用户名: 密码: 验证码:
产品跌落冲击动力学分析与耐撞性能稳健设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
跌落冲击是许多小型机电产品在其寿命周期内失效的常见原因。目前,小型机电产品设计开发一般遵循初步设计、样机跌落试验、再改进设计的传统模式。为确保产品的耐撞性能,产品批量生产前须按相关标准通过跌落试验的检验。然而,即使在产品开发中通过了样机跌落试验检验,产品在使用过程中跌落损坏仍是这类产品失效的主要原因之一,而且传统的产品耐撞性设计模式费钱费时,已越来越不适应于小机电、特别是数字产品个性化、多样化和快速响应的市场要求。因此,如何突破传统的产品跌落冲击耐撞性设计模式、提高产品的耐撞性与稳健性就成为亟待研究的课题。
     本文从产品跌落冲击动态响应、跌落冲击耐撞性能分析、结构参数优化以及耐撞性能稳健设计优化几个方面进行了理论分析与试验研究。主要研究工作如下:
     针对小型产品跌落冲击耐撞性能设计的特殊性以及产品跌落冲击耐撞性动态设计中存在的不确定性,在总结了产品跌落冲击动态响应以及稳健设计的研究进展基础上,提出了基于数值模拟耐撞性综合评价体系的产品跌落冲击耐撞性能稳健设计优化方法。并以目前常用便携式电子产品---移动硬盘和存在液固耦合作用的弹性储液容器为研究对象,借助数值模拟技术,进行了移动硬盘和弹性储液容器的跌落冲击动力学特性分析和耐撞性能稳健优化设计。
     建立了移动硬盘关键部件---磁头传动臂组件有限元模型,通过理论分析、有限元模态分析和模态试验,获得了磁头传动臂组件的模态参数。进行了不同冲击波形、不同脉冲幅值、不同脉冲宽度载荷下的磁头传动臂组件动态响应分析,获得典型冲击载荷下的磁头传动臂组件冲击响应谱。基于移动硬盘各零部件相互装配关系,采用对称罚函数接触算法建立了移动硬盘整体跌落有限元模型,通过移动硬盘跌落冲击实验验证了有限元模型的可行性,提出了基于虚拟跌落试验的综合产品外在形貌和内在功能的耐撞性能评价指标,探讨了传动臂材料、传动臂形状以及跌落角度对移动硬盘耐撞性能的影响,为移动硬盘耐撞性能优化设计提供了理论依据。
     基于移动硬盘整体跌落有限元模型,采用有限元分析与试验设计相结合方法,建立了移动硬盘关键零件的结构参数与跌落冲击响应之间的非线性映射关系,兼顾不同的优化目标函数,发展了神经网络与遗传算法相结合的移动硬盘耐撞性能多目标优化算法,通过结构参数优化提高了移动硬盘的耐撞性能。针对移动硬盘跌落冲击条件的多样性和随机性,引入稳健设计理论,应用田口方法分析了移动硬盘耐撞性能设计中的可控因素和噪声因素,并对减小地面硬度噪声的影响进行了稳健设计,获得了关键零件结构参数的最佳匹配,提高了移动硬盘耐撞性能的稳健性。
     针对生活中广泛运用的弹性储液容器的跌落冲击特性,考虑跌落冲击存在的不确定性和液固耦合作用,采用ALE算法建立了弹性储液容器的跌落冲击液固耦合动力学有限元模型。探讨了不同冲击参数、结构参数对饮水桶桶体等效应力分布的影响,采用有限元和人工神经网络相结合方法来计算储液容器跌落冲击接触点最大应力值,避免了探求储液容器跌落冲击下数学模型建立的复杂过程,为储液容器耐撞性评价与优化设计提供理论支撑。
     本文通过提出产品跌落冲击耐撞性能稳健设计优化方法,对移动硬盘和弹性储液容器的跌落冲击动态响应进行了定量分析和稳健优化设计,提高了产品跌落冲击耐撞性能,验证了所提产品跌落冲击耐撞性能稳健设计优化方法的正确性和有效性,为产品跌落冲击动力学分析和耐撞性能稳健设计提供了新的理论依据和实践参考。
Drop-impact lead to failure for various types of small electronic motors in useful life period. At present, design cycles for manufactured produce is preliminary design, sample impact experiments and re-design. The final product has to use standard experiments to check the drop-impact on prototype product to achieve the tough crashworthiness. However, the product still will suffer drop impact failure, even though the sample drop impact passed. During manufacture processing, the drop-impact is a major product failure reason. Furthermore, the traditions design model is time-consuming and highly-cost so that it is not well-suitable for small type manufactured produce. Shortening the design cycle of drop impact and providing crashworthiness robust design for manufactured produce are urgently needed.
     The main work of this thesis can be summarized as follows:
     Considering particularity and uncertainty of drop impact crashworthiness design, literature review from the research about the dynamic response of drop impact and impact crashworthiness robust design has been done. Drop impact crashworthiness robust design optimize frame is presented and developed based on crashworthiness evaluation for virtual drop test. This work enrichs design theory and method for dynamic design. In this thesis, precision electronic products mobile hard disk and liquid-sold coupled fluid-filled container are chosen as two samples to investigate the capability of dynamic drop-impact, crashworthiness design, optimism structural parameters, and crashworthiness robust design.
     A 2.5 inch mobile hard disk finite element modal is modeled according to key components function of head actuator arm assembly. Parameters of modal are achieved by means of theoretical analyse, finite element modal analyse and experiment. The response spectrum of typical impact is generated using dynamic response analysis on various types of pulse waveform, pulse amplitude and pulse width. Based on the function of hard disk assembly, a finite element model of mobile hard disk has been built using penalty method and is validated using sample drop test. Crashworthiness evaluate is set forward based on outer appearance and inner function. Crashworthiness of head actuator arm material, shape and drop angle are studied, which can be taken as practical references for mobile hard disk crashworthiness optimal design.
     Non-linear mapping relation of key components structure parameters and drop impact response is built using FEM (finite element method) and experimental design. Multiple objective optimization algorithm with crashworthiness is analyzed based on ANN(Artificial Neutral Network)and GA(Genetic Algorithm). Considering drop impact diversity and randomicity, crashworthiness robust design aim at reducing influence of floor rigidity is researched through analyzing controlled variable parameters and noise factor. Key components optimal structure parameters are acquired through taguchi method.
     Considering drop impact uncertainty and liquid-sold coupled of elasticity fluid-filled container, the finite element analysis and Arbitrary Lagrange-Euler (ALE) algorithm are used here, to analyze the influence of drop parameter and drop impact parameters. Mapping relations of fluid-filled container structure parameter, drop impact parameter and contact point stress are set up based on the FEM and ANN. In theoretically, the results are proven to be fundamental method of crashworthiness analysis, evaluation and design for fluid-filled containers. The method avoids complexity process with building drop impact mathematics model.
     A drop impact crashworthiness robust design optimize method for manufactured products is developed, which provides us not only a qualitative description but also a quantized description about mobile hard disk and fluid-filled container drop impact in order to enhancing crashworthiness. This research work provides scientific guidance and practical references through a serial of method of parameters selection, experiment design, FEM modeling, dynamic analysis, crashworthiness evaluation, numerical modeling, multiple objective optimization, and robust design.
引文
[1]汤伯森,向红.包装动力学[M].长沙:湖南大学出版社,2001.
    [2]刘德顺,李夕兵.冲击机械系统动力学[M].北京:科学出版社,1999.
    [3] Gonsalves D.H., et al. The dynamics and design of a nonlinear vibration absorber, Part C[J].Journal of Mechanical Engineering Science. 1993, 207:364-374.
    [4]杨平.非线性抗振动冲击防护动力学与动态设计[M].北京:国防工业出版社,2003.
    [5]周春燕,余同希,李世玮.便携式电子产品的跌落冲击响应-试验,仿真和理论[J].力学进展,2006,36(2):239-246.
    [6] MIL-STD-883F.Military standard:Test methods and procedures for microelectronics[M],US Office of Naval Publications,Washington DC,2004.
    [7] IEC68-2-27.International standard:Basic environmental testing procedures[M],International Electrotechnical Commission,Geneva,Switzerland,1987.
    [8] JESD22-B104-B.Mechanical Shock Test Method, JEDEC Solid State Technology Association[M].Arlington,2001.
    [9]中华人民共和国国家标准GB13508-92,聚乙烯吹塑桶[M].北京:国家技术监督局1992-07-12批准.
    [10] Kumar S., Khanna D.V., Sri-Jayantha M. A study of the head disk inferface shock failure mechanism[J]. IEEE, Transactions on Magnetics, 1994, 30(6):4156-4157.
    [11] Lin C.C., Finite element analysis of compter hard disk drive under shock[J]. ASME, Journal of Mechanical Design, 2002,124:121-125.
    [12] Lim Ch.T., Teo Y.M., Shim V.P.W. Numerical simulation of the drop impact response of a portable electronic product[J]. IEEE, Transactions on Components and Packaging Technologies, 2002,25(3):478-485.
    [13] Kim J.G., Park Y.K.. Experimental verification of drop/impact simulation for a cellular phone[J]. Experimental Mechanics, 2004,44(4):376-380.
    [14]李在伟,梁新华.应用有限元技术进行手机结构碰撞仿真[J].中国制造信息化,2004,10:87-87.
    [15] Wang Y.Y., Lin T.Y.. drop-impact simulation and experimental verification for spindle fixation of video and audio module[J]. Mechatronics, 2003, 139(5):427-447.
    [16] Low, K.H., Wen, J.. Parametric study on drop/impact effects of an iron product[C]. Proceedings of the Fourth Asia-Pacific Conference on Shock& Impact Loads on Structures. Singapore, 2001,434-442.
    [17] Low K.H., Wang Y.Q.,et al. A virtual boundary model for a quik drop–impact analysis of eletronic components in TV model[J]. Advances in Engineering Software, 2004, 35(8-9):537-551.
    [18] Marco Anghileri,Luigi-M.L. Castelletti, et al.Fluid-Structure interaction of water filled tanks during the impact with the ground[J],International Journal of Impact Engineering,2005,31:236-254.
    [19]王春霖,张丽强,王振林.基于ANSYS的跌落仿真应力分析[J].包装工程,2006,27(4):24-25.
    [20] Jing-en Luan,Tong Yan Tee,et al.Dynamic responses and solder joint reliability under board level drop test[J]. Microelectronics Reliability, 2007,47:450-460.
    [21] Yi-Shao Lai,Po-Chuan Yang,Chang-Lin Yeh.Effects of different drop test conditions on board-level reliability of chip-scale packages[J]. Microelectronics Reliability, 2007,42:1-8.
    [22] Ong Y C,Shim V P W,Chai T C,Lim C T.Comparison of mechanical response of PCBs subjected to product-level and board-level drop impact tests[C]. In Proceedings of the 5th Electronics Packaging Technology Conference,IEEE,2003:223~237.
    [23] Newton R E.Theory of Shock Isolation. Shock & Vibration Handbook, Chapter 31[M]. New York: McGraw-Hill,1988.
    [24] Kipp WI. Developments in testing products for distribution[J]. Packaging Technology and Science, 2000, 13:89~98.
    [25] Goyal S, Papadopoulos J M, Sullivan P A. Shock protection of portable electronics: Shock response spectrum, damage boundary approach, and beyond[J]. Shock and Vibration,1997,4(3):169~191.
    [26] Gayal S, Buratynski E K, Elko G W, Role of shock response spectrum in electronic product suspension design[J]. The International Journal of microcircuits and Electronic Packaging, 2000, 23(2):182~190.
    [27] Lee H S, Chang D H, Sohn J S,et al. Dynamic absorber for actuator arm in a disk drive[C]. In: Asia-Pacific Magnetic Recording Conference (APMRC)2000, Tokoy, japan, November 2000. Digests of APMR2000 on Mechanical and Manufacturing Aspects of HDD. IEEE,2000:131~132.
    [28] Huang W, Kececioglu D B, Prince J L. A simplified random vibration analysis on portable electronic products[J]. CPT Transactions, IEEE, 2000, 23(3):505~515.
    [29] Subir E. Shock protection with a nonlinear spring[J]. CPMT Transactions, Advanced Packaging, Part B, IEEE, 1995, 18(2):430~437.
    [30] Subir E. Shock-excited vibrations of a conservative Duffing oscillator with application to shock protection in portable electronics[J]. International Journal Solids Struct, 1996, 33(24):3627~3642.
    [31]张波,丁汉,盛鑫军.板极电子封装在跌落冲击载荷下的动态响应分析[J].振动与冲击,2008,27(6):108-113.
    [32] Lim C.T,Low Y.J.Investigating the Drop Impact of Portable Electronic Products[J].Electronic Components and Technology Conference.2002:1270-1274.
    [33] Lim C.T,Ang C W,Tan L B,et al.Drop impact survey of portable electronic products[C] In Proceedings of the 53rd Electronic Components and Technology Conference, IEEE,2003:113~120.
    [34] Wu J,Song G,Yeh C P,Wyatt K.Drop/impact simulation and test validation of telecommunication of telecommunication product[C]. In: Proceeding of Sixth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic System,ITherm’98,IEEE.1998:27~30.
    [35] Goyal S., Upasani S., Patel D.M.. Improving impact tolerance of portable electronic products: Case study of cellular phones[J]. Experimental Mechanics, 1999, 39(1):44-52.
    [36] Ren W, Wang J J. Shell-based simplified electronic package model development and its application for reliability analysis[C]. In: Proceedings of the 5th Electronic Packaging Technology Conference (EPTC 2003), Singapore, 2004-12-1012. IEEE. 2003:217-221.
    [37] Tee T.Y., Ng H.S., Yap D., Zhang Z.W.. Impact life prediction modeling of TFBGA packages under bpard level drop test[J]. Microelectronics Reliability, 2004,44:1131-1142.
    [38] Low K H, Yang A, Hoon K H, et al.Initial study on the drop-impact behavior of mini Hi-Fi audio products[J]. Advances: in Engineering Software, 2001, 32(9): 684-69.
    [39]卢立新,王志伟.跌落冲击下果实动态本构模型的构建与表征[J].农业工程学报,2007,3(4):238-241.
    [40]卢立新,王志伟.苹果跌落冲击力学特性研究[J].农业工程学报,2007,23(2):255-259.
    [41] Suhir E. Is the maximum acceleration an adequate criterion of the dynamic strength of a structural element in an electronic product T Coriapoa Pack Adec[J], IEEE, 1997, 20 (4):514-517.
    [42]陈立周.稳健设计[M].北京:机械工业出版社,1999.
    [43] Y.Wang,T.Y.Lin,Li Hua.Drop-impact simulation and experimental verification for spindle fixation of video and audio module[J].Mechatronics,2003,13:427-440.
    [44] Hasofer A M,Lind N C.Exact and Invariant Second moment Code Format[J].ASCE,Journal of the Engineering Mechanics Division,1974,100(1):111-121.
    [45] Rackwitz R,Fiessler B.Structural Reliability Under Combined Random Load Sequences[J]. Journal of Computers and Structures,1978,9(4):489-494.
    [46] ChenX,LindNC.Fast Probability Intergrationb Three-parameter Normal Tail Approximation[J]. Structural Safety,1983, 1(2):269-276.
    [47] DuX,SudjiantoA. First-order Saddle-point Approximation for Reliability Analysis[J].AIAA Journal,2004,42(1):1-9.
    [48] Breitung K.Asymptotic Approximations for Multinomial Integrals[J].ASCE,Journal ofEngineering Mechanics,1984,110(3):357-366.
    [49] Mckay M,Beekman R,Conover W.A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output froma Computer Code[J].Technometrics,1979,21(2):239-246.
    [50] Ang G,Ang L,Tang W H. Optimal Importance Sampling Density Function[J].ASCE,Journal of Engineering Mechanics,1992,118(6):1147-1163.
    [51] Phadke M S.Quality Engineering Using Robust Design.Englewood Cliffs[M].New Jersey: Prentice Hall,1989.
    [52] Parkinson A,Sorensen C,Pourhassen N.A General Approach for Robust Optimal Design[J]. ASME,Journal of Mechanical Design,1993,115(1):75-80.
    [53]张义民,贺向东,刘巧伶等.任意分布参数进行零件的可靠性稳健优化设计(一):理论部分[J].工程设计学报,2004,1(5):234-237.
    [54] Balling G J,FreeJ C,Parkinson A.Consideration of Worst-case Manufacturing Tolerances in Design Optimization[J].ASME,Journal of Mechanical Design,1986,108(3):438-441.
    [55] Sundaresan S,Ishii K,Houser D.Design Optimization for Robustness Using Performance Simulatio Programs[J].Engineering Optimization,1992,20(2):164-178.
    [56] GuL,Yang R.Optimization and Robustness for Crash worthiness of Side impact[J]. International Journal of Vehicle Design(Special Issue),2001,26(3):348-360.
    [57]林忠钦,艾健,张卫刚等.冲压稳健设计方法及其应用[J].塑性工程学报,2004,11(4):57-60.
    [58] Varadarajan S,Chen W,Pelka J C.Robust Concept Exploration of Propulsion Systems with Enhanced Model Approximation Capabilities[J].Engineering Optimization,2000,32(3) :309-334.
    [59] Park J K, Petersen P T, Modeling of the mechanics in ship collisions[J]. Ocean Engineering, 1996, 23(2):107-142.
    [60]王自力,顾永宁.船舶碰撞动力学过程的数值仿真研究[J].爆炸与冲击,2001,21(1):29-34.
    [61] Gilchrist M D. O’Donoghue, D., Simulation of the development of frontal head injury[J]. Computational Mechanics, 2000, 26(3):229-235.
    [62] Richard M K, Kelley E A. Development of a water impact dynamic test facility and cash testing a UH-IH aircraft onto a water surface[J]. Annual Forum Proceedings of American Helicopter Society, 1999, 2:1653-1664.
    [63] Haug E, Aillie J C, et al,汽车碰撞仿真与设计的最新进展和发展趋势[J].机械工程学报, 1998, 34(1):93-99.
    [64]王瑞栋.包装动力学与结构设计[M].重庆:重庆大学出版社,1993.
    [65] Jayson E M, Murphy J M, Shock and head slap simulations of operational and nonoperationa head disk drives[J]. IEEE, Transsactions on Magnetics, 2002, 38(5):2150-2152.
    [66] Taguchi G. Taguchi on robust technology development: Bringing quality engineering upstream[M].ASME,New York,1993.
    [67]刘德顺,岳文辉,杜小平.不确定性分析与稳健设计的研究进展[J].中国机械工程,2006,17(17):1834-1841.
    [68] J.Luo,D.W.Shu,J.Shi,etal.Study of the shock response of the HDD with ANSYS-LSDYNA[J]. Journal of Magnetism and Magnetic Materials,2006(303):57-61.
    [69] Bao-Jun Shi,Dong-Wei Shu,Shao Wang, et al.Drop test simulation and power spectrum analysis of a head actuator assembly in a hard disk drive[J].International Journal of Impact Engineering,2007(34):120-133.
    [70] Shu DW, Shi BJ, Meng H.,et al. Shock analysis of a head actuator assembly subjected to half-sine acceleration pulses[J]. Impact Engineering, 2007,34:254-263.
    [71] Shu DW, Shi BJ, Meng H.,et al.The pulse width effect of single half-sine acceleration pulse on the peak response of an actuator arm of hard disk drive[J].Materials science and engineering,2006(423):199-203.
    [72] Sheng Zeng, Rong-Ming Lin, et al, Novel Method for Minimizing Track Seeking Residual Vibrations of Hard Disk Drives[J]. IEEE Transactions on Magnetics,2001,37(3):1146-1156.
    [73]刘爱龙.微硬盘磁头弹性臂的研究[D].电子科技大学,2006.
    [74]吴学鹏.硬盘振动失效分析及隔振优化设计[D].华中科技大学,2004.
    [75]谢正义,陈云飞.有限元分析在磁头悬架动态特性研究中的应用[J].机械制造与研究,2005,34(5):21-24.
    [76]张加庆,徐利梅,曾胜.一种降低微结构瞬态响应的方法[J].振动工程学报,2006,19(2):184-188.
    [77] Edwards J R. Finite element analysis of the shock response and head slap behavior of a hard disk drive[J]. IEEE Transactions on Magnetics, 1999,35(2):864-867.
    [78]徐光弘,王宏民.硬盘驱动器抗冲击性能的分析与计算[J].电子计算机与外部设备,1999,23(3):2-7.
    [79]林大超,施惠基,曾德斌等.硬盘驱动器冲击激励的头盘碰撞分析[J].爆炸与冲击,2004,24(2):122-126.
    [80] E.M.Jayson,J.murphy,P.W.Smith,et al.Head slap simulation for linear and rotary shock impulses[J].Tribology International,2003(36):311-316.
    [81]郭术义,陈举华.流固耦合应用研究进展[J].济南大学学报,2004,18(2):123-126.
    [82]杜颖,刘习军,贾启芬.液固耦合动力学问题的研究[J].机床与液压,2004(11):9-12.
    [83]朱仁庆.液体晃荡及其与结构的相互作用[D].中国船舶研究中心,2002.
    [84] Rammerstorfer FG,Sharf K,Fisher FD.Storage tanks under earthquark loading[J].Applied Mechanics Reviews,1990,43:261-282.
    [85] Petyt M,Lim PS.Finite element analysis of the noise inside a mechanically exited cylinder[J].International Journal for Numerical Methods in Engineering,1978,13:109-122.
    [86] Olson LG,Bathe KJ.Analysis of fluid-structure interactions.A direct symmetric coupled formulation based on the fluid velocity potential[J].Computer&Structures,1985,21:21-32.
    [87] SaadY.Numerical solution of large nonsymmetric eigenvalue problems[J].Computer Physic Communications,1989,53:71-90.
    [88]梁波.弹性贮液圆柱壳的动力特性分析[J].国防科技大学学报,1990,12(2):30-35.
    [89]万水,朱德懋.圆柱贮液器固液耦合模态分析[J].工程力学,2007,17(3):87-92.
    [90]李彦民,徐刚,任文敏等.储液容器流固耦合动力响应分析计算[J].工程力学,2002,19(4): 29-32.
    [91]李政,金先龙,申杰等.车载柔性储液结构动态仿真方法[J].上海交通大学学报,2007,1: 19-22.
    [92]孙利民,赵勇,张庆华.列车制动状态储油罐瞬态响应分析[J].郑州大学学报,2006,27(2):32-35.
    [93] Reed P.E. Breedveld G., Lim B.C.. Simulation of the drop impact test for moulded thermoplastic containers[J]. International Journal of Impact Engineering, 2000, 24:134-153.
    [94]王彬.振动分析及应用[M].北京:海潮出版社,1992.
    [95]刘习军,贾启芬.工程振动理论与测试技术[M].北京:高等教育出版社,2004.
    [96]师汉民.机械振动系统-分析.测试.建模.对策(上册)[M].武汉:华中科技大学出版社,2004.
    [97]小飒工作室.最新经典ANSYS及Workbench教程[M].电子工业出版社,2004.
    [98]王瑁成.有限单元法[M].北京:清华大学出版社,2003.
    [99]张雄,王天舒.计算动力学[M].北京:清华大学出版社,2007.
    [100]方远.振动模态分析技术[M].国防工业出版社,1993.
    [101]李裕春,时党勇,赵远.ANSYS10.0/LS-DYNA基础理论与工程实践[M].北京:中国水利水电出版社,2006.
    [102]方开泰.均匀设计与均匀设计表[M].北京:科学出版社,1994.
    [103]飞思科技产品研发中心.神经网络理论与matlab7实现[M].北京:电子工业出版社,2006.
    [104]闵惜琳,刘国华.人工神经网络结合遗传算法在建模和优化中的应用[J].计算机应用研究,2002,1:79-80.
    [105]隋天中,林文强,郑晓昕等.基于均匀设计和NN-GA的CAD模型多目标直接优化方法[J].中国机械工程,2008,19(2):222-225.
    [106]王兴国,周晶,田明俊等.导管架海洋平台基于地震作用下的多目标优化设计[J].土木工程学报,2004,37(12):7-9.
    [107]朱学军,薛量,王安麟等.利用神经网络实现复杂结构的多目标优化设计[J].机械科学与技术,2000,19(3):368-670.
    [108]雷英杰,张善文,李续武等.MATLAB遗传算法工具箱及应用[M].西安电子科技大学出版社,2005.
    [109]隋大山.压力容器的结构优化设计及其具体实现[J].机械设计与研究,2005,21(5):95-97.
    [110]赵旅.炮尾炮门结构的多目标优化及稳健设计[D].南京理工大学,2008.
    [111]张义民,贺向东,刘巧伶等.汽车零部件的可靠性稳健优化设计:理论部分[J].中国工程科学,2004,6(3):76-79.
    [112]杨涛,何叶,魏东梅等.微机电器件的稳健设计[J].工程设计学报, 2004,11(3):124-127.
    [113]李烁,徐元铭,张俊.复合材料加筋结构的神经网络响应面优化设计[J].机械工程学报,2006,42(11):116-119.
    [114]李守巨,刘迎曦,何翔等.基于人工神经网络的爆炸冲击荷载参数识别方法[J].岩石力学与工程学报,2003,22(11):1870-1873.
    [115]王静,鲁世红,于长生等.神经网络和有限元方法在两轴柔性滚弯中的应用[J].机械科学与技术,2006,25(9):1057-1058.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700