用户名: 密码: 验证码:
管道内旋转细长梁固液耦合动力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管道内旋转细长梁是化工机械、石油钻采工程中的特有结构,开展旋转细长梁固液耦合动力学分析方法研究,对细长梁结构优化设计、工艺参数优选等技术发展具有重要意义。旋转细长梁与不同环空间隙的管道内壁产生多向碰撞接触,同时空心旋转细长梁内部以及外部环空有流体作用,构成一个复杂的非线性固液耦合系统。因此,本文首先采用动力间隙元和空间梁单元、Newmark积分法,对管道内旋转细长梁进行碰撞接触动力学分析计算,得到时间步长、积分常数等参数对细长梁动力学分析结果的影响。其次,建立了不同偏心情况下环空流体力学分析的三维数值模型,揭示了偏心环空流体流动特性及界面力随转速和偏心度的变化规律;在偏心度大于0.8时,轴向等截面偏心环空螺旋流的界面力能阻止其偏心。然后,设计和建立了管道内旋转细长梁固液耦合模拟实验装置,实验研究了转速和流量对旋转细长梁运动状态的影响规律,以及旋转细长梁与管内外螺旋流体的固液耦合效果。最后将旋转细长梁沿轴线离散为若干个梁单元,管道和环空流体分别离散为若干个等长度的三维管道流体段和任意偏心环空流体段,每个流体段又被离散为四面体或六面体网格,建立了管道内旋转细长梁固液耦合动力学分析的三维数值模型;将结构动力学方程、流体连续方程和动量方程耦合,推导了界面力、界面位移的计算公式、迭代格式及收敛准则,建立了管道内旋转细长梁固液耦合动力学分析方法。为了解决管道和环空螺旋流体离散单元多、PC机无法计算的问题,提出了管道和环空流体特性描述数据库,该数据库能够自动记录和提取不同流体段、不同工艺参数下的流体分析结果;根据上述模型和理论,编制了管道内旋转细长梁固液耦合动力学计算程序,通过算例表明了固液耦合效果,且数值计算结果与实验结果基本吻合,验证了固液耦合理论方法的正确性。本文研究成果可为化工机械中的细长旋转轴和搅拌轴、石油钻采工程中的抽油杆柱和钻柱的固液耦合分析提供了理论基础和计算方法。
The rotary slender beam in pipe is the peculiar structure in the chemical engineering machinery and oil drilling and production engineering. The research of the rotary slender beam fluid-structure interaction dynamics analysis was presented the theoretical significance and application for the structure optimized design and the optimization of the process parameters. The rotary slender beam is collision with the pipe inner wall about different annular clearance. The rotary slender beam also has fluid interaction in its inside and outer annular. It forms a complex nonlinear fluid-structure interaction system. First, the dynamic gap element, three-dimensional beam element and Newmark integral method is adopted. The rotary slender beam in pipe is proceeded collision and contact dynamical analysis. The impact is obtained about the parameters of the time step and the integral constant to the result of the dynamical analysis. Second, the three-dimensional fluid dynamics analysis model is established with different eccenters. It is revealed that the variable rule about the eccentric annulus fluid flow characteristics and interfacial force with the speed and eccentricity. If the eccentricity is greater than 0.8, the interfacial force about the axial uniform cross section eccentric annulus helical flow can prevent the eccenter. Third, The experimental simulation apparatus is designed and established about the rotary slender beam fluid-structure interaction system. It is studied the variable rule of the impact about the flow rotate speed and the flow rate to the movement condition, and. the fluid-structure interaction effect of rotary slender beam and helical flow inside and outer of pipe. Finally, The rotary slender beam is scattered to several beam elements along axial line. The hydraulic pipelines is scattered to several equal long three-dimensional hydraulic pipelines fragment. The annular flow is scattered to random eccentric annular flow fragment. Every fluid fragment is also scattered to tetrahedron and hexahedron grid. The three-dimensional numerical model is established about the fluid-structure interaction dynamic analysis of rotary slender beam in pipe. The equations of the structure dynamics, fluid equation of continuity and momentum equation are coupled. The calculation formula about the interface force and displacement with eccentricity and eccentric angle are derived. The congruent iterative format and convergence criterion are also derived. The method about the fluid-structure interaction dynamic analysis is proposed. In order to solve the problem great quantity element number of the hydraulic pipelines and annular flow and the disability of the PC machine, the characterization database about the hydraulic pipelines and the annular flow is established. The database is able to automatic record and extract the fluid analysis result of different flow fragment and different technological parameters. Based on the above models and theories, the computer program is compiled about the fluid-structure interaction dynamic analysis of rotary slender beam in pipe. The fluid-structure interaction effect was showed by example. The fluid-structure interaction numerical arithmetic result was fundamental coincided with the experimental result. It was verified that the validity of the fluid-structure interaction theoretical method. The results of research in this article would provide a theoretical and arithmetic method for the fluid-structure interaction analysis of the rotary slender shaft, the stirring shaft in the chemical engineering machinery and the rod string and drill string in the oil drilling and production engineering.
引文
[1]Rankine W JM.On the centrifugal force of rotating shafts[J].The Engineer,1869,27.
    [2]黄文虎,武新华,焦映厚等.非线性转子动力学研究综述[J].振动工程学报,2000,13(4):497-509.
    [3]孟光.转子动力学研究的回顾与展望[J].振动工程学报,2002,15(1):1-9.
    [4]孙保苍,周传荣.转子-滑动轴承非线性行为研究综述[J].润滑与密封,2002,(4):6-7.
    [5]陈安华,刘德顺,朱萍玉.转子系统非线性振动研究进展[J].湘潭矿业学院学报,1999,14(2):59-65.
    [6]陆颂元.论国内旋转动力机械非线性振动理论研究的现状和发展[J].汽轮机技术,2006,48(2):85-87.
    [7]ProhlM A.A general method of calculating critical speeds of flexible rotors[J].J.Appl.Mech.Trans.ASME,1945,67:142-146.
    [8]肖春芳,周春华.用整体传递矩阵法计算主轴双转子系统的动态特性[J].机床与液压,2006,(5):74-76.
    [9]王宁,梁智权.转子系统固有频率的传递矩阵计算方法及其MATLAB实现[J].四川理工学院学报(自然科学版),2006,19(2):55-59.
    [10]Kicinski J,DrozdowskiR,MatemyP.The Nonlinear Analysis of the Effect of Support Construction Properties on the Dynamics properties of Multi-support Rotor Systems[J].Journal of Sound and Vibration,1997,206(4):523-539.
    [11]Ding J,Krodkiewski JM.Inclusion of Static Indetermination in the Mathematical Modal for Nonlinear Dynamic Analysis of Multi-bearing Rotor Systems[J].Journal of Sound and Vibration,1993,164(2):267-280.
    [12]Chan D S H.Nonlinear Analysis of Rotor Dynamic Instabilities in High-Speed Turbomachinery[J].Journal of Engineering for Gas Turbines and Power,1996,118:122-129.
    [13]冷淑香,崔颖,黄文虎等.线性与非线性油膜力模型下转子振动稳定性对比研究[J].汽轮机技术,2003,45(3):298-300.
    [14]焦映厚,李明章,陈照波.不同油膜力模型下转子-圆柱轴承系统的动力学分析[J].哈尔滨工业大学学报,2007,39(1):46-50.
    [15]焦映厚,陈照波,李明章.不同油膜力模型下转子椭圆轴承系统的动力学分析[J].热能动力工程,2006,21(4):.913-916.
    [16]沐华平.转子-轴承系统油膜失稳机制的研究[D].北京:清华大学,1994.
    [17]武新华,刘荣强,夏松波.非线性油膜力作用下滑动轴承涡动轨迹及稳定性分析[J].振动工程学报,1996,9(3):302-307.
    [18]梁智权.油膜轴承转子系统的动力特性[J].四川理工学院学报(自然科学版),2006,19(1):4-6.
    [19]P.Goldman,A.Muszynska.Chaotic behavior of rotor/stator systems with rubs[J].ASME journal of Vibration Acoustics Stress and Reliability in Design,1994,116:692-701.
    [20]John L.Isaksson.Dynamics of a rotor with annular rub[J].Proceedings of the Foruth International Conference on rotor Dynamics,Chicago,USA,1994,85-90.
    [21]Yu JJ,Goldman P,Benatly DE.Rotor/seal experimental and analytical study on full annular rub[J].ASME Journal of Eng for Gas Turbine and Power,2002,124:340-350.
    [22]赵春雨,路忠良,姚红良.刚性转子系统的碰摩与油膜非线性动力学耦合[J].东北大学学报(自然科学版),2006,27(7):790-793.
    [23]席慧玲,孙保苍.有限宽轴承—转子系统碰摩的非线性动力学特性[J].工程数学学报,2008,25(3):547-550.
    [24]Bai Chang-qing,Xu Qing-yu,Zhang Xiao-long.Nonlinear stability of balanced rotor due to effect of ball bearing internal clearance.Applied Mathematies and Meehanies (English Edition),2006,27(2):175-186.
    [25]Moreira M,Antunes J,Pina H.A theoretical model for nonlinear orbital motions of rotors under fluid confinement[J].Journal of Fluids and Structures,2000,(14):635-668,
    [26]Moreira M,Antunes J,Pina H.An improved linear model for rotor subject to dissipative annular flows[J].Journal of Fluids and Structures,2003,(17):813-832.
    [27]孙启国,虞烈.流体机械中浸液转子动力学特性的研究[J].动力工程,2000,20(5):906-910.
    [28]袁振伟,褚福磊.考虑流体作用的转子动力学有限元模型[J].动力工程,2005,25(4):457-461.
    [29]袁振伟,王三保,岳希明等.转子径向碰摩非线性流固耦合动力学特性全自由度的动态分析[J].机械工程学报,2008,44(6):199-205.
    [30]袁振伟,李志农,王三保等.转子轴向碰摩非线性流固耦合动力学特性全自由度分析[J].中国电机工程学报,2008,28(14):92-97.
    [31]杨建刚,蔡霆.转子—轴承耦合系统动力响应问题研究[J].中国电机工程学报,2003,23(5):94-97.
    [32]徐峰,李龙,程云山等.轴流式搅拌器的研究与发展[J].石油化工设备技术,2004,15(6):27-30.
    [33]陈登丰.搅拌器和搅拌容器的发展[J].压力容器,2008,25(2):33-41.
    [34]周国忠,王英琛,施力田.搅拌槽内三维流动场的RNG k-ε数值模拟[J].北京化工大学学报,2002,29(2):15-19.
    [35]Millheim K.K.The Effect of Bottom Hole Assembly Dynamics on the Trajectory of a Bit[J].JPT,1981,33(12):2323-2338.SPE 9222.
    [36]Millheim K.K,Apostal M.C.How BHA Dynamics Affect Bit Trajectory[J].World Oil,1981:183-205.
    [37]Fu J.H,Shi T.H.Dynamic Analysis of BHA(Bottom Hole Assembly) with Bent Housing[C].1996,SPE 37046.
    [38]章扬烈,肖载阳,端木纲.旋转钻柱运动原理的研究[J].石油矿场机械,1988,17(2):1-7.
    [39]张其昌,吕英明.下部钻具组合的几何非线性动态特性分析[J].石油大学学报,1996,20(3):57-62.
    [40]狄勤丰.预弯曲动力学防斜打快钻具组合动力学模型[J].石油学报,2007,28(6):118-121.
    [41]管志川,韩志勇,王以法等.井下钻柱受力实测接头研究[J].石油大学学报(自然科学版),2002,26(4):29-32.
    [42]管志川,魏文忠,夏焱.随钻扩眼工具井底钻压分配的实验研究[J].中国石油大学学报,2007,31(6):44-47.
    [43]况雨春.牙轮钻头与井壁碰撞的室内实验研究[J].天然气工业,2002,22(1):55-57.
    [44]魏文忠,管志川,刘永旺等.直井眼钟摆钻具纵向振动特性的实验研究[J].中国石油大学学报,2007,31(2):64-68.
    [45]Wolf S.F..Field Measurements of Downhole Drillstring Vibrations[C].1985,SPE 14330.
    [46]Besaisow A.A,Payen M.L.A Study of Excitation Mechanisms and Resonances Inducing BottomHole-Assembly Vibrations[J].SPE Drilling Engineering,1988,3(1):93-101.SPE 15560.
    [47]管志川,靳彦欣,王以法.直井底部钻柱运动状态的实验研究[J].石油学报,2003,24(6):102-106.
    [48]Burgess T.M.Improving BHA Tool Reliability with Drillstring Vibration Model:Field Experience and Limitations[C].1987,SPE 16109.
    [49]Apostal M.C.A Study To Determine the Effect of Damping of Finite-Element-Based,Forced-Frequency-Response Models for Bottomhole Assembly Vibration Analysis[C].1990,SPE 20458.
    [50]Fereidoun A.Application of Stability Approach to Torsional and Lateral Bit Dynamics[J].SPE Drilling &Completion,1998,13(2):99-107.SPE 30478.
    [51]G.Robello Samuel,Gary Schottle.Vibration Analysis,Model Prediction,and Avoidance:A Case History[C].2006,SPE 102134-MS.
    [52]魏水平,况雨春,夏宇文.基于ANSYS的钻柱纵向振动有限元分析及应用[J].河南石油,2006,20(1):66-68.
    [53]殷朝阳,王光远.钻柱动力学有限元分析及室内轴向试验结果对比[J].哈尔滨建筑大学学报,2000,33(3):6-10.
    [54]Johancsik C.A.Torque and Drag in Directional Well-Prediction and Measurment[J].JPT,1984.
    [55]Brett J.F.,Beckett,A.D..Uses and Limitations of Drillstring Tension and Torque Models for Monitoring Hole Condition[J].SPE Drilling Engineering,1989,4(3):223-229.SPE 16664.
    [56]杨姝,高得利,徐秉业.定向井钻柱摩阻问题的有限差分解[J].石油钻探技术,1992,20(3).
    [57]He X.Interactions Between Torque and Helical Buckling in Drilling[C].1995,SPE 30521.
    [58]Payne M.L.Advanced Torque-and-Drag Consideration in Extended-Reach Wells[C]..1997,SPE 35102.
    [59]帅健,吕英明.建立在钻柱受力变形分析基础之上的钻柱摩阻分析[J].石油钻采工艺,1994,16(2):25-29.
    [60]郭永峰,吕英明.水平井钻柱摩阻力几何非线性分析研究[J].石油钻采工艺,1996,18(2):14-17.
    [61]S.Menand.Advancements in 3D Ddllstring mechanics:From the Bit to the Topdrive[C].2006,SPE 98965-MS.
    [62]刘延强,吕英明.钻柱拖扭阻力的计算分析[J].石油学报,1996,17(3):110-115.
    [63]冯斌,艾志久.非线性转子动力学应用于油井钻柱振动[J].国外石油机械,1994,5(4):7-13.
    [64]闫相祯,李茂生,杨秀娟等.钻柱与井壁碰撞的拉格朗日算法动力学仿真[J].机械强度,2006,28(3):341-345.
    [65]朱才朝,谢永春,刘清友.钻头钻柱系统非线性耦合动力学仿真[J].兵工学报,2003,24(1):85-88.
    [66]况雨春,马德坤,刘清友等.钻柱-钻头-岩石系统动态行为仿真[J].石油学报,2001,22(3):81-85.
    [67]范慕辉,焦永树,王磊.垂直井中受压段旋转钻柱的分岔研究[J].工程力学,2003,20(6):127-129.
    [68]李子丰.近期国内钻柱静动力分岔研究及存在问题[J].石油机械,2004,32(6):68-70.
    [69]焦永树,蔡宗熙,严宗达.铅垂井段钻柱的浑沌运动[J].振动工程学报,2000,13(2):314-318.
    [70]肖文生,张扬,钟毅芳.钻柱在钻井液和井壁摩阻共同作用下的涡动[J].中国机械 工程,2004,15(4):334-338.
    [71]闫相祯,王伟章,王海文等.共振对螺杆泵井抽油杆偏磨的影响[J].油气地质与采收率,2008,15(2):108-110.
    [72]姜养民,彭勇,徐建宁.旋转级次抽油杆柱动力学模型及其差分方程[J].西安石油学院学报(自然科学版),2000,15(5):54-56.
    [73]李淑红,付军梅,金力杨.螺杆泵抽油杆柱的动态受力分析与工艺设计[J].钻采工艺,2003,26(2):61-64.
    [74]苗新蕾,胥宏峰,孙庆义.定向井螺杆泵采油技术[J].大庆石油学院学报,2006,30(4):36-38.
    [75]卢怀宝,王忠德,张文飞.螺杆泵杆柱系统自振频率分析[J].油气田地面工程,1997,16(6):67-69.
    [76]刘巨保,罗敏,李淑红.地面驱动螺杆泵抽油杆柱动力学分析技术及其应用[J].石油学报,2005,26(1):121-124.
    [77]Kenneth Carstensen.Newly Designed API-Modified Sucker Rod Connection &Precision Makeup Method[C].2004,SPE 86920.
    [78]Lekia,S.D,Evans,R.D.A Coupled Rod and Fluid Dynamic Model for Predicting the Behavior of Sucker-Rod Pumping Systems - Part 2:Parametric Study and Demonstration of Model Capabilities[J].SPE Production & Facilities,1995,10(1):34-40.SPE 30169.
    [79]Chacin,J.E..A Numerical Approach to the Diagnosis of Sucker Rod Pumping Installations and Its Verification With Downhole Pump Field Measurements[C].1989,SPE 18829.
    [80]张军,罗惕乾,陈听宽.垂直同心环空管内上升油水流动实验[J].测井技术,2002,26(3):233-237.
    [81]刘宏.泥浆模拟液在偏心环空中流动的实验研究[J].西部探矿工程,2002,76(3):52-53.
    [82]舒秋贵.在旋流扶正器作用下环空液体流动规律的实验研究[J].西部探矿工程,2005,114(10):55-57.
    [83]E.M.Ozbayoglu,C.Omurlu.Analysis of the Effect of Eccentricity on the Flow Characteristics of Annular Flow of Non-Newtonian Fluids Using Finite-Element Method[C].2006,SPE 100147-MS.
    [84]Ritchie G S.On the stability of viscous flow between eccentric rotating cylinders[J].J.Fluid Mech.,Part 1,1968,32:131-144.
    [85]Ballal B Y,Rivlin R S.Flow of a viscoelastic fluid between eccentric rotating cylinders[J].Transactions of the Society of Rheology,1976,20(1):65-101.
    [86]Siginer Dennis A,Bakhtiyarov Sayavur I.Flow of drilling fluids in eccentric annuli[J].Journal of Non-Newtonian Fluid Mechanics,1998,78:119-132.
    [87]Snyder W T.The non-linear hydrodynamic slider bearing[J].Trans.ASME J.,Journal of Basic Engineering.,Series D.,1963,85:429-435.
    [88]Mostafaiyan Mehdi,Khodabandehlou Khosrow,Sharif Farhad.Analysis of a viscoelastic fluid in an annulus using Giesekus[J].Journal of Non-Newtonian Fluid Mechanics,2004,118:49-55.
    [89]Yang Zidong,Liu Junying.Numerical analysis of laminar viscous non-Newtonian liquids flows in an eccentric annuli[A].Proceedings of the Forth international conference on fluid mechanics[C]..2004,452-456.
    [90]崔海清,孙智,高涛.非Newton流体在内管做轴向往复运动的偏心环空中非定常流的速度分布[J].水动力学研究与进展,2003,18(6):711-715.
    [91]孙智,高涛,崔海清.流体在内管做轴向运动的偏心环空中的速度分布[J].大庆石油学院学报,2004,28(1):10-13.
    [92]崔海清,杨元健,高涛等.幂律流体在内管做轴向往复运动的偏心环空中非定常流的流量计算[J].石油学报,2005,26(3):106-109.
    [93]崔海清.石油工程中非Newton流体管流--偏心环形空间螺旋流[M].北京:石油工业出版社,1994,4-5.
    [94]崔海清,张书怀.Bingham流体偏心环空螺旋流的流函数-轴向速度方程和Newton 流体相同条件下的解析解[J].大庆石油学院学报,1995,19(4):1-5.
    [95]崔海清,刘希圣.幂律流体偏心环空螺旋流中的二次流问题[J].水动力学研究与进展,1995,10(6):610-620.
    [96]崔海清,刘希圣.非牛顿流体偏心环形空间螺旋流的速度分布[J].石油学报,1996,17(2):76-83.
    [97]崔海清,季海军,蔡萌等.流体在内管做行星运动的环空中流动的二次流[J].大庆石油学院学报,2005,29(2):16-24.
    [98]贺成才.幂律流体偏心环空中流动的数值模拟[J].石油学报,2002,23(6):85-89.
    [99]赵仁宝,崔海清,李邦达.Robertson-Stiff流体环空螺旋流的解析解[J].大庆石油学院学报,1994,18(1):36-42.
    [100]季海军,张新,崔海清等.流体在内外管同时旋转的偏心环空中螺旋流的稳定性参数[J].大庆石油学院学报,2005,29(4):29-32.
    [101]李兆敏,蔡国琰.非牛顿流体力学[M].北京:石油大学出版社,1998.
    [102]郑永刚.非牛顿流体流动理论及其在石油工程中的应用[M].北京:石油大学出版社,1999.
    [103]李兆敏.石油工程流体力学研究进展[M].东营:石油大学出版社,2004.
    [104]李兆敏,王渊,张琪.宾汉流体在环空中流动时的速度分布规律[J].石油学报,2002,23(2):87-91.
    [105]贺成才.幂律流体同心环空螺旋流数值模拟[J].钻井液与完井液,2002,19(4):7-9.
    [106]郑俊德,孙智,任刚等.聚合物产出液在杆管环空中的流动[J].石油钻采工艺,2001,23(5):45-49.
    [107]N.Singhal,S.N.Shah,S.Jain.Friction Pressure Correlations for Newtonian and Non-Newtonian Fluids in Concentric Annuli[C].2005,SPE 94280.
    [108]S.DeWayne Everage,Nanjiu Zheng,Sean Ellis.Evaluation of Heave-Induced Dynamic Loading on Deepwater Landing Strings[J].SPE Drilling & Completion,2005,20(4):230-237.SPE 87152.
    [109]Wang Yan,Wang Demin,Sun Zhi.Technology for Controlling Eccentric Wear of SuckerRods and Tubing in Pumping Wells Lifting Fluids Containing Polymer[C].2004,SPE 89927.
    [110]Noriyasu M,Mitsuhiro Y.Pressure flow of Non-Newtonian fluids between eccentric double cylinders with the inner cylinder rotating[J].Journal of the Textile Machinery Society of Japan,1987,33(2):46-53.
    [111]Uner Denlz,Ozgen Canan,Tosun Ismall.Flow of a power-law fluid in an eccentric annulus[J].SPE Drilling Engineering,1989,4(3):269-272.SPE 17002-PA.
    [112]Escudier M P,Gouldson I W,Oliveira P J.Effects of inner cylinder rotation on laminar flow of a Newtonian fluid through an eccentric annulus[J].International Journal of Heat and Fluid Flow,2000,21:92-103.
    [113]Hussain Q E,Sharif M A R.Numerical modeling of helical flow of viscoplastic fluids in eccentric annuli[J].AIChE Journal,2000,46(10):1937-1946.
    [114]Hussain Q E,Sharif M A R.Numerical modeling of helical flow of pseudoplastic fluids[J].Numerical Heat Transfer,Part A,2000,38:225-241.
    [115]Escudier M P,Oliveira P J,Pinho F T.Fully developed laminar flow of purely viscous non-Newtonian liquids through annuli,including the effects of eccentricity and inner-cylinder rotation[J].International Journal of Heat and Fluid Flow,2002,23:52-73.
    [116]Ramadan Ahmed,Stefan Miska.Experimental Study and Modeling of Yield Power-law Fluid Flow in Annuli with Drillpipe Rotation[C].2008,SPE112604.
    [117]S.G.Chefranov.Helicity Generation in Uniform Helical Flows[J].Journal of Experiment and Theoretical Physics,2004,99(5):987-997.
    [118]C.Feteeau,Corina Fetecau,D.Vieru.On some helical flows of Oldroyd-B fluids[J].Acta Mechanica,2007,189(1):53-63.
    [119]M.E.Sayed-Ahmed,EI-Fayoum.The effect of variable properties on the helical flow and heat transfer of power law fluids[J].Acta Mechanica,2006,181(3):185-197.
    [120]Eduar Marusic-Paloka,Igor Pazanin.Fluid flow through a helical pipe[J].Zeitschrift f(u|¨)r Angewandte Mathematik und Physik,2007,58(1):81-99.
    [121]Mingqin Duan,Stefan Miska,Mengjiao Yu.The Effect of Drillpipe Rotation on Pressure Losses and Fluid Velocity Profile in Foam Drilling[C].2008,SPE 114185.
    [122]魏淑惠,张长海,陈皖等.基于计算流体动力学的偏心环空流场数值模拟[J].大庆石油学院学报,2007,31(6):62-64.
    [123]钱若军,董石麟,袁行飞.流固耦合理论研究进展[J].空间结构,2008,14(1):3-15.
    [124]邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,27(1):19-38.
    [125]郭术义,陈举华.流固耦合应用研究进展[J].济南大学学报(自然科学版),2004,18(2):123-126.
    [126]杜颖,刘习军,贾启芬.液固耦合动力学问题的研究[J],机床与液压,2004,11:9-12.
    [127]刘云贺,俞茂宏,陈厚群.流体固体动力耦合分析的有限元法[J].工程力学,2005,22(6):1-6.
    [128]Shley H,Haviland G.Bending vibrations of a pipe line containing flowing fluid[J].J Appl Mech,1950,17:229-232.
    [129]岳宝增,李笑天.ALE有限元方法研究及应用[J].力学与实践,2002,24(2):7-11.
    [130]Hirt GW,Amsden AA,Cook JL.An arbitrary Lagrangian-Eulerian computing method for all flow speeds[J].J Comp Phys,1974,14(3):227-253.
    [131]Wulf G.Dettmer,Djordje Peri(?).On the coupling between fluid flow and mesh motion in the modelling of fluid-structure interaction[J].Computational Mechanics,2008,43(1):81-90
    [132]Tayfun E.Tezduyar,Sunil Sathe,Jason Pausewang.Interface projection techniques for fluid-structure interaction modeling with moving-mesh methods[J].Computational Mechanics,2008,43(1):39-49
    [133]Patrick Le Tallec,Saloua Mani.Numerical analysis of a linearised fluid-structure interaction problem[J].Numerische Mathematik.2000,87(2):317-354
    [134]曾娜,郭小刚.探讨流固耦合分析方法[J].沈阳工程学院学报(自然科学版),2008,4(4):382-386.
    [135]王征,吴虎,贾海军.流固耦合力学的数值研究方法的发展及软件应用概述[J].机床与液压,2008,36(4):192-195.
    [136]袁振,刘玉民,孙开明等.机械设备流固耦合动力分析的有效方法[J].机械强度,2000,22(11:16-17.
    [137]R P DEARMOND,T ROULEAU.Wave propagation in viscous,compressible liquids confined in elastic tubes[J].ASME Journal of Basic Engineering,1972:811-817.
    [138]张立翔,黄文虎.输流管道流固耦合振动研究进展[J].水动力学研究与进展,2000,15(3):366-379.
    [139]喻萌.基于ANSYS的输流管道流固耦合特性分析[J].中国舰船研究,2007,2(5):54-57.
    [140]徐合力,蒋炎坤.弯曲输流管道流固耦合流动特性研究[J].武汉理工大学学报(交通科学与工程版),2008,32(2):343-346.
    [141]潘栋,邓民宪.基于ANSYS的储液罐固有振动特性分析[J].西部探矿工程,2008,(5):52-54.
    [142]F.Pellicano,M.Amabili,M.P.Paidoussis.Effect of geometry on the non-linear vibration of circular cylindrical shells[J].International Journal of Non-Linear Mechanics,2002,37(7):1181-1981.
    [143]杨建刚.环形间隙内振动圆柱流固耦合动力特性研究[J].东南大学学报(自然科学版),2005,35(1):7-10.
    [144]丁天怀,李成.钻井液与钻柱的耦合纵向振动分析[J].机械工程学报,2007,43(9):215-219.
    [145]王勖成,邵敏.有限单元法基本原理与数值方法[M].北京:清华大学出版社,1988.
    [146]丁皓江,何福保,谢贻权.弹性和塑性力学中的有限单元法[M].北京:机械工业出版社,1992,155-164.
    [147]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004,7-11.
    [148]韩洪升,魏兆胜,崔海清等.石油工程非牛顿流体力学[M].哈尔滨:哈尔滨工业大学出版社,1993,116-144.
    [149]贺成才.幂律流体偏心环空螺旋流计算机仿真[J].钻井液与完井液,2005,22(5):44-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700