用户名: 密码: 验证码:
弹性薄板与流体耦合作用的力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弹性薄板是工程结构中常见的元件,它与流体的耦合作用在不同的工程领域中均有应用。薄板在流体载荷作用下产生变形或运动,而薄板的变形或运动又反过来影响到流场,从而改变流体载荷的分布和大小。国内外对这一领域的研究主要集中在耦合系统动静态问题的数值分析方面,并且已经有了很多研究成果。相比之下,流固耦合理论分析的发展却较为缓慢,现有的理论研究成果也比较少,仍有很大的发展空间和发展需要。
     采用相容拉格朗日-欧拉法,根据流体弹性力学分类准则,导出了弹性薄板在理想不可压缩的势流不间断横向绕流条件下,发生小弯曲变形的接触面运动学方程和动力学方程,给出了薄板的弯曲平衡方程。应用偶极子理论,给出相应于刚体的流体势函数,采用均流与偶极子叠加的方法,最终求解出小弯曲变形的挠度函数以及应力表达式。以简支弹性平板和固支弹性圆平板为例,对其进行了弯曲变形的挠度、应力以及流体速度的分析,讨论了挠度、应力以及流体速度随系统参数的变化规律。
     采用相容拉格朗日-欧拉法,推导了弹性薄板在理想不可压缩的势流不间断横向绕流条件下,发生大弯曲变形的接触面运动学方程和动力学方程。给出了弹性薄板发生大弯曲变形时的弯曲平衡方程。为了求解该复杂的非线性方程,将薄板的面内位移和曲率改变量均用挠度表示,求解出薄板大弯曲变形的挠度,进而求出面内位移及应力表达式,并给出了算例。
     对于粘性流体,在低速流动小雷诺数下,忽略惯性力项,将流体运动的纳维-斯托克斯方程近似为斯托克斯方程。采用相容拉格朗日-欧拉法,研究了在低速流动中的弹性平板以行波形式振动对流动状态的影响。此外,分析了两个固体壁之间不可压缩粘性流体的晃动问题,给出了液体表面位移对于内部流体流速的影响规律。
     应用单一拉格朗日法,讨论了位于不同密度的理想流体层间弹性隔层板的静力学问题和动力学问题。在给出用单一拉格朗日法表示的流体和隔层板的动力方程和边界条件的基础上,求解了弹性隔层板发生对称变形的挠度函数及隔层板在流体自由表面处给一扰动时的振动解。通过具体算例,求解了固定薄板弯曲的挠度和应力函数以及不同扰动时薄板的振动状态。讨论有关参数的变化对薄板变形、应力以及固有频率的影响,绘出了相应的关系曲线。
     采用有限元软件ANSYS分别对相应问题进行数值模拟。最终将理论解与数值模拟的结果进行比较,验证解的可信度,并分析了产生误差的原因。
     证明了采用相容拉格朗日-欧拉法和单一拉格朗日法,可以有效地求解弹性薄板在流体作用下的变形与应力,为新的数值分析方法打下了理论基础。
Thin elastic plate is one kind of common project components, and the plate and fluid coupling theory is usually used in different engineering field. The thin plate’s deformation or motion under the pressure of fluid affect the flow field and alter the fluid load distribution and size. Researches on FSI at home and abroad focus on numerical analysis on static and dynamic problems of coupling systems, and have issued many results. On the contrary, theoretical analysis on FSI has comparatively slow development and has rare available theoretical results. So they have vast potential and great need of development.
     The thin elastic plate is in a continuous incompressible ideal cross-flow. The kinematic equation and dynamic equation of fluid-solid contact surfaces suitable for small deflection are put forward by united Lagrangian-Eulerian method and the criteria classification of nonlinear FSI problems. Then the partial differential equations are derived for the bending problem of the plate. The velocity potential function corresponding to the rigid plate is presented using doublet theory. And by applying superposition principle, the deflection and stress expressions are derived for small deformation elastic plate. Taken simply supported rectangular plate and clamped circular plate as examples, the deflection and stress of plate, also the velocity of fluid are analyzed. The influences of system parameters on them are discussed.
     As the plate in a continuous incompressible ideal cross-flow, the kinematic equation and dynamic equation of fluid-solid contact surfaces suitable for large deflection are put forward by united Lagrangian-Eulerian method. Then the partial differential equations are derived for the large deflection problem of the plate. For the solutions of nonlinear equations, the in-plane displacement and the curvature change of thin plate are described as flection. The deflection, in-plane displacement and stress of plate are expressed.
     For simplicity about viscous fluid, the Reynolds number is assumed small. Because the Reynolds number is the ratio of inertia force and viscous drag force, the inertia force can be neglected at low Reynolds number. And Navier-Stokes equation of fluid movement is almost equal to the Stokes equation. By united Lagrangian-Eulerian method, the influences of plate’s vibration in a travelling wave manner on the fluid flow are analyzed in a state of slow viscous flow. Besides, the sloshing problem of incompressible viscous fluid between two rigid solid wall is considered. The influences of surface displacement on internal fluid velocity are given.
     Using single Lagrangian method, static and dynamic forces analysis of elastic inner plate between different density ideal fluid are discussed. After giving the kinematic equation of fluid and plate as well as boundary condition described by single Lagrangian method, the symmetrical deflection function of inner plate is solved. The vibrations of clamped plate by dynamic disturbance are analyzed. The deflection and stress functions of plate and the vibration of plate by different disturbance are presented by examples. And the influences of parameters on the deformation, stress and natural frequency are given.
     Applying ANSYS simulate the corresponding problem. The theoretical results are compared with numerical solutions, and error analysis is given. It is shown that the theoretical results effectively.
     United Lagrangian-Eulerian method and single Lagrangian method for deformation and stress of plate acted by fluid are effective, and lay a good theoretic foundation for new numerical simulate.
引文
1美国国家理论与应用力学委员会.流体动力学的研究:面向国家需求.力学进展, 2006, 36(4): 619-625
    2邢景棠,周盛,崔尔杰.流固耦合力学概述.力学进展, 1997, 27(1): 19-38
    3杜庆华,郑百哲.应用连续介质力学.北京:清华大学出版社, 1986: 5-50
    4М.А.Ильгамов.ВведениевНелинейнуюГидроупругость.Москва:Изд.Наука, 1991:15-53, 11-77, 121-132
    5Л.А.Бармина.Сила,дейстющаянадеформируемыйконтур,движущийсявпроизволномпотокежидкости.Изв.АНСССР.МЖГ, 1973(1): 4-8
    6Э.Л.Леглер.Экспериментальноеопределениестатическойформымягкойоболочкивпотокевоздуха.ТрудыЦАГИ, 1972,Вып.1382:35-36
    7Д.И.Фотинич.Решениеплоскойзадачиаэроупругостидлявоздухоопертоймягкойоболочки.Изв.Вузов.Машиностр,1976.- (8):12-16
    8О.М.Киселев.Бёзотрывноеобтеканиекруговойцилиндрическойоболочки.наполненнойгазомоболочкиплоскимпотокомидеальнойжидкости.Трудысеминарапокраевымзадачам,Вып.18.Казань:Изд-воКГУ, 1982: 104-115
    9М.Б.Гафуров,М.А.Ильгамов.Изгибиустойчивостьпологойцилиндрическойпанелиприеёпоперечномобтеканиижидкостью.Нелинейныепроблемыаэроавтоупругости,Вып.11.Казань:Физ.-Тех.ин-тКФАНСССР,1979: 59-69
    10曹文斌,常福清,白象忠.可渗透圆柱壳流固耦合问题的流场与内力分析.应用力学学报, 2007, 24(4): 622-627
    11周小利,白象忠.弹性圆柱薄壳在流体中的变形与内力分析.工程力学, 2007, 24(5): 47-52
    12И.Е.Идельчик.АэрогидродинамикаТехнологическихАппаратов.Москва:Машиностроение, 1983:351
    13Х.А.Рахматулин,С.В.Гувернюк.ОПостановкиЗадачОбтеканияПроницаемыхТелНесжимаемогоСредой.ПарашютыиПроницаемыетела.Москва:Изд-воМГУ, 1987: 5-24
    14О.В.Рысев.Аэрогидродинамикиесвойстватехническихтканей.Изв.Вузов.Технологиятекстильнойпромышленности.1983,(3): 19-22
    15 I. P. Castro. Some Problems Concerning the Production of a Linear Shear Flow Using Curved Wire-gauze Screens. Fluid. Mech. 1976, 76(4): 689-709
    16 J. K. Koo, D. F. James. Fluid Flow Around and Through a Screen. Fluid.Mech.1973, 60(3): 513-538
    17 W. F. Noh. CEL A Time-dependent, Two-space Dimensional, Coupled Eulerian-Lagrangian Code. Methods in Computational Physics, 1964,(3):117
    18А.Н.Гильманов,Ж.М.Сахабутдинов.ПроизвольныйЛагранжево-Эйлеровметодвнелинейныхзадачахвзаимодействияупругоготеласпотокомгаза.Взаимодействиеоболочексжидкостью.Вып.1.Казань:Физ.-Тех.ин-тКФАНСССР, 1981: 127-145
    19С.Херт.ПроизвольныйЛагранжево-Эйлеровчисленныйметод.Численныеметодывмеханикежидкостей.Москва:Мир,1973: 156-164
    20 C. W. Hirt, A. A. Amsden, J. L. Cook. An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Sheeds.J. Comp. phys. 1974,14(3): 227-253
    21郑磊,李俊峰,等.计算液体晃动ALE网格速度的高精度方法.力学与实践, 2007, 29(1): 14-16
    22陈敏,隋允康,等.侧向载荷下圆柱壳体断裂的ALE法数值模拟.北京工业大学学报, 2006,32(增刊): 93-95
    23 Thomas Gratsch, Klaus-Jurgen Bathe. Goal-oriented Error Estimation in the Analysis of Fluid Flows with Structural Interactions. Comput. Methods Appl. Mech. Engrg, 2006, (195): 5673-5684
    24 Hermann G Matthies, Rainer Niekamp, Jan Steindorf. Algorithms for Strong Coupling Procedures. Comput. Methods Appl. Mech. Engrg. 2006 ,(195): 2028-2049
    25 S. R. Idelsohn , E. Onate, Pin F Del, Nestor Calov. Fluid-structure Interaction Using the Particle Finite Element Method. Comput. Methods Appl. Mech. Engrg. 2006, (195): 2100-2123
    26А.А.Аганин,А.Н.Гильманов,В.Б.Кузнецов.Численноемоделированиевзаимодействиягазовихпотоковсподвижнымителамиизменяемойгеометрии.Численныеметодымеханикисплошнойсреды.Новосибрск:ИТПМВЦСОФНСССР, 1986: 3-11
    27А.А.Аганин,А.Н.Гильманов,В.Б.Кузнецов.Численноемоделированиесильноговзаимодействиямягкихоболочексгазом.Взаимодействиеоболочексосредой.Вып.20.Казань:Физ.-Тех.ин-тКФАНСССР,1987: 51-69
    28Л.В.Овсянников.Овсплываниипузыря.Некоторыепроблемыматематикиимеханики.Л.:Наука,1970: 85-95
    29陈徐均,董克,等.海洋浮体水弹性力学研究历史与现状.解放军理工大学学报, 2003, 4(6): 42-49
    30М.А.Ильгамов.Общаяпостановказадачивзаимолействиеидеальнойсжимаемойжидкостиипроницаемойоболочкиприеёконечныхперемещенияхидеформациях\ⅩⅡВсесоюзн.Конф.Потеорииоболочекипластин.Т.Ⅱ.-Ереван, 1980.-С: 177-183
    31М.А.Ильгамов.Изгибиустойчивостьцилиндрическойоболочкиприеёпоперечномобтеканиижидкостью\\ⅩⅢВсесоюзн.Конф.Потеориипластиниоболочек.Ч.1-Таллинн, 1983.-С: 124-129
    32М.А. Iljgamov. Static Problems of Hydroelasticity. Moscow, Nauka. Fizmatlit, 1998: 1-5
    33陆鑫森,克劳夫R W.流体-结构相互作用的杂交子结构法.振动与冲击, 1982, (1): 17-27
    34钱江,翁致远,吕西林.座式快堆主容器与流体相互作用抗震性能分析.核动力工程, 1998, (11): 240-245
    35邹建锋,任安禄.串列双圆球的流场转捩研究.浙江大学学报, 2006, 40(1): 107-112
    36马高峰,郑苏,等.岸边起重机圆截面杆件涡激振动控制结构模拟实验研究的改进.机械研究与应用, 2007, 20(2): 48-51
    37 A. Vaziri, J. W. Hutchinson. Metal Sandwich Plates Subject to Intense Air Shocks. International Journal of Solids and Structures, 2007, 44(6): 2021-2035
    38 Wenbin Shangguan, Zhenhua Lu. Experimental Study and Simulation of a Hydraulic Engine Mount with Fully Coupled Fluid–structure Interaction Finite Element Analysis Model. Computers & Structures, 2004, 82(22):1751-1771
    39 R.M. Howell, A.D. Lucey, P.W. Carpenter, M.W. Pitman. Interaction between a Cantilevered-free Flexible Plate and Ideal Flow. Journal of Fluids and Structures, 2009, 25(3): 544-566
    40 Nayden Kambouchev, Ludovic Noels, Raul Radovitzky. Numerical Simulation of the Fluid–structure Interaction between Air Blast Waves and Free-standing Plates. Computers & Structures, 2007,85(11-14): 923-931
    41 Kolluru V. Subramaniam, Weimin Nian, Yiannis Andreopoulos. Blast Response Simulation of an Elastic Structure: Evaluation of the Fluid–structure Interaction Effect. International Journal of Impact Engineering, 2009, 36(7): 965-974
    42 M. A. Haroun. Vibration Studies and Tests of Liquid Storage Tanks. Earthquake Engineering andStructural Dynamics, 1983, (11): 179-206
    43温德超,郑兆昌,孙焕纯.储液罐抗震研究的发展.力学进展, 1995, 25(1): 60-76
    44高晓安,陆道纲,朱玉巧,等.考虑流固耦合的储液容器地震反应计算.工程抗震, 2001(3):41-44
    45徐刚,任文敏,张维,等.储液容器的三维流固耦合动力特性分析.力学学报, 2004, 36(3): 328-335
    46张韶光,杨登峰,王德禹.部分充液圆柱壳的振动分析.中国海洋平台, 2004, 19(3): 10-13
    47汤晓昀,包光伟.柔性贮箱内液体晃动的分析模型.上海交通大学学报, 2004, 38(8): 1412-1416
    48刘习军,张素侠,刘国英,等.矩形弹性壳液耦合系统中的重力波分析.力学学报, 2006, 38(1): 106-111
    49马兴瑞,余延生,王本利.水平横向激励圆柱贮箱中液体的非平面运动.宇航学报, 2008, 29(4):1116-1119
    50贺元军,马兴瑞,王本利.低重环境下液体非线性晃动的稳态响应.应用数学和力学, 2007, 28(10): 1135-1145
    51 H. A. Snyder. Sloshing in Microgravity [J]. Cryoenics, 1999, 39: 1047-1055
    52 M. Utsumi. Development of Mechanical Models for Propellant Sloshing in Teardrop Tanks[J]. Journal of Spacecraft and Rockets, 2000, 37(5): 597-603
    53 O. M. Faltinsen, O. F. RognebakKe, A. N. Timolha. Resonant Three Dimensional Nonlinear Sloshing in a Square-base Asin[J]. Journl Of Fluid Mechanics, 2003, 487: 1-42
    54 A.A. Lakis, G. Bursuc, M. H. Toorani. Sloshing Effect on the Dynamic Behavior of Horizontal Cylindrical Shells. Nuclear Engineering and Design, 2009, 239(7): 1193-1206
    55 A. Karac, A. Ivankovic. Investigating the Behaviour of Fluid-filled Polyethylene Containers under Base Drop Impact: A Combined Experimental/Numerical Approach. International Journal of Impact Engineering,2009, 36(4): 621-631
    56 E. Askari, F. Daneshmand. Coupled Vibration of a Partially Fluid-filled Cylindrical Container with a Cylindrical Internal Body. Journal of Fluids and Structures, 2009, 25(2): 389-405
    57 S. W. Jung, K. S. Na, J. H. Kim. Dynamic Stability of Liquid-filled Projectiles under a Thrust. Journal of Sound and Vibration , 2005, (280): 611-631
    58 A. Wolfgang. S. G. Wall, R. Ekkehard. A Strong Coupling Partitioned Approach forFluid–structure Interaction with Free Surfaces. Computers & Fluids, 2007, 36(1): 169-183
    59 Karel Fraňa, J?rg Stiller. A Numerical Study of Flows Driven by a Rotating Magnetic Field in a Square Container. European Journal of Mechanics - B/Fluids, 2008, 27(4): 491-500
    60 J. R. Cho, H. W. Lee. Numerical Study on Liquid Sloshing in Baffled Tank by Nonlinear Finite Element Method. Computer Methods in Applied Mechanics and Engineering, 2004,193(23-26): 2581-2598
    61 K. Namkoong, H. G.. Choi, J. Y. Yoo. Computation of Dynamic Fluid-structure Interaction in Two- Dimensional Laminar Flows Using Combined Formulation. Journal of Fluids and Structures, 2005, (20): 51-69
    62 M. Eswaran, U.K. Saha, D. Maity. Effect of Baffles on a Partially Filled Cubic Tank: Numerical Simulation and Experimental Validation. Computers & Structures,2009, 87(3-4) : 198-205
    63 J.-S. Schotté, R. Ohayon. Representation of Liquid Sloshing in Elastic 3D Tanks by Equivalent Mechanical Systems and Symmetric Reduced Models. Computational Fluid and Solid Mechanics 2003:1506-1509
    64 Wing Kam Liu, Joseph Gvildys. Fluid-structure Interaction of Tanks with an Eccentric Core Barrel. Computer Methods in Applied Mechanics and Engineering, 1986, 58(1): 51-77
    65崔维成,吴有生,李润培.超大型海洋浮体水弹性响应研究概况.第六届全国流体力学会议论文集,上海:上海交通大学, 2001: 197-202
    66 R. E. D. Bishop, W. G. Price. Hydroelasticity of Ships. Cambridge: Cambridge University Press, 1979
    67 L. J. Xia, W. G. Wu, C. J. Weng, X. D. Jin. Analysis of Fluid-structure-coupled Vertical Vibration for High-speed Ships. Journal of Ship Mechanics, 2000, 4(3): 43-48
    68 G. I. Taylor. The Pressure and Impulse of Submarine Explosion Waves on Plates. In: Batchelor G K ed. The Scientific Papers of G. I. Taylor, Vol.2. Cambridge: Cambridge University Press, 1963: 20-35
    69张振华,朱锡,冯刚,等.船舶在远场水下爆炸载荷作用下的动态响应的数值计算方法.中国造船, 2003, 44(4): 36-41
    70顾建农,张志宏,政学龄,等.弹体入水弹道研究综述.海军工程大学学报, 2000, (1): 19-22
    71 Rajesh Kalavalapally, Ravi Penmetsa, Ramana Grandhi. Configuration Design of a Lightweight Torpedo Subjected to an Underwater Explosion. International Journal of Impact Engineering, 2009,36(2): 343-351
    72 Rajesh Kalavalapally, Ravi Penmetsa, Ramana Grandhi. Multidisciplinary Optimization of a Lightweight Torpedo Structure Subjected to an Underwater Explosion. Finite Elements in Analysis and Design, 2006, 43(2): 103-111
    73卢炽华,何友声.二维弹性结构入水冲击过程中的流固耦合效应.力学学报, 2000, 32(2): 129-140
    74 R. E. D. Bishop, W. G. Price, Y. Wu. General Linear Hydroelasticity Theory of Floating Structures Moving in a Seaway. Phil. Trans. R. Soc. Lond. 1985: 316, 375-426
    75董海,刘建湖,吴有生.水下爆炸气泡脉动作用下细长加筋圆柱壳的鞭状响应分析.船舶力学, 2007, 11(2):250-258
    76 Zhu Ren-qing, Fang Zhi-yong, Wu You-sheng. Numerical Simulation of Viscous Liquid Sloshing Coupled with Elastic Structures. Journal of Ship Mechanics, 2006(3):
    77 Wu Yongshu. Hydroelastic Analysis of Non-beam like Ships in Waves. Ph. D. thesis. Dept of Mech Eng, Brunel Univ,U.K, 1990
    78朱仁庆,吴有生,彭兴宁.升船机提升系统中船厢、水体和钢缆相互耦合作用分析.中国造船, 2004, 45(3): 1-13
    79田超,吴有生.船舶水弹性力学理论的研究进展.中国造船, 2008, 49(4): 1-11
    80 A. S. Tijsseling. Exact Solution of Linear Hyperbolic Four-equation System in Axial Liquid-pipe Vibration. Journal of Fluids and Structures, 2003, 18(2): 179-196
    81 Mao Qing, Zhang Jinghui, Luo Yushan, Wang Haijun, Duan Quan. Experimental Studies of Orifice-induced Wall Pressure Fluctuations and Pipe Vibration. International Journal of Pressure Vessels and Piping, 2006, 83(7): 505-511
    82 A.S. Tijsseling. Water Hammer with Fluid–structure Interaction in Thick-walled Pipes. Computers & Structures, 2007, 85(11-14): 844-851
    83杨超,范士娟.输液管道流固耦合振动的数值分析.振动与冲击, 2009, 28(6): 56-59
    84谢彬,段梦兰,等.海洋深水立管的疲劳断裂与可靠性评估研究进展.石油学报, 2004, 25(3): 95-100
    85秦太验,李杰,等.深海立管的断裂与可靠性评估研究进展.机械强度, 2004, 26 (增刊): 063-066
    86任建亭,姜节胜.输流管道系统振动研究进展.力学进展, 2003, 33(3): 313-324
    87佟明君,赵树山,王世忠.输送流体管道的固液耦合振动分析.哈尔滨理工大学学报, 2004, 9(2): 135-138
    88吴华锋,苏丽杰.一维流固耦合振动问题的解析解.机械设计与制造, 2004(6): 21-23
    89 M. P. Paidoussis. Some Unresolved Issues in Fluid-structure Interactions. Journal of Fluids and Structures, 2005,(20): 871-890
    90 M. P. Paidoussis. Flow-induced Vibrations in Nuclear Reactors and Heat Exchangers, Practical Experiences and State of Knowledge. In: Naudasher Eetaleds. Practical Experiences with Flow-induced Vibrations. Berlin: Springer-Verlag. 1980:1-81
    91郭术义,陈举华.流固耦合应用研究进展.济南大学学报, 2004, 18(2): 123-126
    92 T. Nomura. ALE Finite Element Computations of Fluid-structure Interaction Problems. Comput. Meths. Appl. Mech. Engrg, 1994,(112): 291-308
    93岳宝增,李笑天. ALE有限元方法研究及应用.力学与实践, 2002, 24(2): 7-11
    94张雄,陆明万,王建军.任意拉格朗日-欧拉描述法研究进展.计算力学学报, 1997, 14(1): 91-102
    95С.И.Петрова.Формаравновесияполости,ограниченнойупругойпленкой,воднороднойпотокежидкости.Изд.АНСССР,Механикажидкостиигаза, 1971(1):120-127
    96В.А.Бучин.РешениеЗадачиобОбтеканииПроницаемойПластинкисОтрывомСтруй.ДокладыАкадемиинаукСССР, 1983(6): 1331-1335
    97Ю.Л.Якимов.Движениецилиндравпроизвольномпроскомпотокеидеальнойнесжимаемойжидкость.Изд.АНСССР,Механикажидкостиигаза, 1970(2): 202-205
    98О.М.Киселев.Кзадачеобобтеканиинаполненнойгазомоболочкиплоскимпотокомидеальнойжидкости.Изд.АНСССР,Механикажидкостиигаза, 1971(3):108-117
    99М.М.Сулейманова.Приближенноерешениезадачиовзаимодействиимягкойоболочкесвязкойнесжимаемойжидкостью.Изд.АНСССР,МеханикаЖидкостииГаза, 1980(3): 132-137
    100阿亚日F.通过可渗透近球体的轴对称流动.应用数学和力学, 2005, 10: 1198-1209
    101 P. Leclaire, K. V. Horoshenkov, A. Cummings. Transverse Vibrations of a Thin Rectangular Porous Plate Saturated by a Fluid. Journal of Sound and Vibration, 2001, 247(1): 1-18
    102 P. F. Niederer, K. U. Schmitt, M. H. Muser, F. H. Walz. The Possible Role of Fluid/Solid Interactions in Minor Cervical Spine Injuries. American Society of Mechanical Engineers,Applied Mechanics Division, AMD, Crashworhiness, Occupant Protection and Biomechanics in Transportation Systems, 2001, (251): 171-182
    103 E. A. Sander, E. A. Nauman. Permeability of Musculoskeletal Tissues and Scaffolding Materials: Experimental Results and Theoretical Predictions. Critical Reviews in Biomedical Engineering, 2003, 31(1-2): 1-26
    104 N. D. Botkin, K. H. Hoffmann, V. N. Starovoitov, V. L. Turova. Modeling the Interaction between Bristle Elastic Structures and Fluids. 2003 Nanotechnology Conference and Trade Show. Nanotech 2003. Nanotech 2003 Joint Meeting. 6th International Conference on Modeling and Simulation of Microsystems, MSM 2003. 3rd International Conference on Computational Nanoscience and Technology, ICCN 2003. 2003 Workshop on Compact Modeling, WCM 2003, 2003, 1(1): 126-129
    105徐芝纶.弹性力学(第三版).北京:高等教育出版社, 1990: 216-284, 31-37, 5-29
    106 B. B.诺沃日洛夫著,朱兆祥译.非线性弹性力学基础.北京:科学出版社, 1958: 1-47
    107Х.М.Муштари,К.З.Галимов.НелинейнаятеорияупругихОболочек.Каэань:Таткнигоиэдат, 1957: 431
    108许维德.流体力学.北京:国防工业出版社, 1989: 1-10, 37-51, 61-85, 189-192
    109章梓雄,董曾南.粘性流体力学.北京:清华大学出版社, 1998: 1-3, 87-90
    110白象忠,郝亚娟.非线性流体弹性力学研究进展.力学进展, 2008, 38(5): 545-560
    111朱洪来,白象忠.流固耦合问题的描述方法及分类简化准则.工程力学, 2007, 24(10): 92-99
    112上海交通大学船舶制造系编.流体力学.北京:科学教育出版社, 1961: 134-139
    113寿楠椿.弹性薄板弯曲.北京:高等教育出版社, 1986: 88
    114Я.М.Григоренко,А.П.Мукоед.РешениенелинейныхзадачтеорииоболочекнаЭВМ.Киев.Вищашкола. 1983: 21-22
    115杨晓东,金基铎.输留管道流-固耦合振动的固有频率分析.振动与冲击, 2008, 27(3): 80-86
    116 N. N. Moiseev, A. A. Petrov. The Calculation of Free Oscillations of a Liquid in a Motionless Container. Advances in Applied Mechanics, 1966, 9: 91-154
    117 K. Kamatsu. Nonlinear Sloshing Analysis of Liquid in Tanks with arbitrary Geometries. National Aerospace Laboratory, Japan, 1980
    118 A.A. Lakis, S.C.Neagu. Free Surface Effects on the Dynamics of Cylindrical Shells Partially Filled with Liquid. Journal of Sound and Vibration, 1997, 207 (2): 175–205
    119 S. H. Park, J. H. Kim. Dynamic Stability of a Completely Free Circular Cylindrical Shell Subjected to a Follower Force. Journal of Sound and Vibration, 2000 (231): 989–1005
    120陈新龙,杨涤,翟坤.充液航天器液体晃动问题解析求解方法研究.哈尔滨工业大学学报, 2008, 40(7): 1013-1016
    121马兴瑞,余延生,王本利.水平横向激励圆柱贮箱中液体的非平面运动.宇航学报, 2008, 29(4): 1116-1119
    122余延生,马兴瑞,王本利.利用多维模态理论分析圆柱箱液体非线性晃动.力学学报, 2008, 40(2): 261-266
    123张素侠,刘习军,贾启芬,等.矩形弹性壳液耦合系统的模态试验分析.机械强度, 2004,26(6): 615-619
    124杨蔓,李俊峰,王天舒,等.带环形隔板的圆柱储箱内液体晃动阻尼分析.力学学报, 2006, 38(5): 660-667
    125余延生,马兴瑞,王本利.圆柱贮箱液体“平面”晃动波的稳定性研究.振动与冲击, 2008, 27(1): 9-11, 24
    126 H. A. Snyder. Sloshing in Microgravity. Cryoenics, 1999, 39: 1047-1055
    127贺元军,马兴瑞,王本利.微重环境下平移圆柱贮箱液固耦合系统的动力响应研究.西安交通大学学报, 2006, 40(9): 1083-1087
    128贺元军,马兴瑞,王本利.低重环境下液体非线性晃动的稳态响应.应用数学和力学, 2007, 28(10): 1135-1145
    129贺元军,尹立中,马兴瑞,等.液体非线性晃动的同步Hopf分叉现象.工程力学, 2007, 24(7): 72-76
    130贺元军,王萍萍,王本利,等.谐波平衡法求解俯仰运动矩形储箱中液体的非线性晃动.动力学与控制学报, 2004, 2(4): 29-33
    131余延生,马兴瑞,王本利.用多维模态理论分析航天器贮箱液体有限幅晃动力.宇航学报, 2007, 28(4): 981-985
    132格?斯?皮萨连柯,阿?波?雅柯符列夫,符?符?马特维叶夫.材料力学手册.石家庄:河北人民出版社. 1981: 393

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700