矿型锂快离子导体陶瓷纳米材料锂镧钛氧化物LLTO。将这两种方法制备的钙钛矿型锂快离子导体陶瓷纳米材料锂镧钛氧化物LLTO的晶相结构、微观形貌和电导率等进行了对比。结果发现,与静电纺丝和高温固相反应相结合的方法相比,用溶胶-凝胶法合成样品的X射线衍射(X-Ray Diffraction)图谱的杂峰较少,样品的颗粒均匀,有轻微的团聚现象,且具有较高的离子电导率,因此本课题选用溶胶-凝胶法制备锂快离子导体陶瓷纳米材料。
     用静电纺丝法制备含不同钙钛矿型锂快离子导体陶瓷纳米颗粒锂镧钛氧化物LLTO质量百分比(0%、5%、10%和15%)的LLTO/PAN复合纤维膜。测试了静电纺LLTO/PAN复合纤维膜的电解液吸液率,发现随着钙钛矿型锂快离子导体陶瓷纳米颗粒锂镧钛氧化物LLTO含量的增加,静电纺LLTO/PAN复合纤维膜的电解液吸液率略微增加。对电解液浸润的静电纺LLTO/PAN复合纤维膜的锂离子电导率、电化学稳定窗口以及与金属锂电极的界面阻抗进行了研究,结果发现随着钙钛矿型锂快离子导体纳米陶瓷颗粒锂镧钛氧化物LLTO质量百分含量的增加,电解液浸润的静电纺LLTO/PAN复合纤维膜的锂离子电导率增加,电化学稳定窗口增大,与金属锂电极的界面阻抗降低。分别用含钙钛矿型锂快离子导体陶瓷纳米颗粒锂镧钛氧化物LLTO质量百分比为10%的静电纺LLTO/PAN复合纤维膜、静电纺PAN纤维膜和商用Celgard 2400聚烯烃微孔膜作隔膜,以磷酸铁锂LiFePO4为正极,金属锂为负极制备锂离子电池,并测试了制备电池的充放电性能和循环性能。结果表明,含钙钛矿型锂快离子导体陶瓷纳米颗粒锂镧钛氧化物LLTO质量百分比为10%的静电纺LLTO/PAN复合纤维膜的电池与其他锂离子电池相比,具有较高的首周充放电容量和稳定的循环性能。
     用溶胶-凝胶法制备钠超离子导体型Na Super Ionic Conductor(简称NASICON)锂快离子导体纳米陶瓷颗粒磷酸锂铝钛Li1.4Al0.4Ti1.6 (PO4)3(简称LATP)并用静电纺丝法制备含不同NASICON型锂快离子导体纳米陶瓷颗粒磷酸锂铝钛LATP质量百分比(0%、5%、10%和15%)的LATP/PAN复合纤维膜。测试了静电纺LATP/PAN复合纤维膜的电解液吸液率,发现随着NASICON型锂快离子导体陶瓷纳米颗粒磷酸锂铝钛LATP含量的增加,静电纺LATP/PAN复合纤维膜的电解液吸液率略有增加。通过对电解液浸润的静电纺LATP/PAN复合纤维膜的锂离子电导率、电化学稳定窗口以及与金属锂电极的界面阻抗的研究,结果表明随着NASICON型锂快离子导体纳米陶瓷颗粒磷酸锂铝钛LATP质量百分含量的增加,电解液浸润的静电纺LATP/PAN复合纤维膜的锂离子电导率增加,电化学稳定窗口增大,与金属锂电极的界面阻抗降低。用磷酸铁锂LiFePO4作正极,金属锂片作负极,分别用含质量百分比为15%的磷酸锂铝钛LATP静电纺LATP/PAN复合纤维膜,静电纺PAN纤维膜和商用Celgard 2400聚丙烯微孔膜作隔膜制备锂离子电池,并对制备的锂离子电池的充放电性能和循环性能进行测试,结果表明含质量百分比为15%的NASICON型锂快离子导体纳米陶瓷颗粒磷酸锂铝钛LATP静电纺LATP/PAN复合纤维膜的电池较其他电池具有较高的首周充放电容量和良好的循环性能。
     通过静电纺丝的方法将聚偏氟乙烯(PVDF)沉积到商用Celgard2400聚丙烯微孔隔膜上。用氩常压等离子体对商业用Celgard 2400聚丙烯微孔隔膜进行处理,发现等离子体处理增强了静电纺丝聚偏氟乙烯(PVDF)纤维膜与商业用Celgard 2400聚丙烯微孔隔膜之间的粘结力。对静电纺PVDF/Celgard 2400聚丙烯复合纤维膜的电解液吸液率进行测试,发现用静电纺丝的方法将聚偏氟乙烯(PVDF)以纳米纤维的方式沉积到商业用Celgard 2400聚丙烯微孔隔膜的方法可以明显改善商业用Celgard 2400聚丙烯微孔隔膜与电解液间的亲和性。同时测试了商业用Celgard 2400聚丙烯微孔隔膜和静电纺PVDF/Celgard 2400聚丙烯复合纤维膜的电化学稳定窗口,结果表明静电纺PVDF/Celgard 2400聚丙烯复合纤维膜相较于商业用Celgard2400聚丙烯微孔隔膜,具有较宽的电化学稳定窗口。
Rechargeable Lithium-ion batteries (LIBs) have great energy and power density, high working voltage, long cycle life, no memory effect, good safety performance and fast-charging capability, etc., thus they will have become the new power source technology research hotspot in recent years. The separator is a critical component in LIBs and is placed between the positive electrode and the negative electrode to prevent physical contact of the electrodes while enabling free ionic transport and isolating electronic flow. The separator performance quality which determines the battery interface structure, internal resistance etc., directly affects the battery capacity, cycling performance and safety properties and other characteristics. The separator with excellent properties plays a key role in improving the comprehensive performance of the battery.
     This paper is mainly about the study on using the electrospinning technique to prepare and modified separator materials for the advanced lithium-ion batteries(LIBs), including the following aspects:(1) Electrospinning technique is combined with the high temperature solid-state reaction method and the sol-gel method to prepare the perovskite-type lithium fast ion conductor ceramic nano material lithium-lanthanum -titanate oxide (LLTO); (2) The research on the fabrication and electrochemical characterization of the electrospinning LLTO/PAN composite fibrous membrane for lithium-ion battery separator; (3) The research on the fabrication and electrochemical characterization of the electrospinning LATP/PAN composite fibrous membrane forlithium-ion battery separator; (4) The research on the modification of the Celgared 2400 polypropylene microporous membrane by the electrospun PVDF nanofibers.
     Two methods (the electrospinning technique combined with high temperature solid-state reaction, the sol-gel method) were used to prepare the perovskite-type lithium fast ion conductor ceramic nanoparticles lithium lanthanum titanate oxide (LLTO). The crystal structure, morphology, and the ionic conductivity of the perovskite-type lithium fast ion conductor ceramic nanoparticles lithium lanthanum titanate oxide (LLTO) which was prepared by these two methods were characterized and measured. The results demonstrated that the samples prepared by the sol-gel method can get relatively pure crystalline phase and have uniform particle size, slight agglomeration and relatively high ionic conductivity.
     The electrospinning technique was used to prepare the LLTO/PAN composite fiber membrane with different lithium lanthanum titanate oxide (LLTO) content (0%,5%,10% and 15%). The electrolyte uptake of the electrospun LLTO/PAN composite fiber membranes was tested and found that with an increase of the perovskite-type lithium fast ion conductor ceramic nano material lithium lanthanum titanate oxide (LLTO) content, the electrolyte uptake of the electrospun LLTO/PAN composite fiber membranes slightly increased. When the lithium ion conductivity, the electrochemical stability window and the interface resistance of the electrolyte-soaked electrospun LLTO/PAN composite fiber membrane were tested, it was found that as the perovskite-type lithium fast ion conductor ceramic nano material lithium lanthanum titanate oxide LLTO content increased, the electrospun LLTO/PAN composite fiber-based membranes had higher lithium ion conductivity, higher electrochemical stability window, and lower interfacial resistance with lithium electrode. In addition, lithium//1 M LiPF6/EC/EMC//lithium iron phosphate cells containing LLTO/PAN composite fiber-based membranes used as the separator have exhibited good charge/discharge capacity and cycle performance.
     Using the sol-gel method to prepare the NASICON-type lithium fast ion conductor ceramic nanoparticles lithium aluminum titanium phosphate (LATP).The electrospinning technique was used to prepare the LATP/PAN composite fiber membrane with different LATP content (0%,5%,10% and 15%). The electrolyte uptake of the electrospun LATP/PAN composite fiber membranes was tested and the results showed as the NASICON-type lithium fast ion conductor ceramic nano material lithium aluminum titanium phosphate (LATP) content increase, the electrolyte uptake of electrospun LATP/PAN composite fiber membranes slightly increase. The lithium ion conductivity, the electrochemical stability window and the interface resistance of the electrolyte-soaked electrospun LATP/PAN composite fiber membrane were also measured and the consequence exhibited that as the NASICON-type lithium fast ion conductor ceramic nano material lithium aluminum titanium phosphate (LATP) content increase, the electrospun LATP/PAN composite fiber-based membranes had higher lithium ion conductivity, higher electrochemical stability window, and lower interfacial resistance with lithium electrode. Additionally, lithium//1 M LiPF6/EC/EMC//lithium iron phosphate cells including LATP/PAN composite fiber-based membranes utilized as the separator demonstrated good charge/discharge capacity and cycle performance.
     Use the electrospinning technique to deposite the PVDF onto the Celgard 2400 polypropylene microporous membrane. The argon atmospheric pressure plasma technique was used to treat the Celgard 2400 polypropylene microporous membrane, which can improve the adhesion between the electrospun PVDF fiber and the Celgard 2400 polypropylene microporous membrane. The electrolyte uptake of electrospun PVDF/Celgard 2400 polypropylene composite membrane was checked and it was found that the elecrospun PVDF fiber can greatly improved the affinity between the Celgard 2400 polypropylene microporous membrane and the electrolyte. Finally, the electrochemical stability window of the commercial Celgard 2400 polypropylene microporous membrane and the electrospun PVDF/Celgard 2400 polypropylene composite membrane was tested and the results showed that the electrospun PVDF/Celgard 2400 polypropylene composite membrane had relatively wider electrochemical stability window than the commercial Celagard 2400 polypropylene microporous membrane.
引文
[1]M.Armand, J.-M. Tarascon. Nature.451 (2008) 652
    [2]A. Manthiram, A.V. Murugan, A. Sarkar, T. Muraliganth. Energy Environ. Sci.1 (2008)621
    [3]侯侠,王静.21世纪的绿色能源.内蒙古石油化工.12(2006)52
    [4]张榴晨.电力电子与绿色能源.电子电力与绿色能源.2(2006)57
    [5]黎建新.绿色能源:我国能源可持续利用之路.电力技术经济.5(1995)27
    [6]王联芝.绿色能源的现状及展望.湖北民族学院学报(自然科学版)21(2)(2003)49
    [7]吴宇平,张汉平,吴锋等.绿色电源材料.北京:化学工业出版社,2008
    [8]Y.G. Guo, J.S. Hu, L.J. Wan. Adv. Mater.20 (2008) 2878
    [9]吴宇平,万春荣,姜长印等.锂离子电池.北京:化学工业出版社,2002
    [10]吴宇平,戴晓兵,马军旗等.锂离子电池-应用与实践.北京:化学工业出版社,2004
    [11]郭炳焜,徐徽,王先友,肖立新等.锂离子电池.长沙:中南大学出版社,2002
    [12]郭炳焜,李新海,杨青松.化学电源-电池原理及制造技术.长沙:中南大学出版社,2009
    [13]郑洪河.锂离子电池电解质。北京:化学工业出版社,2007
    [14]李建保,李敬锋.新能源材料及其应用技术.北京:清华大学出版社,2005
    [15]J. Saunier, F. Alloin, J.Y. Sanchez, G. Caillon, J. Power Sources.119-121 (2003) 454
    [16]Y.M. Lee, J.W. Kim, N.S. Choi, J.A. Lee, W.H. Seol and J.K. Park. J. Power Sources 139 (2005) 235
    [17]F.G.B. Ooms, E.M. Kelder, J. Schoonman, N. Gerrits, J. Smedinga and G. Callis. J. Power Sources 97-98 (2001) 598
    [18]T.H. Cho, M. Tanaka, H. Onishi, Y. Kondo, T. Nakamura, H. Yamazaki, S. Tanase, T. Sakai. J. Power Sources 181 (2008) 155
    [19]P.K. Arora, Z.M. Zhang.Chem. Rev.104 (2004) 4419
    [20]S.S. Zhang.J. Power Sources 164 (2007) 351
    [21]任旭梅,吴锋,吴川,李汉军,黄学杰.锂离子二次电池用隔膜的制备及其性质.电化学.7(2)(2001)234
    [22]王洪,邓璋琼,陈鸣才.一种用于锂离子电池的无机复合隔膜.复合材料学报.26(1)(2009)59
    [23]吴大勇,刘昌炎.锂离子电池隔膜研究进展.新材料产业.9(2006)48
    [24]吴大勇,唐代华.锂离子电池隔膜研究及国产化进展.新材料产业.8(2007)30
    [1]Tao Han. Electro spinning and Nanofibers. Germany:VDM Verlag Dr.Muller Aktiengesellschaft & Co.KG.2009:1
    [2]J. Doshi and D.H. Reneker. J.Electrostatics.35(1995)151
    [3]A.L.Yarin,S.Koombhongse and D.H.Reneker.J.Appl.Phys.90(2001)4836
    [4]D.H. Reneker and T.Han.Mater.Res.Soc.Symp.Proc.948(2007)0948-B07-01.
    [5]T.Han, D.H. Reneker and A.L.Yarin.Polymer.48(2007)6064
    [6]D.H. Reneker and A.L.Yarin.J. Appl.Phys.87 (2000)4531
    [7]A.L.Yarin, S.Koombhongse and D.H. Reneker. Appl.Phys.89(2001)3018
    [8]吴大诚,杜仲良和高绪珊.纳米纤维.北京:化学工业出版社.2003:42
    [9]吴佳林,周美凤和张锋.静电纺纳米纤维的研究历史、基本原理及影响因素.陕西纺织.2010:57
    [10]宋进疆,陈帮烈.静电纺纳米纤维非织造布及其应用前景.福建轻纺.2009:37
    [11]Gray.Phil.Trans.37(1731-1732)227
    [12]L.Rayleigh. J.Philos. Mag.14 (1882)184
    [13]J.F.Cooley.US Patent Specification.(1902)692631.
    [14]A.Formhals. US Patent Specification.(1934)1975504.
    [15]A. Formhals. US Patent Specification.(1939)2160962
    [16]B.Vonnegut and R.L.Neubauer. J.Colloid Sci.7(1952)616
    [17]V.D.Drozin. J.Colloid Sci.10(1995) 158
    [18]H.L.Simons.US patent.(1966)3280229.
    [19]P.K.Baumgarten. J.Colloid Inter.36(1971) 71
    [20]L.Larrondo. J.Poly.Sci.19(1981) 909
    [21]C.Buchko,L.C.Chen and Y.Shen. Polymer.40(1999) 7397
    [22]H.Fong and I.Chun. Polymer.40(1999) 4585
    [23]A.F.Spivak,Y.A.Dzenis and D.H.Reneker. Mech.Res.Com.27(2000) 37
    [24]J.M.Deitel, J.Kleinmeyer and D.Harris. Polymer.42 (2oo1) 261
    [25]D.H.Reneker and I.Chun. Nanotechnology.7(1966) 216
    [26]P.V.Wanathumurthii, N.Bhattarai, H.Y.Kim and D.R.Lee. Chem Phys Lett.374 (2003)79
    [27]P.V. iswanathamurthi and D.R.Lee. Scripta Mater.49(2003) 577
    [28]胡平,张璐和方壮熙.纺织科学研究,2(2004)577
    [29]G.I.Taylor. Proc Roy Soc.A280(1964)383
    [30]D. Li, T. HJesse. and Y. Xia. J. Amer Cer Soc.89 (6) (2006) 1861
    [31]Ioannis S.Chronakis. J. Mater Proce.Tech.67 (2005) 283
    [32]薛聪,胡影影,黄争鸣.静电纺丝原理研究进展.高分子通报.2009:38
    [33]覃小红.PAN、PVA静电纺纳米纤维的机理及喷头装置的研究.东华大学博士论文.2005:9
    [34]关宏宇.高压静电纺丝技术制备功能性无机纳米纤维及其性能研究.东北师范大学博士学位论文.2010:7
    [35]D. Li and Y. Xia. Adv.Mater.14(2004) 1151
    [36]A.L. Yarin,S.Koombhongse, D.H.Reneker.J.Appl.Phys.90(2001)4836
    [37]Y.M.Shin, M.M.Hohman and GC.Rutledge. Polymer.42 (2001) 9955.
    [38]M.GMckee,G.L.Wilkes and R.U.Colby.Macromolecules.37(2004) 1760
    [39]A.Koski,K.Yim and S.Shivkumar.Mater.Lett.58(2004)493
    [40]J.TAO, S.Shivkumar. Mater.Lett.61(2007)493.2325
    [41]H.Fong, I.Chun,D.and H.Reneker.Polymer.40(1999)4585
    [42]S.A.Theron,E.Zussman and A.L.Yarin. Polymer.45(2004)2017
    [43]S.L.Shenoy,W.D.Bates and H.L.Frisch. Polymer.46(2005)3372
    [44]S.Tripatanasuwan, Z.X.Zhong and D.HA.Reneker. Polymer.48(2007)5742
    [45]吴宇平,戴晓兵,马军旗等.锂离子电池-应用与实践.北京:化学工业出版社,2004
    [46]郭炳焜,徐徽,王先友,肖立新等.锂离子电池.长沙:中南大学出版社,2002
    [47]郭炳焜,李新海,杨青松.化学电源-电池原理及制造技术.长沙:中南大学出版社,2009
    [48]郑洪河.锂离子电池电解质。北京:化学工业出版社,2007
    [49]内田隆裕.电池.北京:科学出版社,2004
    [50]L·I·安特罗波夫.理论电化学.吴仲达等译.北京:高等教育出版社,1982
    [51]H.T.库特利雅采夫等.应用电化学.陈国亮等译.上海:复旦大学出版社,1992
    [52]M.A.达索杨.化学电源.吴寿松译.北京:国防工业出版社,1965
    [53]Davidlinden主编.实用电池手册.何昂等译.新乡:国营七五五厂翻译出版社,1987
    [54]W.S.Harris.The doctor thesis of University of California.1958
    [55]W.V.Schalkwijk.B.Scrosati.Advances in Lithium-Ion Batteries.Springer US,2002
    [56]M.S.Whittingham, Science 11(1976)1126
    [57]L.A.Dominey. Nonaqueous Electrochemistry. Marcel-Dekker:New York,1999
    [58]M.Armand, D.W.Murphy. Materials for Advanced Batteries.Plenm Press:New York,1980
    [59]T.Nagaura.Proceedings of the 5th International Seminar on Lithium Battery Technology and Applications. Deerfield Beach, Florida.USA,1990
    [60]O. Kazunori, M.Yokokawa.10th Int. Seminar of Primary and Secondary Battery Technology Applications, Deerfield Beach, Florida.USA,1993
    [61]A.S.Gozdz, C.N.Schmutz, J.M.Tarascon, P.C.Warren.Polymeric electrolytic cell separator membrane.US Patent No.5418091,1995
    [62]A.S.Gozdz, C.N.Schmutz, J.M. Rechargeable lithium intercalation battery with hybrid polymeric electrolyte. US Patent No.5296318,1994
    [63]A.S.Gozdz, C.N.Schmutz, J.M.Tarascon, P.C.Method of making an electrolyte activatable lithium-ion rechargeable battery cell.US Patent No.5456000,1995
    [64]P.Arora and Z.M.Zhang. American Chemical Society (chemical Reviews). 104(2004)4419
    [65]Sheng Shui Zhang.J.Power Source.164(2007)351
    [66]胡勇胜.锂离子电池新型功能电解质材料研究.中国科学院研究生院博士学位论文.2004
    [67]崔振宇.聚偏氟乙烯多孔膜结构及其聚合物锂离子电池隔膜的性能.浙江大学博士论文.2008
    [68]陈继伟.湿法无纺布型锂离子电池隔膜材料的研究.华南理工大学硕士研究生毕业论文.2009
    [69]电子元器件专业培训教材编写组.化学电源(上、下册).成都:电子工业出版社,1984
    [70]F.Joho, P.Novaka, M.E.Spahrb.J.Electrochem.Soc.149 (2002) A1020
    [71]J.Fan, S.F.Peter.J.Power Sources.54(1998) 165
    [72]Q.M.Zhong, U.Sacken. J.Power Sources.54(1995)221
    [73]Y.L.Lu, M.Wei, Z.Q.Wang. Electrochinica Acta.49 (2004)3261
    [74]S.F.Yang,Y.N.Song,K.Ngala. J.Power Sources.119-121(2003)239
    [75]Z.F.Ma, X.Z.Yuan, D.Li.Electrochem.Com.4 (2002)188
    [76]Z.S.Wen, J.Yang, B.F.Wang. Electrochem.Com.5 (2003)165
    [77]M.Winter, J.O.Besenhard.Electrochinica Acta.45 (1999)31
    [78]L.F.Xiao,Y.L.Cao,X.P.Ai,H.X.Yang. Electrochinica Acta.49 (2004)4857
    [79]J.Zhou,P.S.Fedkiw. Electrochinica Acta.48 (2003)2571
    [80]P.G.Balakrishnan,R.Ranesh,T.P.Kumar. J.Power Sources,155(2006)401
    [81]H.Yoshizawa,M.Ikoma. J.Power Sources,146(2005)121
    [82]G.Sarre,P.Blanchard,M.Broussely. J.Power Sources,127(2004)65
    [83]G.Ning,B.Haran,B.N.Popov. J.Power Sources,117(2003)160
    [84]S.Surampudi,D.H.Shen,C.K.Huang,E.Peled. J.Power Sources,43(1993)21
    [85]M.M.Wohlfahrt,C.Vogler,J.Garche. J.Power Sources,127(2004)58
    [86]C.P.Jan, W.Ulrich, W.Mario. J.Power Sources,153(2006)396
    [87]K.Xu.Chem Rev.104 (2004)4303
    [88]庄全超,武山,刘文元等.锂离子电池电解质锂盐研究进展.化学世界.43(2002)667
    [89]庄全超,刘文元,武山,陆兆达.锂及锂离子蓄电池有机溶剂研究进展.化学研究与应用.15(2003)25
    [90]H.V.Venkatasetty.Lithium Battery Technology.New York:John Wiley&Sons Inc.1984.
    [91]D.E.Fenton,J.M.Parker,P.V.Wright.Polymer.14(1973)589.
    [92]C.Berthier,W.Gorecki,B.Armand.Solid State Ionics.11 (1983)91.
    [93]P.G.Hall,D.J.Bannister,GR.Davie,K.M.F.Lebrocq,J.E.Mcintyre.Polymer Commu. 27(1986)98
    [94]M.Watanabe,S.Yamada,K.Sanui,N.Ogata.J.Chem Soc Chem Commu.82(1993) 804
    [95]G.Feullade,P.Perche.J Appl.Electrochem.5(1975)63.
    [96]A.K.illis,H.Cheradame, A.G.andini,J.F.Lenest.Macromolecules.17 (1984) 63.
    [97]F.Boudin,X.A.ndrieu, C.Jehoulet.J Power Sources.81-81(1999)804.
    [98]A.Eftekhari. J Power Sources.132(2004)240
    [99]J. M.Tarascon, M.Armand. Issues and challenges facing rechargeable lithium batteries.Nature 414(6861) (2001)359
    [100]G.Venugopal, J.M.oore, J.Howard. J Power Sources.77 (1999) 34
    [101]J.L.Gineste, GPourcelly.J Membrane Science.107 (1995) 155
    [102]F.G.B.Ooms, E.M.Kelder, J.Schoonman. J Power Sources.97-98 (2001)598
    [103]吴大勇.锂离子电池隔膜研究进展.新材料产业.NO.9(2006)48
    [104]高昆,胡信国和伊廷锋.锂离子电池聚烯烃隔膜的特征及发展现状.电池工业.NO.2(2007)122
    [105]伊廷锋,胡信国,高昆.锂离子电池隔膜的研究和发展现状.电池工业.NO.6(2005)468
    [1]T.Ishihara, H.Matsuda, M.Azmibin. Solid State Ionic.86-88 (1996) 197
    [2]谢颖.A2+B4+O3型钙钛矿晶体的结构相变和表面稳定性的研究.哈尔滨工业大学工学博士学位论文.2008
    [3]徐科,严洁.钙钛矿型稀土纳米复合氧化物制备及应用的研究进展.贵州大学学报(自然科学版).20(4)(2003)421
    [4]E.J.Baran.Structural Chemistry and Physicochemical Properties of Perovskite-link Materials.Catalysis Tody.8(1990)133
    [5]常振勇,崔连起.钙钛矿金属氧化物催化剂的研究与应用综述.精细石油化工.3(2002)49
    [6]欧阳颖,秦永宁,马智.纳米钙钛矿的性能及应用进展.天津化工.1(2002)4
    [7]A.G.Belous.J European Ceram Soc.21 (2001)1797
    [8]Y.Inaguma,C.Liquan,M.Itoh.Solid State Ionics.134 (2000) 219
    [9]李荣华,陈志鑫,王文继.功能材料.34(4)(2003)418
    [10]J.A.Alonso,J.Santamaria. Angew Chem Int Ed.39 (2000) 619
    [11]A.Varez.M.L.Sanjuan.M.A.Laguna.J Mater Chem.15 (2003)363
    [12]K.Mizumoto, S.H.ayashi. Solid State Ionics.116 (1999) 263
    [13]Y.Inaguma, L.Chen, M. Itoh, T.Nakamura, Solid State Ionics.85(10) (1993) 689-693
    [14]I.C.Popovic,E.Chirila,V.Popescu.V.Ciupina.G.Prodan.J.Mater.Sic.42(2007)3373-3 377
    [15]赖芝,忻新泉,周衡南.固相配位化学反应研究,无机化学学报,13(3)(1997)330-335
    [16]P.F. Yu, B.Cui, Q.Z. Shi. Mater. Sci&Eng. A.473 (2008)34
    [17]C.J.Brinker,G.W.Scherer.Sol-Gel Science:The Physics and Chemistry of Sol-gel Processing.Academic Press:Boston.MA.1990.
    [18]M.J.Alamu, D.C.Cameron. Thin Solid Films.(2000)455
    [19]A.Kachouane, M.Addou, A.Bougrine. Chem.&Phy.70(2001)285
    [20]N.D.Koone, T.W.Zerda.Diffusion and Optical Properties of Nd-doped Sol-gel Silica Glassed, J.Non-crys.Solids,183(3) (1998) 243
    [21]R.L.Huang, S.K.Ruan,Z.C.Kang, M.Z.Su.Radial Gradient-index Glass Prepared by the Sol-gel Process,Mater.Res.Bull.30(5)(1995)543
    [22]T.Yoko,K.Kamiya, K.Tanaka. J.Mater.Sci.25(9) (1990)3922
    [23]Y.Hu. Sol-gel Sci.Techn.18(3)(2000)235
    [24]YDjaoued, S.Badilescu, P.V.Ashrit, D.Bersani, P.P.Lottici, R.Bruning. J.Sol-gel Sci.Techn.24(3)(2002)247
    [25]任达森,崔晓莉,张群,沃松涛,杨锡良,章状健,陆明.溶胶法制备的二氧化硅和二氧化钛复合薄膜的性能.物理化学学报.19(9)(2003)829
    [26]X.T.Dong, GY.Hong.Synthesis and Properties of Cerium Oxide Nanometer Powders by Pyro lysis of Amorphous Cirate.Mater Sci.Technol.13 (1997)113
    [27]唐爱东,黄可龙.无机材料学报.21(2)(2006)397
    [28]徐庆,黄端平,陈文.中国稀土学报.21(5)(2003)541
    [29]冯志君,凌烈峰,宗清文.安庆师范学院学报.5(2)(1999)22
    [30]M.Vijayakumar.Y.Inaguma,M.Mashiko.Chem.Mater.16 (2004) 2719
    [31]李景新,温兆银,许晓雄,顾中华,徐孝和.柠檬酸络合法制备La0.56Li0.33TiO3锂离子导电材料.无机材料学报.22(3)(2007)432
    [32]A.G. Belous, O.Yanchevskiy, O.V'yunov, et.al, Peculiarities of Li0.5La0.5TiO3 Formation during the synthesis by Solid-State Reaction or Precipitation from Solutions, Chem Mater,2004,16(3):407
    [1]M.Armand, J.-M. Tarascon. Nature 451 (2008) 652
    [2]A. Manthiram, A.V. Murugan, A. Sarkar andT. Muraliganth.Energy Environ. Sci. 1(2008)621
    [3]Y.G. Guo, J.S. Hu, L.J. Wan. Adv. Mater.20 (2008) 2878
    [4]M.G. Kim and J. Cho. Adv. Funct. Mater.19 (2009) 1497
    [5]J. Saunier, F. Alloin, J.Y. Sanchez, G. Caillon, J. Power Sources.119-121 (2003) 454
    [6]Y.M. Lee, J.W. Kim, N.S. Choi, J.A. Lee, W.H. Seol and J.K. Park. J. Power Sources 139 (2005) 235
    [7]F.G.B. Ooms, E.M. Kelder, J. Schoonman, N. Gerrits, J. Smedinga and G. Callis. J. Power Sources 97-98 (2001) 598
    [8]T.H. Cho, M. Tanaka, H. Onishi, Y. Kondo, T. Nakamura, H. Yamazaki, S. Tanase, T. Sakai. J. Power Sources 181 (2008) 155
    [9]P.K. Arora, Z.M. Zhang.Chem. Rev.104 (2004) 4419
    [10]S.S. Zhang.J. Power Sources 164 (2007) 351
    [11]任旭梅,吴锋,吴川,李汉军,黄学杰.锂离子二次电池用隔膜的制备及其性质.电化学.7(2)(2001)234
    [12]王洪,邓璋琼,陈鸣才.一种用于锂离子电池的无机复合隔膜.复合材料学报.26(1)(2009)59
    [13]陈继伟.湿法无纺布型锂离子电池隔膜材料的研究.华南理工大学工程硕士学位论文.2009
    [14]崔闻宇.聚合物锂离子电池隔膜的研究.哈尔滨工业大学工学硕士学位论文.2006
    [15]王宜,詹怀宇,胡健,梁云,曾抒姝.无纺布型锂离子电池隔膜的研究进展.37(10)(2009)26
    [16]张传文,严玉蓉,区炜锋,朱锐细.静电纺丝法制备锂离子电池隔膜的研究进展.产业用纺织品.1(2009)1
    [17]C.R. Yang, Z.D. Jia, Z.C. Guan, L.M. Wang.J. Power Sources 189 (2009) 716
    [18]S.S. Choi, Y.S. Lee, C.W. Joob, S.G. Lee, J.K. Park and K.-S. Han. Electrochimica Acta 50 (2004) 339
    [19]D. Bansal, B. Meyer, M. Salomon. J. Power Sources 178 (2008) 848
    [20]H.R. Jung, D.H. Ju,W.J. Lee, X.W. Zhang, R. Kotek. Electrochimica Acta 54 (2009) 3630
    [21]F.Croce, GB.Appetecchi. B.Scrosati.Electrochim Acta.39 (1994) 2187.
    [22]B.Scrosati. Fundamentals and Performance. Wiley-VCH.(1998) 218
    [23]Z.X.Wang,W.D.Gao,L.Q.Chen andX.J.Huang.Solid State Ionic.154-155(2002) 51.
    [24]H.Tsutsumi, K.Takase, Y.Sumiyoshi and T.Oishi. Solid State Ionic.147 (2002) 317
    [25]S.Megahed,B.Scrosati.J.Power Source.51 (1994) 79.
    [26]M. Vijayakumar, Y. Inaguma, W. Mashiko and C. Bohnke.Chem. Mater.16 (2004) 2719
    [27]S. Stramare, V. Thangadurai, W. Weppner.Chem. Mater.15 (2003) 3974
    [28]G.Y. Adachi, N. Imanaka, S.J. Tamura. Chem. Rev.102 (2002) 2405
    [29]K. Dokko, N. Akutagawa, Y. Isshiki, K. Hoshina, K. Kanamura. Solid State Ionics 176(2005)2345
    [30]M. Hara, H. Nakano, K. Dokko, S. Okuda, A. Kaeriyama, K. Kanamura. J. Power Sources 189 (2009) 485-489.
    [31]Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Ichida, H. Ikuta, M. Wakihara.Solid State Commun.86 (1993) 689
    [32]A. Belous, O. Yanchevskiy, O. V'yunov. Chem. Mater.16(2004) 407
    [33]A. Varez, Y. Inaguma, M.T. Fernandez-Diaz, J.A. Alonso, J. Sanz. Chem. Mater. 15(2003)4637
    [34]M.Catti. Journal of Physics:Conference Series,117 (2008) 012008
    [35]L. Ji, A.J. Medford, X.W. Zhang. Polymer 50 (2009) 605
    [36]L. Ji, A.J. Medford, X.W. Zhang, J. Mater. Chem.19 (2009) 5593
    [37]X. Li, G. Cheruvally, J-K. Kim, J-W. Choi, J-H. Ahn and H-J. Ahn.J. Power Sources 167(2007)491
    [38]G. Cheruvally, J.K. Kim, J-W. Choi and C.E. Song.J. Power Sources 172 (2007) 863
    [39]X.W. Zhangb C.S.Wang, A.J. Appleby, F.E. Little. J. Power Sources 112 (2002) 209
    [40]X.W. Zhang, Y. Li, S.A. Kban, P.S. Fedkiw, J.Electrochem Soc,151 (2004) A1257
    [1]M.Armand, J.-M. Tarascon. Nature 451 (2008) 652
    [2]A. Manthiram, A.V. Murugan, A. Sarkar, T. Muraliganth.Energy Environ. Sci.1 (2008)621
    [3]Y.G. Guo, J.S. Hu, L.J. Wan. Adv. Mater.20 (2008) 2878
    [4]M.G. Kim and J. Cho. Adv. Funct. Mater.19 (2009) 1497
    [5]J.M.Tarascon and M. Armand.Nature 414 (2001) 359
    [6]任旭梅,吴锋,吴川,李汉军,黄学杰.锂离子二次电池用隔膜的制备及其性质.电化学.7(2)(2001)234
    [7]S.S. Zhang. J. Power Sources 164(2007) 351
    [8]操建华,朱宝库,徐又一,聚合物锂离子电池隔膜的研究.第一届全国化学工程与生物化工年会.(2004)1
    [9]P.K. Arora, Z.M. Zhang. Chem. Rev.104(2004) 4419
    [10]G.Venugopal, J. Moore, J. Howard, S. Pendalwar. J. Power Sources 77(1999) 34
    [11]Y.M. Lee, J.W. Kim, N.S. Choi, J.A. Lee, W.H. Seol, J.K. Park.J. Power Sources 139 (2005)235
    [12]Z.Z.Zhao, J.Q. Li, X.Y. Yuan, X.L, YY. Zhang, J. Sheng. J. Applied Polymer Science.97(2005)466
    [13]王洪,邓璋琼,陈鸣才.一种用于锂离子电池的无机复合隔膜.复合材料学报.26(1)(2009)59
    [14]陈继伟.湿法无纺布型锂离子电池隔膜材料的研究.华南理工大学工程硕士学位论文.2009.
    [15]崔闻宇.据和我锂离子电池隔膜的研究.哈尔滨工业大学工学硕士学位论文.2006.
    [16]王宜,詹怀宇,胡健,梁云,曾抒姝.无纺布型锂离子电池隔膜的研究进展.37(10)(2009)26
    [17]张传文,严玉蓉,区炜锋,朱锐细.静电纺丝法制备锂离子电池隔膜的研究进展.产业用纺织品.1(2009)1
    [18]Y.H. Ding,P.Zhang, Z.L. Long, Y.Jiang, F.Xu, W.Di. J. Membrane Science 329(2009) 56
    [19]K. Gao, X.G. Hu, C.S.Dai, T.F.Yi.Mater. Sci.& Eng. B 131(2006) 100
    [20]K.M.Abraham J Electrochem. (1990)137
    [21]Z.X.Wang,W.D.Gao,L.Q.Chen,Y.J.Mo,X.J.Huang.Solid State Ionics.51 (2002)154
    [22]H.Tsutsumi,A.Matsuo,K.Takase,S.Doi,A.Hisanage, K.Onimura,T.Oishi.J. Power Sources.90(2000)33
    [23]A.I.Gopalan,P.Santhosh,K.M.Manesh,J.H.Nho.S.H.Kim, C.GHwang, K.P.Lee.J. Membrane Sci.325(2008)683
    [24]任旭梅,吴锋.用PAN作造孔剂制备聚合物锂离子电池隔膜.电池.32(2002)36
    [25]H.Akashi,,M.Shibuy, K.Orui,G.Shibamoto,K.Sekai. J. Power Sources 112 (2002)577
    [26]T.Ohtomo, F.Mizuno, A.Hayshi. J. Power Sources 146(2005) 715
    [27]C.J.Leo, B.V. R.Chowdari,GV.S.Rao.Mater Res Bull.37(2002) 1419
    [28]K.J.Rao,K.C.Sobha, S.Kumar.Proc Indian Acad Sci.113(2001)497
    [29]A.Aatiq,M.Menetrier,L.Croguennec.J.Mater Chem.12(2002) 2971
    [30]M.A.Paris,A.Ma.Juareza.J.E.Iglesias. Chem Mater.9(1997) 1430
    [31]K.Takada,M.Tansho, I.Yanase.Solid State Ionics.139(2001) 241
    [32]C.Masquelier, C.Wurm.J.Rodrigues.Chem Mater.12 (2000) 525
    [33]A.Aatip, C.Delmas, A.E.Jazouli.J Solid State Chemistry.158 (2001) 169-174
    [34]A.M.Juarze,C.Pecharroman, J.E.Ig;esoas.J Phys Chem B.102 (1998) 372
    [35]P.M. Manso,E.R.Losilla, M.M.Lara.Chem Mater.15(9) (2003) 1879
    [36]G.X.Wang,D.H.Bradhurst, S.X.Dou.J Power Sources.124 (2003) 231
    [37]X.X. Xu, Z.Y. Wen, Z.H. Gu, X.H. Xu and Z.X. Lin. Chemestry Letters.34(2005) 512
    [38]X.X. Xu, Z.Y. Wen, J.G. Wu and X.L. Yang. Solid State Ionics.178(2007) 29
    [39]J.Fu.J.Material Science.33(1998)1549
    [40]S.S. Zhang, K. Xu, T.R. Jow. J. Power Sources.140 (2005) 361
    [41]B.V.R. Chowdari, G.V. Subba Rao, GY.H.Lee. Solid State Ionics.136-137(2000) 1067
    [42]J.Fu. Solid State Ionics.96(1997) 195
    [43]P.Birke, F.Salam, S.Doring, W.Weppner. Solid State Ionics.118(1999)149
    [44]M.Wachtler, D.Ostrovskii, P.Jacobsson, B.Scrosati. Electrochim.Acta.50 (2004) 357
    [45]H.R. Jung, D.H. Ju,W.J. Lee, X.W. Zhang, R. Kotek. Electrochimica Acta.54 (2009) 3630.
    [46]X.W. Zhang, C.S.Wang, A.J. Appleby, F.E. Little. J. Power Sources 112 (2002) 209
    [47]X.W Zhang, Y. Li, S.A. Kban, P.S. Fedkiw.J.Electrochem Soc.151 (2004) A1257
    [1]师昌绪.材料大辞典.北京:化学工业出版社.1994
    [2]钱知勉编.塑料性能应用手册(修订版).上海:上海科学技术文献出版社.1987
    [3]化工部合成树脂及塑料工业科技情报中心站编.化工产品手册(合成树脂与塑料).北京:化学工业出版社.1985
    [4]A.Leo,沃尔编.晨光化工研究院译.氟聚合物.北京:化学工业出版社.1978
    [5]张翠芬,高鹏,曾石华,陈玲.不同干燥条件下聚偏氟乙烯的结晶与电池性能.电池.32(2002)211
    [6]贠延滨,刘丽英,马润宇.聚偏氟乙烯膜的研究进展.膜科学与技术.23(2)(2003)57
    [7]张炯,吴君毅,粟小理.聚偏氟乙烯膜性能影响因素探讨.有机氟工业.3(2006)21
    [8]J.Lovinger.Polym Sci Phys Ed.18(1980) 793
    [9]J.Lovinger.Science.220(1983) 1115
    [10]A.M.Qudah.et.al.Polym Int.38 (1995)381
    [11]A.Richardson. et.al. Polym Sci Phys Ed,21(1983) 2525
    [12]P.Saikiewics.Eur Polym.35 (1999) 423
    [13]Y.D.Wang.Appl Polym Sci.68 (1998)909
    [14]A.Magistris, P.Mustarelli, E.Parzzoli. Testing Method. Electrochim.9 (8) (2001) 657
    [15]X.M.Ren, H.Gu, L, Q.Chen.J.Power Sources.23 (7) (2002)1383
    [16]D.E.Fenton.J.M.Parker.Polymer.3(8)(1998)589
    [17]任旭梅,吴锋,吴川,李汉军,黄学杰.锂离子二次电池用隔膜的制备及其性质.电化学.7(2)(2001)234
    [18]赵治贞.电纺制备聚偏氟乙烯超细纤维膜及性能研究.天津大学硕士学位论文.2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700