用户名: 密码: 验证码:
块体材料原位拉伸—疲劳测试理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研制能够对材料性能进行多种载荷作用下微观力学性能原位(In situ)测试的仪器装备并据此获得的材料性能数据,将是材料研制、结构与制品设计、寿命预测和可靠性评估的重要基础,具有重要的科学意义,也将产生重大的社会效益和经济效益。
     原位拉伸-疲劳测试是可对材料微观变形损伤、组织结构变化进行可视化监测的最为典型的静、动态原位测试技术之一。目前针对块体材料的原位拉伸测试多借助商业化的原位拉伸测试仪,该类仪器功能确定,不易于进行功能扩展;而现有的原位疲劳测试多利用压电驱动与液压驱动方式分别对微尺度构件和块体材料开展测试,且分别存在加载行程有限和测试频率不足的问题。此外,现有原位力学测试技术较少涉及多种载荷的复合载荷测试模式。据此,本文针对块体材料的微观力学性能测试及表征,开展了原位力学测试装置及其控制系统的研制,提出了三种用于修正力学参数的算法,对拉伸-疲劳原位测试装置性能进行了较为系统的测试分析,并开展了基于拉伸模式的复合载荷测试的理论与试验研究。主要研究工作可概述为:
     (1)原位拉伸测试装置及其控制系统的设计分析
     提出了基于大减速比减速机构的“超低速准静态”加载方法,利于SEM等装备对材料微观变形损伤的高分辨率成像,并可实现测试装置的紧凑化和轻量化。提出了基于夹具体与试件夹持部分等宽约束的夹持方法。进一步,搭建了基于载荷/位移传感器模拟量反馈和编码器数字量反馈的闭环控制系统。在此基础上,开展了测试装置与SEM的兼容性测试。此外,针对小真空腔体SEM或光学成像条件下的成像工作距离要求,研制了将试件置高布置的非标准布局型测试装置,以实现其与各类成像系统的广泛兼容性,并对该装置的传动误差和固有频率等进行了测试。
     (2)拉伸测试结果的修正算法
     针对表征材料力学性能的重要参数,如弹性模量和伸长率等的测试准确性,本文对小型化原位拉伸测试装置进行了系统的理论与试验研究。首先,就不同夹持位置对弹性模量计算的影响,提出了计算试件标距部分实际应变的理论模型,建立了检测位移与实际应变间的理论模型,采用原位观测图像对模型可行性进行了验证。其次,针对试件置高布置的非标准布局型测试装置,系统研究了因传动单元间隙及传感器倾覆导致的系统刚度弱化问题,提出了对试件全量程范围的应力和应变进行修正的算法。最后,对于试件轴线与拉伸方向的空间不同轴问题,提出了基于水平面剪切变形分量和竖直面弯曲变形分量的解析方法,结合挠曲线计算,可对试件的实际应力-应变曲线进行准确计算。
     (3)原位拉伸-疲劳装置性能测试分析
     许多构件的损伤失效形式往往归因于静、动态载荷的耦合作用,采用直流伺服电机与压电驱动器耦合驱动的方法,可开展大范围应力比模式下的原位疲劳测试。通过对压电叠堆温升和电荷释放行为的研究,确定了原位疲劳测试的合理连续循环周数和间隔时间。本文系统研究了不同初始静载荷下压电驱动器的动态输出特性,以及不同加载频率下压电驱动器的有效行程,并就交变载荷对应力松弛进程的加速作用进行了研究。
     (4)典型材料的原位拉伸测试试验与循环应力-应变曲线预测
     利用研制的测试装置,本文对铜铝复合材料的断裂机制进行了研究,对其颈缩行为开展的SEM下观测结果表明:复板层(C11000铜)先于基板层(1060铝)发生断裂,基板层的主要断口形貌为撕裂韧窝,而复板层韧性断口主要为纯剪切型断口。对锌对铜锌合金低周疲劳性能的影响发现:基于相同的应变幅,含锌量增加后,铜锌合金在每次循环过程中消耗的塑性功更多,疲劳过渡寿命更短。此外,本文还针对具有典型循环硬化行为的材料,提出了单轴应力-应变曲线及循环应力-应变曲线的拟合方法,并据此提出了利用单轴拉伸应力-应变曲线预测出强化应变范围内的循环应力-应变曲线的方法。
     (5)拉伸-剪切复合载荷加载与解耦方法以及预载荷对力学性能的影响
     利用集成改进型Arcan夹具的测试装置开展了AZ31B变形镁合金的单轴拉伸、纯剪切及偏移角为45°的拉伸-剪切复合载荷测试并发现:材料断裂时的塑性功消耗并无显著变化,这表明材料在无预应力作用下的断裂发生所需的累积功消耗对受载形式并不敏感。进一步,提出了该复合加载模式下拉伸应力-应变与切应力-应变曲线的解耦模型。此外,本文还研究了拉伸预应变和弯曲预挠度对AZ31B变形镁合金弯曲、拉伸性能的影响并发现:在弹性阶段,塑性预应变对试件弹性行为的影响并不显著;在过渡强化阶段,预应变越大,试件的应变硬化行为越显著;而在大应变软化阶段或颈缩阶段,随着预应变的增加,材料表现出应变软化行为。
     总之,本文的研究工作不仅是对现有原位力学测试技术的扩展,也是对力学性能参数准确修正和复合载荷耦合加载与解耦理论的进一步深化。本文有关原位力学测试装置的研制方法及理论解析将为原位力学测试技术及装备提供理论基础并开辟新的应用途径。
Developping the in situ testing instruments based on various loads types to researchon various materials and accordingly obtaining testing data of material performance wouldbe the important foundation to materials development, the designing of structures andproducts, life prediction and reliability evaluation. Therefore, the developping of in situtesting instruments has important scientific significance, prominent social and economicbenefits.
     In situ tensile and fatigue testing are considered as one of most typical static anddynamic technologies to visually supervise the micro deformation, damage and structureschanges of materials. Currently, the primary method of in situ tensile testing of bulkmaterials mostly depends on commercial in situ tensile testers. However, these instrumentspresent specific function and function expansion is confined. The existing in situ fatiguemechanical testing mostly relies on the piezoelectric driving or hydraulic driving methodsto carry out the relevant tests on microscale specimen or bulk materials, however, thedriving methods respectively present problems of limited testing stroke and frequency.Furthermore, the current in situ testing methods have not involved combined loads testingbased on multiple loading modes and relevant decoupling methods. Therefore, accordingto the micro-mechanical properties testing and characterization of bulk materials,corresponding in situ testing devices and control system were developed in this paper. Andthree algorithms for correcting the mechanical parametres were proposed. On this basis,the in situ tensile-fatigue testing device was also systematically and deeply tested. Thetheories and experimental researches on the combined loads testing of bulk materials werealso carried out. The main research works of this paper could be summarized as follows:
     (1) Design and analysis of in situ tensile device and control system
     The ultra-low speed quasi-static loading mode was proposed by adopting thereducing mechanism with large reduction ratio, the loading mode could not only achievethe functions of reducing speed and increasing torque, but also effectively meet therequirement of high resolution imaging of materials’ deformation process by SEM.Addtionally, the loading mode could also achieve the compacting and lightweight oftesting devices. A self-positioning gripping method was also proposed based onequi-width constraint of the gripper and specimen’s gripping section. Furthermore, basedon the calibration of displacement sensor and load sensor, the author constructed aclosed-loop control system based on analog signal feedback of the load/displacement sensors and digital signal feedback of the encoder. The compatibility testing with SEMwas also conducted. On the basis, to achieve imaging depth requirements of SEM withsmall vacuum chamber or optical imaging conditions, a non-standard layout type deviceby layouting the specimen on the top horizontal plane was also developed to achieve thebroad compatibility with various types of imaging systems. The transmission error andnatural frequency of the device were also tested.
     (2) Correction methods of tensile testing data
     As for the important parameters for the characterization of material’s mechanicalproperties, such as the testing accuracy of elastic modulus, yield strength and elongation,systematically theoretical and experimental investigations on miniaturized in situ tensiletesting devices were carried out. Firstly, for the influences of various gripping positions onelastic modulus calculations, this paper proposed a theoretical model for calculating theactual strain of the specimen’s gripping section, and theoretical model between measureddisplacement and actual strain was also established. In addition, in situ observation imageswas adopted to verify the feasibility of the proposed model. Secondly, for the non-standardlayout device by layouting the specimen on the top horizontal plane, this papersystematically investigated the weakening of system stiffness caused by the transmissionchain gap and the overturn of load sensor, and proposed an algorithm which could correctthe stress and strain of full scale range. Finally, for the dimensional misaligment issuebetween the specimen’s axis and tensile direction, this paper proposed an analyticalmethod based on horizontal shear deformation component and vertical bendingdeformation component. Combined with the calculation of deflection curve, thespecimen’s actual stress-strain curve could be accurately calculated.
     (3) Tests and analysis on in situ tensile-fatigue device
     For many components, the materials’ failure is often attributed to the coupled effectsof static and dynamic loading. By using the coupling driving method integrating the DCservo and piezoelectric actuator, fatigue testing with variable frequencies and wide stressratio could be carried out. By investigating the temperature rise and charge releasebehaviors of piezoelectric stacks, the rational number of cycles and interval time wereobtained. This paper also studied the dynamic output performance of piezoelectric actuatorbased on different initial static loads, and the effective stroke of piezoelectric actuatorbased on various testing frequency. The aggravation effects of alternating load on thetensile stress relaxation was also investigated.
     (4) In situ tensile testing of typical materials and prediction of cyclic stress-straincurve
     With the aid of developed devices, the fracture mechanism of Cu-Al compositematerial was investigated, the necking process was observed by SEM and the testingresults showed: the plate layer (C11000copper) fractured antecedent to substrate layer (1060aluminum), the main fracture morphology of plate layer and substate layer wererespective tear toughening nest and pure shear typies. The research on the effect of alloycomposition Zn on the low cycle fatigue properties of copper-zinc alloy showed that basedon the identical strain amplitude, as the content of Zn increased, the copper-zinc alloyconsumed more irreversible plastic work during each cycle and presented shortertransition life. In addtion, for the bulk materials with typical cyclic hardening behaviors,an accurate prediction method of cyclic stress-strain curves at the materials’ strengthenstrain range was also proposed and investiagted based on uniaxial tensile stress-straincurve.
     (5) Combined loading and decoupling method of tensile-shearing mode and effects ofpre-loads on mechanical properties
     By using a modified Arcan fixture, the uniaxial tensile, pure shear andtensile-shearing combined loading tests based on an offset angle of45°of AZ31Bmagnesium alloy were carried out. The results showed that the total consumed plasticwork did no significantly change, this indicated that the plastic work consumptionrequired for material fracturing without pre-stress was not sensitive with the loading typies.Furthermore, the decoupled model of the tensile stress-strain and shear stress-straincurves under tensile-shearing combined loads was proposed. Besides, the effects of tensilepre-strain and bending pre-deflection on the bending and tensile properties of AZ31Bextruded magnesium alloy were investigated. Specifically, in the elastic stage, the effectsof plastic prestrain on specimen’s elastic behavior were not obvious, in the transitionalhardening stage, as the prestrain increased, the specimen presented more obvioushardening behavior, in the large strain softening stage or necking stage, as the prestrainincreased, the softening behavior of specimen presented more obvious trend.
     In conclusion, this study is not only the expansion of the existing in situ tensiletesting technology, but also the further understand of the accurate correction of mechanicalproperties and combined loads coupling and decoupling theories and technologies. Thedevelopment of serialized in situ mechanical testing devices and the theoretical analysiswill provide a theoretical foundation and open up new avenues for developing in situmechanical testing technologies and equipments.
引文
[1] Dieter G E. Mechanical Metallurgy [M]. New York: McGraw-Hill,1998.
    [2] Reismann H, Pawlik P S. Elasticity Theory and Applications [M]. New York: HohnWiley&Snos, Unc,1980.
    [3] Beer F P, Johnston Jr R, Dewolf J T. Mechanics of Materials [M]4th ed. New York:McGraw-Hill,2006.
    [4]赫茨伯格.工程材料的变形与断裂力学[M].北京:机械工业出版社,1995.
    [5] D Hull. Fractography: Observing, Measuring and Interpreting Fracture SurfaceTopography [M]. Cambridge University Press,1999.
    [6]束德林.工程材料力学性能[M].北京:机械工业出版社,2007.
    [7] Davis J R. Tensile Testing [M]. ASM International,2004.
    [8] Thomas H C, Mechanical Behavior of Materials [M]. New York: McGraw-Hill,1990.
    [9]李庆祥,王东生,李玉和.现代精密仪器设计[M].北京:清华大学出版社,2004.
    [10]王习术.材料力学行为试验与分析[M].北京:清华大学出版社,2007.
    [11]聂毓琴,孟广伟.材料力学[M].北京:机械工业出版社,2007.
    [12]盛国裕.金属材料及其试验方法[M].北京:中国质检出版社,2012.
    [13]王开厅.材料微观力学性能原位拉伸测试仪研制与试验研究[D].长春:吉林大学机械科学与工程学院,2013.
    [14]李秦超.中低频材料微观力学性能原位拉伸测试仪设计与试验研究[D].长春:吉林大学机械科学与工程学院,2012.
    [15]周琴. AFM原位拉伸试验装置研制及试验研究[D].哈尔滨:哈尔滨工业大学机电工程学院,2010.
    [16] Neelakantan L, Sch nberger B, Eggeler G, Hassel, A W. An in situ tensile tester forstudying electrochemical repassivation behavior: Fabrication and challenges [J].Review of Scientific Instruments.2010;81(3).
    [17] Bettles C J, Lynch P A, Stevenson A W, Tomus D, Gibson M A, Wallwork K,Kimpton J. In situ observation of strain evolution in Cp-Ti over multiple length scales[J]. Physical Metallurgy and Materials Science.2011;42:100-110.
    [18] Ma Z C, Zhao H W, Huang H, Zhang L, Li Q C, Wang K T, Zhou X Q. CalibrationMethods Based on Stress-strain Curve for a Novel Tensile Platform inside SEM [C].Chongqiong: Proc.10th Int. Conf. on Frontiers of Design and Manufacturing,2012.
    [19] Zhang D F. A Nano-Tensile Testing System for Studying Nanostructures inside anElectron Microscope: Design, Characterization and Application [D]. LausanneFederal Polytechnic University, Lausanne,2010.
    [20] Stokes D J, Donald A M. In situ mechanical testing of dry and hydrated breadcrumbin the environmental scanning electron microscope (ESEM)[J]. Journal of MaterialsScience.2000;35:599-607.
    [21] Ma Z C, Zhao H W, Huang H, Wang K T, Li Q C, Zhou X Q, Hu X L, A miniaturizedin situ tensile platform under microscope [J]. Telkomnika,2012,10:199-208.
    [22] Gkotsis P. Development of mechanical reliability testing techniques with applicationto thin films and piezo MEMS components [D]. Cranfield University, Cranfield,Bedfordshire,2010.
    [23] Rizzieri R, Mahadevan L, Vaziri A. Superficial wrinkles in stretched, drying gelatinfilms [J]. Langmuir.2006;22:3622-3626.
    [24] Lu S N, Dikin D A, Zhang S L, Fisher F T, Lee J, Ruoff R S. Realization of nanoscaleresolution with a micromachined thermally actuated testing stage [J]. Review ofScientific Instruments,2004,75:2154-2162.
    [25]张行.断裂与损伤力学[M].北京:北京航空航天大学出版社,2009.
    [26] Haque M A, Saif M T A, In situ tensile testing of nano-scale specimens in SEM andTEM [J]. Experimental Mechanics,2002,42:123–128.
    [27] Sharpe W N, Yuan B, Edwards R L, New technique for measuring the mechanicalproperties of thin films [J]. Journal of Microelectromechanical Systems,1997,6:193–199.
    [28] Tang J, Wang H, Li S C, Liu R, Mao S P, Li X P, Zhang C C, Ding G F, Design andfabrication of a micron scale free-standing specimen for uniaxial micro-tensile tests[J]. Journal of Micromechanics and Microengineering,2009,19:105015.
    [29] Van Soestbergen M, Ernst L J, Jansen K M B, van Driel W D, Measuring thethrough-plane elastic modulus of thin polymer films in situ [J]. MicroelectronicsReliability,2007,47:1983-1988.
    [30] Gianola D S, Sharpe Jr W N. Techniques for testing thin films in tension [J].Experimental Techniques,2004,28:23-27.
    [31] Opdahl A, Somorjai G A. Stretched polymer surfaces: atomic force microscopymeasurement of the surface deformation and surface elastic properties of stretchedpolyethylene [J]. Journal of Polymer Science Part B-Polymer Physics,2001,39:2263–2274.
    [32] Matthews D T A, Ocelík V, Bronsveld P M, De Hosson J T M. An electronmicroscopy appraisal of tensile fracture in metallic glasses [J]. Acta Materialia,2008,56:1762-1773.
    [33] Hosseini S B, Temmel C, Karlsson B, Ingesten N G. An in-situ scanning electronmicroscopy study of the bonding between MnS inclusions and the matrix duringtensile deformation of hot-rolled steels [J]. Metallurgical and Materials TransactionsA,2007,38:982-989.
    [34] Zhang D Q, Chu J G, Hou Z W, Wang L D. An off-chip actuated tensile test device formicroscale mechanical testing [J]. Chinese Journal of Mechanical Engineering.2009;20.
    [35] Ma Z C, Zhao H W, Li Q C, Wang K T, Zhou X Q, Hu X L, Cheng H B, Lu S, Novelin situ device for investigating the tensile and fatigue behaviors of bulk materials [J].Review of Scientific Instruments,2013,84:045104.
    [36] Zhao H W, Wu B D, Cao D B, Mechanical performance of right-angle flexure hinge[J]. Nanotechnology and Precision Engineering,2007,5:143-147.
    [37] Chen K S, Chen B Z, Huang CC, Design and control of a piezoelectric driven fatiguetesting system for electronic packaging applications [J]. IEEE Transactions onComponents and Packaging Technologies,2006,29:841-849.
    [38] Gama A L, Morikawa S R K, Monitoring fatigue crack growth in compact tensionspecimens using piezoelectric sensors [J]. Experimental Mechanics,2008,65:247-252.
    [39] Liu M, Hsia K H, Shang J K, Driving forces for interfacial fatigue Crack Growth byPiezoelectric Actuator [J]. Journal of Intelligent Material Systems and Structures,2005,16:557-566.
    [40] http://www.shimadzu.com.cn/an/test/fatigue/sem/222.html.
    [41] http://www.ccss.com.cn.
    [42] Greer J R, De Hosson J M. Plasticity in small-sized metallic systems: Intrinsic versusextrinsic size effect [J]. Progress in Materials Science,2001,56:654-724.
    [43] Wen Y N, Xiao L R, Zhang X M, Li W, Zheng Y P, Geng Z J, Microstructures andproperties of Cu-Zn-Al-Ni alloy [J]. Journal of Central South University,2011,42:922-927.
    [44] Zhang P, Duan Q Q, Li S X, Zhang Z F, Cyclic Deformation and fatigue crackingbehaviour of polycrystalline Cu, Cu-10wt%Zn and Cu-32wt%Zn [J]. PhilosophicalMagazine,2008,88:2487-2503.
    [45] Zhang Z J, Duan Q Q, An X H, Wu S D, Yang G, Zhang Z F, Microstructure andmechanical properties of Cu and Cu-Zn alloys produced by equal channel angularpressing [J]. Materials Science and Engineering A,2011,528:4259-4267.
    [46] Tsuchiya T, Yamaji Y, Sugano K, Tabata O, Tensile and tensile-mode fatigue testingof microscale specimens in constant humidity environment [J]. ExperimentalMechanics,2010,50:509-516.
    [47] Bandyopadhyay S, Ghosh A, Ali S Y, Tensile fatigue, stress relaxation, and creepbehaviors of worsted core spun yarns [J]. Journal of Applied Polymer Science,2011,121:2123-2126.
    [48] Horst R H, Stephens T S, Coons J E, Henning W H, Compression stress relaxationapparatus for the long-time monitoring of the incremental modulus [J]. Review ofScientific Instruments,2003,74:4737-4744.
    [49] Abedi H R, Zarei-Hanzaki A, Fatemi-Varzaneh S M, Roostaei A A, The semi-solidtensile deformation behavior of wrought AZ31magnesium alloy [J].Materials&Design,2012,31:4386-4391.
    [50] Hasegawa S, Tsuchida Y, Yano H, Matsui M, Evaluation of low cycle fatigue life inAZ31magnesium alloy [J]. International Journal of Fatigue,2007,29:1839-1845.
    [51] Ma H W, Yao S M, Wang L Q, Zhi Z, Analysis of the displacement amplification ratioof bridge-type flexure hinge [J]. Sensors and actuators,” A, Physical,2006,132:730-736.
    [52] Mall S, Integrity of graphite/epoxy laminate embedded with piezoelectricsensor/actuator under monotonic and fatigue loads [J]. Smart Materials andStructures,2002,11:527-533.
    [53]黄长艺,严普强.机械工程测试技术基础[M].北京:机械工业出版社,2001.
    [54] Park J H, Kang D J, Shin M S, Lim S J, Yu S C, Lee K S, Ha J E, Choa S H Easycalibration method of vision system for in-situ measurement of strain of thin films [J].Transactions of Nonferrous Metals Society of China,2009,19:243-249.
    [55] Li XD, Yang Y, Wei C, In situ and real-time tensile testing of thin films usingdouble-field of-view electronic speckle pattern interferometry [J]. MeasurementScience and Technology,2004,15:75-83.
    [56] Lu Y, Lou J, Quantitative in-situ nanomechanical characterization of metallicnanowires [J]. JOM,2009,63:35-42.
    [57] Liao F F, Wang W, Chen Y Y, Parameter calibrations and application ofmicromechanical fracture models of structural steels [J]. Structural Engineering andMechanics,2012,42:153-174.
    [58] Moore L, Barrett J, Embedded module for3-D mechanical strain measurement [J],IEEE Transactions on Components and Packaging Technologies,2012,2:1002-1011.
    [59] Ha J E, Park J H, Kang D J, New strain measurement method at axial tensile test ofthin films through direct imaging [J]. Journal of Physics D-Applied Physics,2008,41:157406.
    [60] Hessling J P, Dynamic calibration of uni-axial material testing machines [J].Mechanical S ystems and Signal Processing,2008,22:451-466.
    [61] Ma Z C, Zhao H W, Wang K T, Zhou X Q, Hu X L, Lu S, Cheng H B, Novelcorrection methods on a miniature tensile device based on a modular non-standardlayout [J]. Mesurement Science and Technology,2013,24:085901.
    [62] Zhu H, Zhu L, Chen J H, Lu X F, Study of deformation and damage mechanism ofaluminum alloy (6063) under different stress states [J]. Rare Metal Materials andEngineering,2007,36:597-601.
    [63] Arcan M, Hashin Z, Voloshin A, Method to produce uniform plane-stress states withapplications to fiber-reinforced materials [J]. Experimental Mechanics,1978,18:141-146.
    [64] Hung S C, Liechti K M, An evaluation of the arcan specimen for determining theshear moduli of fiber-reinforced composites [J]. Experimental Mechanics,1997,37:460-468.
    [65] Deng K, Yang J H, Huang W W, Chen F, Liu C F, Liu C W, Zhang H, Wang Y J. Anew method to obtain shear modulus of solid propellant [J]. Acta Astronautica,2011,69:440-444.
    [66] Greer J M, Galyon Dorman S E, Hammond M J, Some comments on the Arcanmixed-mode (I/II) test specimen [J]. Engineering Fracture Mechanics,2011,78:2088-2094.
    [67] Kim J, Ryou H, Kim D, Kim D, Lee W, Hong S H, Chung K, Constitutive law forAZ31B Mg alloy sheets and finite element simulation for three-point bending [J].International Journal of Mechanical Sciences,2008,50:1510-1518.
    [68] Song B, Huang G S, Li H C, Zhang L, Huang G J, Pan F S, Texture evolution andmechanical properties of AZ31B magnesium alloy sheets processed by repeatedunidirectional bending [J]. Journal of Alloys and Compounds,2010,489:475-481.
    [69] Palani G S, Iyer N R Dattaguru B, Fracture analysis of stiffened panels undercombined tensile, bending, and shear loads [J]. AIAA Journal,2005,43:2039-2051.
    [70] Palani G S, Iyer N R, Dattaguru B, A generalised technique for fracture analysis ofcracked plates under combined tensile, bending and shear loads [J]. Computers andStructures,2006,84:2050-2064.
    [71] Sofuoglu H. A new technique used in obtaining true stress-True strain curves forconstant strain-rates [J]. Experimental Techniques,2003,27:35-37.
    [72] ASTM E8. Standard Test Methods for Tension Testing of Metallic Materials.
    [73] Badulescu C, Grédiac M, Mathias J D, Investigation of the grid method for accuratein-plane strain measurement [J]. Measurement Science and Technology,2009,20:095102.
    [74] Zhang Z L, Hauge M, Odegard J, Thaulow C, Determining material true stress-straincurve from tensile specimens with rectangular cross-section [J]. International Journalof Solids and Structures,1999,36:3497-3516.
    [75] Mirone G, New Model for the Elastoplastic Characterization and the stress-straindeformation on the necking section of a tensile specimen [J]. International Journal ofSolids and Structures,2004,41:3545-3564.
    [76] ASTM E8. Metallic materials-Tensile testing-Part1: Method of test at roomtemperature.
    [77] Baere I D, Paepegem W V, Degrieck J, Design of mechanical clamps with extra longwedge grips for static and fatigue testing of composite materials in tension andcompression [J]. Experimental Techniques,2008,32:62-69.
    [78] Damiani C, Sade M, Lovey F C, Fatigue in Cu-Zn-Al single crystals duringpseudoelastic cycling: in situ observations by SEM and optical microscopy[J]. Journal De Physique. IV: JP,2003,112:623-626.
    [79] Bezazi A, Frioui N, Scarpa F, Tensile static, fatigue and relaxation behaviour ofclosed cell electret PVDF foams [J]. Mechanics of Materials,2011,43:459-466.
    [80] Ellyin F, Kujawski D, Tensile and fatigue behaviour of glassfibre/epoxy laminates [J].Construction and Building Materials,1995,9:425-430.
    [81] Xin Q, Ling H Z, Long T J, A magnetoelasticity instrument for testing the mechanicalproperties of ferromagnetic materials [J]. Review of Scientific Instruments,2004,75:5216-5220.
    [82] Lin X Z, Chen D L, Strain hardening and strain-rate sensitivity of an extrudedmagnesium alloy [J]. Journal of Materials Engineering and Performance,2008,17:894-901.
    [83] Deng J, Lin Y C, Li S S, Chen J, Ding Y, Hot tensile deformation and fracturebehaviors of AZ31magnesium alloy [J]. Materials&Design,2013,49:209-219.
    [84] Ulacia I, Salisbury C P, Hurtado I, Worswick M J, Tensile characterization andconstitutive modeling of AZ31B magnesium alloy sheet over wide range of strainrates and temperatures [J]. Journal of Materials ProcessingTechnology,2011,211:830-839.
    [85] Chowdhury S M, Chen D L, Bhole S D, Cao X, Powidajko E, Weckman D C, Zhou Y,Tensile properties and strain-hardening behavior of double-sided arc welded andfriction stir welded AZ31B magnesium alloy [J]. Materials Science and EngineeringA,2010,527:2951-2961.
    [86] Deng J, Lin Y C, Chen J, Li S S, Ding Y, Hot tensile deformation and fracturebehavior of AZ31magnesium alloy [J]. Materials&Design,2013,49:209-219.
    [87] Chino Y, Kimura K, Mabuchi M, Deformation characteristics at room temperatureunder biaxial tensile stress in textured AZ31Mg alloy sheets [J]. Acta Materialia,2009,57:1476-1485.
    [88] Lee H J, Choi H S, Han C S, Lee N K, Lee G A, Choi T H, A precision alignmentmethod of micro tensile testing specimen using mechanical gripper [J]. Journal ofMaterials Processing Technology,2007,187:241-244.
    [89] Kang D J, Park J H, Shin M S, Ha J E, Lee H J, Specimen alignment in an axialtensile test of thin films using direct imaging and its influence on the mechanicalproperties of BeCu [J]. Journal of Micromechanics and Microengineering,2010,20:085001.
    [90] http://www.mtschina.com/material.asp.
    [91] http://www.instron.us/wa/home/default_en.aspx.
    [92] Zhu S J, Okazaki M, Usuki A, Kato M, Tensile and fatigue behavior in clayreinforced nylon6nanocomposites [J]. Zairyo/Journal of the Society of MaterialsScience,2009,58:969-974.
    [93] Bruno G, Nitschke-Pagel T, The residual stress relaxation after fatigue in fine-grainedsteels [J]. Applied Physics A: Materials Science and Processing,2002,74:1388-1390.
    [94] Tomozawa M, Hepburn R W, Surface structural relaxation of silica glass: A possiblemechanism of mechanical fatigue [J]. Journal of Non-Crystalline Solids,2004,345:449-460.
    [95] Majsztrik P W, Bocarsly A B, Benziger J B, An instrument for environmental controlof vapor pressure and temperature for tensile creep and other mechanical propertymeasurements [J]. Review of Scientific Instruments,2007,78:103904.
    [96] Torres M A S, Voorwald H J C, An evaluation of shot peening, residual stress andstress relaxation on the fatigue life of AISI4340steel [J]. International Journal ofFatigue,2002,24:877-886.
    [97] Fox M E, Withers P J, Relaxation of residual stresses in and around mechanicalfasteners due to fatigue loading [J]. Materials Science Forum,2006,524:153-158.
    [98] Koh S K, Oh S J, Li C, Ellyin F, Low-cycle fatigue life of SiC-particulate-reinforcedAl-Si cast alloy composites with tensile mean strain effects [J]. International Journalof Fatigue,1999,21:1019-1032.
    [99] Takanashi M, Kamata K, Iida K, Relaxation behavior of welding residual stresses byfatigue loading in smooth longitudinal butt welded joints [J]. Welding ResearchAbroad,2001,47:2-8.
    [100] Arcari A, De Vita R, Dowling N E, Mean stress relaxation during cyclic straining ofhigh strength aluminum alloys [J]. International Journal of Fatigue,2009,31:1742-1750.
    [101] Bamberg E, Grippo C P, Wanakamol P, Slocum A H, Boyce M C, Thomas E L. Atensile test device for in situ atomic force microscope mechanical testing [J].Precision Engineering.2006;30:71-84.
    [102] Aboulfaraj M, G'Sell C, Ulrich B. In situ observation of the plastic deformation ofpolypropylene spherulites under uniaxial tension and simple shear in the scanningelectron microscope [J]. Polymer.1995;36:731-742.
    [103] http://www.kammrath-weiss.com/en/products.htm.
    [104] http://deben.co.uk.
    [105] http://www.mtiinstruments.com.
    [106] Rizzieri R, Baker F S, Donald A M. A tensometer to study strain deformation andfailure behavior of hydrated systems via in situ environmental scanning electronmicroscopy [J]. Review of Scientific Instruments.2003;74:4423-4428.
    [107] Dragnevski K I, Fairhead T W, Balsod R, Donald A M. A new tensile stage for insitu electron microscopy examination of the mechanical properties of "superelastic"specimens [J]. Review of Scientific Instruments,2008,79:126107.
    [108] Yuan Z Z, Dai Q X, Cheng X N, Chen K M, Pan L and Wang A D, In situ SEMtensile test of high-nitrogen austenitic stainless steels [J]. Materials Characterization,2006,56:79-83.
    [109] Singh U, Prakash V, Abramson A R, Chen W, Qu L, Dai L, Mechanicalcharacterization device for in situ measurement of nanomechanical properties ofmicro/nanostructures [J]. Applied Physics Letters,2006,89,073103.
    [110] Biallas G, Maier H J, In-situ fatigue in an environmental scanning electronmicroscope-Potential and current limitations [J]. International Journal of Fatigue,2007,29:1413-1425.
    [111] Joo H D, Kim J S, Kim K H, Tamura N, Koo Y M, In situ synchrotron X-raymicrodiffraction study of deformation behavior in polycrystalline coppers duringuniaxial deformations [J]. Scripta Materialia,2004,51:1183-1186.
    [112] Jin H, Lu W Y, Cordill M J, Schmidegg K, In situ Study of Cracking and Bucklingof Chromium Films on PET Substrates [J]. Experimental Mechanics,2011,51:219–227.
    [113] Liao K, Tan E Y M, In situ tensile strength degradation of glass [J]. ScriptaMaterialia,2001,44:785-789.
    [114] Zhang D F, Breguet J M, Clavel R, Philippe L, Utke I, Johann Michler, In situtensile testing of individual Co nanowires inside a scanning electron microscope [J].Nanotechnology,2009,20:365706.
    [115] Lang U, Süss T, Wojtas N, Dual J, Novel Method for Analyzing Crack Growth inPolymeric Microtensile Specimens by In Situ Atomic Force Microscopy [J].Experimental Mechanics,2010,50:463-472.
    [116] Yu F M, Dyer M J, Skidmore G D, Rohrs H W, Lu X K, Ausman K D, Von Her J R,Ruoff R S, Three-dimensional manipulation of carbon nanotubes under a scanningelectron microscope [J]. Nanotechnology,1999,10:244-252.
    [117] Hoffmann S, Ostlund F, Michler J, Fan H J, Zacharias M, Christiansen S H, BallifC, Fracture strength and Young's modulus of ZnO nanowires [J].Nanotechnology,2007,18:205503.
    [118] Haque M A, Saif M T A, A review of MEMS-based miroscale and nanoscaletensile and bending testing [J]. Experimental Mechanics,2003,43:248-255.
    [119] Haque M A, Saif M T A, Thermo-mechanical properties of nano-scale freestandingaluminum films [J]. Thin Solid Films,2005,484:364-368.
    [120] Schmid F, Sommer G, Rappolt M, Regitnig P, Holzapfel G A, Laggner P, AmenitschH, Bidirectional tensile testing cell for in situ small angle X-ray scatteringinvestigations of soft tissue [J]. Nuclear Instruments and Methods in PhysicsResearch, Section B,2006,246:262-268.
    [121] Bontempi E, Zanola P, Gelfi M, Zucca M, Depero L E, Girault B, GoudeauP, Geandier G, Bourhis E L, Renault P O, Elastic behaviour of titanium dioxidefilms on polyimide substrates studied by in situ tensile testing in a X-raydiffractometer [J] Nuclear Instruments and Methods in Physics Research, Section B,2010,268:365-369.
    [122] Woo N C, Cherenack K, Tr ster G, Spolenak R, Designing micro-patterned Ti filmsthat survive up to10%applied tensile strain [J]. Applied Physics A: MaterialsScience and Processing,2010,100:281-285.
    [123] Pauw B R, Vigild M E, Mortensen K, Andreasen J W, Klop E A, A tensile stage forhigh-stress low-strain fibre studies [J]. Journal of Applied Crystallography,2011,44:1297-1299.
    [124] Vorakunpinij A, Coffin D W, Haberger C C, A new device for measuring tensile andcompressive creep in paper [J], Experimental Techniques,2004,28:43-48.
    [125] Zhong X Y, Huang G J, He F F, Liu Q, Mechanical properties and microstructure ofAZ31magnesium alloy under uni-axial tensile loading [J]. Materials Science Forum,2011,686:219-224.
    [126] Zurbitu J, Kustov S, Castillo G, Aretxabaleta L, Cesari E, Aurrekoetxea J,Instrumented tensile–impact test method for shape memory alloy wires [J].Materials Science and Engineering A,2009,524:108-111.
    [127] Ma Z C, Zhao H W, Huang H, Zhang L, Li Q C, Wang K T, Zhou X Q. Analysis andExperiment of a Novel Miniature Driven Unit for In Situ Fatigue Test Based onTensile Preload [C]. Proc.10th Int. Conf. on Frontiers of Design and Manufacturing,2012.
    [128] Maity J, Kumar S, Bhattacharyya A, The effect of post fatigue tensile loading onmechanical properties and failure behaviour of steel [J]. Steel Research International,2011,82:866-873.
    [129] Bathias C, Piezoelectric fatigue testing machines and devices [J]. InternationalJournal of Fatigue,2006,28:1438-1445.
    [130] Arnould O, Hild F, High-cycle fatigue device for low stiffness components [J].Experimental Techniques,2008,32:17-25.
    [131] Kasprzyczak L, MacHa E, The control system of the fatigue test stand under biaxialtension-Compression [J]. Experimental Techniques,2010,34:15-22.
    [132] Oh HK, Characterization of dynamic fatigue life by the uniaxial tensile test [J]Journal of Materials Processing Technology,1995,54:365-371.
    [133] Wang H, Cooper T A, Lin H T, Wereszczak A A, Fatigue responses of lead zirconatetitanate stacks under semibipolar electric cycling with mechanical preload [J].Journal of Applied Physics,2010,108:084107.
    [134] Yang G S, Lee J K, Jang W Y, Mechanical properties and microstructure observationwith grain refinement in CuZnAl alloy [J]. Materials Science Forum,2008,569:173-176.
    [135] Mao P L, Zheng L, Yang L, Chen L J, Low cycle fatigue behavior of as-extrudedAZ31magnesium alloy [J]. Materials Science Forum,2011,686:202-207.
    [136] Geng C J, Wu, B L, Du X H, Wang Y D, Zhang Y D, Wagner F, EslingC, Stress-strain response of textured AZ31B magnesium alloy under uniaxialtension at the different strain rates [J]. Materials Science and Engineering A,2013,559:307-313.
    [137] Zheng S L, Yu Q, Jiang Y Y, An experimental study of fatigue crack propagation inextruded AZ31B magnesium alloy [J]. International Journal of Fatigue,2013,47:174-183.
    [138] Matsuzuki M, Horibe S, Analysis of fatigue damage process in magnesium alloyAZ31[J]. Materials Science and Engineering A,2009,504:169-174.
    [139] Benedetti M, Fontanari V, Scardi P, Ricardo C L A, Bandini M, Reverse bendingfatigue of shot peened7075-T651aluminium alloy: The role of residual stressrelaxatio [J]. International Journal of Fatigue,2009,31:1225-1236.
    [140] Hou P H, Chen T Y. An automatic tensile test measurement system for miniaturespecimens [J]. Experimental Techniques,2005,28:32-36.
    [141] Akhter N, Jung H C, Chang H S, Kim K S, Determination of elastic modulus of abeam by using electronic speckle pattern interferometry [J]. Optics and LaserTechnology,2009,41:526-529.
    [142] Liu X G, Bao Y W, Qiu Y, Measurement of elastic modulus for metal fiber byvibration method [J]. Rare Metal Materials and Engineering,2012,41:1302-1305.
    [143] Modi K B, Elastic moduli determination through IR spectroscopy for zincsubstituted copper ferri chromates [J]. Material Science,2004,39:2887-2890.
    [144] Geandier G, Thiaudìre D, Randriamazaoro R N, Chiron R, Djaziri S, Lamongie B,Diot Y, Le Bourhis E, Renault P O, Goudeau P, Bouaffad A, Castelnau O, Faurie D,Hild F, Development of a synchrotron biaxial tensile device for in situcharacterization of thin films mechanical response [J]. Review of ScientificInstruments,2010,81:103903.
    [145] Joun M S, Eom J G, Lee M C, A New Method for Acquiring True Stress-strainCurves over a Large Range of Strains Using a Tensile Test and Finite ElementMethod [J], Mechanics of Materials,2008,40:586-593.
    [146] Nikbakht M, Choupani N, Hosseini S R,2D and3D interlaminar fractureassessment under mixed-mode loading conditions [J]. Materials Science andEngineering A,2009,516:162-168.
    [147] Ye S C, Craddock J N, Teh K T, Evaluation of a modified Arcan fixture for thein-plane shear test of materials [J]. Experimental Techniques,1998,12:22-25.
    [148] Cognard J Y, Sohier L, Davies P, A modified Arcan test to analyze the behavior ofcomposites and their assemblies under out-of-plane loadings [J]. Composites Part A:Applied Science and Manufacturing,2011,42:111-121.
    [149] Liu S, Chao Y J, Zhu X, Tensile-shear transition in mixed mode I/III fracture [J].International Joural of Solids and Structures,2004,41:6147-6172.
    [150] Fritz T, Griepentrog M, Mokwa W, Schnakenberg U, Determination of Young'smodulus of electroplated nickel [J]. Electrochim Acta,2003,48:3029-3035.
    [151] Park J H, Myung M S, Kim Y J, Tensile and high cycle fatigue test of Al-3%Ti thinfilms [J]. Sensors and Actuators, A: Physical,2008,147:561-569.
    [152] Son D, Kim J J, Kim J Y, Kwon D, Tensile properties and fatigue crack growth inLIGA nickel MEMS structures [J]. Materials Science and Engineering A,2005,406:274-278.
    [153] Mall S, Hsu T L, Electromechanical fatigue behavior of graphite/epoxy laminateembedded with piezoelectric actuator [J]. Smart Materials and Structures,2000,9:78-84.
    [154] Saito S, Kikuchi K, Onishi Y, Nishino T, Development of piezoelectric ceramicsdriven fatigue testing machine for small specimens [J]. Journal of Nuclear Materials,2002,307:1609-1612.
    [155] Sugeta A, Uematsu Y, Tomita K, Hirose K, Jono M,Development of fatigue testingsystem for in-situ observation by an atomic force microscope and small fatiguecrack growth behavior in α-brass [J]. A. Hen/Transactions of the Japan Society ofMechanical Engineers,2004,70:588-595.
    [156] Begum S, Chen D L, Xu S, Luo A A, Low cycle fatigue properties of an extrudedAZ31magnesium alloy [J]. International Journal of Fatigue,2009,31:726-735.
    [157] Okazaki Y, Comparison of fatigue properties and fatigue crack growth rates ofvarious implantable metals [J]. Materials,2012,5:2981-3005.
    [158] Morita S, Tanaka S, Nakahara M, Ohno N, Kawakami Y, Enjoji T, Cyclicdeformation behavior and fatigue properties of extruded AZ31B magnesium alloy[J]. Journal of Japan Institute of Light Metals,2009,59:548-554.
    [159] Chamos A N, Pantelakis S G, Haidemenopoulos G N, Kamoutsi E, Tensile andfatigue behaviour of wrought magnesium alloys AZ31and AZ61[J]. Fatigue&Fracture of Engineering Materials&Structures,2008,31:812-821.
    [160] Nikbakht M, Choupani N, Hosseini S R,2D and3D interlaminar fractureassessment under mixed-mode loading conditions [J]. Materials Science andEngineering A,2009,516:162-168.
    [161] Cognard J Y, Créac'hcadec R, Sohier L, Davies P, Analysis of the nonlinear behaviorof adhesives in bonded assemblies-comparison of TAST and Arcan tests [J].International Journal of Adhesion and Adhesives,2008,28:393-404.
    [162] Yan J H, Sutton M A, Deng X, Wei Z, Zavattieri P, Mixed-mode crack growth inductile thin-sheet materials under combined in-plane and out-of-plane loading[J]. International Journal of Fracture,2009,160:169-188.
    [163] Pucillo G P, Grasso M, Penta F, Pinto P, On the mechanical characterization ofmaterials by Arcan-type specimens [J]. Engineering Fracture Mechanics,2011,78:1729-1741.
    [164] Gning P B, Delsart D, Mortier J M, Coutellier D, Through-thickness strengthmeasurements using Arcan's method [J]. Composites Part B: Engineering,2010,41:308-316.
    [165] Hasanpour R, Choupani N, Rock fracture characterization using the modified Arcantest specimen [J]. International Journal of Rock Mechanics and MiningSciences,200946:346-354.
    [166] Taher S T, Thomsen O T, Dulieu-Barton J M, Zhang S, Determination ofmechanical properties of PVC foam using a modified Arcan fixture [J]. CompositesPart A: Applied Science and Manufacturing,2012,43:1698-1708.
    [167] Choupani N, Experimental and numerical investigation of the mixed-modedelamination in Arcan laminated specimens [J]. Materials Science and EngineeringA,2008,478:229-242.
    [168] Rani E H, Rami H A, In-plane shear testing of thick-section pultruded FRPcomposites using a modified Arcan fixture [J]. Composites Part B:Engineering,2004,35:421-428.
    [169] Jones R H, Li H, Hirth J P, Effect of mixed mode I/III loading onenvironment-induced cracking [J]. Engineering Fracture Mechanics,2001,68:789–801.
    [170] Paterson E A, Gungor S, A photoelastic study of an angle crack specimen subject tomixed mode I-III displacements [J]. Engineering Fracture Mechanics,1997,56:767–778.
    [171] Sutton M A, Boone M L, Ma F, Helm J D, A combined modeling-experimentalstudy of the crack opening displacement fracture criterion for characterization ofstable crack growth under mode I/II loading in thin sheet materials [J]. EngineeringFracture Mechanics,2000,66:171–185.
    [172] Padmanaban G, Balasubramanian V, Sarin Sundar J K, Influences of weldingprocesses on microstructure, hardness, and tensile properties of AZ31B magnesiumalloy [J]. Journal of Materials Engineering and Performance,2010,19:155-165.
    [173] Zhang Q L, Hu Y X, Wang L L, Stress-strain of uniaxial tension and recrystallizationstructures of AZ31B magnesium alloy [J]. Rare Metal Materials and Engineering,2008,37:678-681.
    [174] Bryukhanova A A, Rodmanb M, Tarasova A F, Stoyanova P P, Shaperb M,Bormannb D, Mechanism of the plastic deformation of the AZ31alloy uponlow-cycle reverse bending [J]. Physics of Metals and Metallography,2011,111:623-629.
    [175] Lin Y C, Liu Z H, Chen X M, Chen J, Uniaxial ratcheting and fatigue failurebehaviors of hot-rolled AZ31B magnesium alloy under asymmetrical cyclicstress-controlled loadings [J]. Materials Science and Engineering A,2013,573:234-244.
    [176] Sutton M A, Yan J H, Deng X, Cheng C S, Zavattieri P, Three-dimensional digitalimage correlation toquantify deformation and crack-opening displacement in ductilealuminum under mixed-mode I/III loading [J]. Optical Engineering,2007,46(5):051003.
    [177] Geng C J, Wu B L, Du X H, Wang Y D, Zhang Y D, Wagner F, EslingC, Stress-strain response of textured AZ31B magnesium alloy under uniaxialtension at the different strain rates [J]. Materials Science and Engineering A,2013,559:307-313.
    [178] Lord J D, Morrell R M. Elastic modulus measurement-Obtaining reliable data fromthe tensile test [J]. Metrologia,2010,47:41-9.
    [179] ASTM A36/A36M-08. Standard specification for carbon structural steel.
    [180] ASTM A29/A29M-04. Standard specification for steel bars, carbon and alloy,hot-wrought, general requirements for1.
    [181] GOST1497-84. Methods on tension test.
    [182] Christ B W, Swanson S R, Alignment problems in the tensile test [J]. Journal ofTesting and Evaluation,1976,6:405-417.
    [183] TLake S P, Miller K S, Elliott D M, Soslowsky L J, ensile properties and fiberalignment of human supraspinatus tendon in the transverse direction demonstrateinhomogeneity, nonlinearity, and regional isotropy [J]. Journal ofBiomechanics,2010,43:727-732.
    [184] Roy A K, Self-aligned test fixture for interlaminar tensile testing of two-dimensionalcarbon-carbon composites [J]. Journal of Composite Materials,1994,28:367-379.
    [185] Krause Jr R F, Wiederhorn S M, Kübler J J, Misalignment-induced bending inpin-loaded tensile-creep specimens [J]. Journal of the American CeramicSociety,2001,84:145-152.
    [186] Wu H C, Rummler D R, Analysis of misalignment in the tensile test [J]. Journal ofEngineering Materials and Technology,1979,101:68-74.
    [187] Ma Z C, Zhao H W, Wang K T, Zhou X Q, Hu X L, Lu S, Cheng H B, Note:Investigation on the influences of gripping methods on elastic modulus by aminiature tensile device and in situ verification [J]. Review of Scientific Instruments,2013,84:066102.
    [188] Guo Y J, Qiao G J, Jian W Z, Zhi X H, Microstructure and tensile behavior of Cu-Almulti-layered composites prepared by plasma activated sintering [J]. MaterialsScience and Engineering A,2010,527:5234-5240.
    [189] Qin S W, Gupta M, Effect of volume fraction of ceramic particulates on the ultimatetensile strength of an Al-Cu based metal matrix composite [J]. American Society ofMechanical Engineers,1994,51:29-37.
    [190] Chino Y, Kimura K, Mabuchi M, Deformation characteristics at room temperatureunder biaxial tensile stress in textured AZ31Mg alloy sheets [J]. ActaMaterialia,2009,57:1476-1485.
    [191] Cho J H, Kim HW, Kang S B, Han T S, Bending behavior, and evolution of textureand microstructure during differential speed warm rolling of AZ31B magnesiumalloys [J]. Acta Materialia,2011,59:5638-5651.
    [192] Sato I, Miura S, Mohri T, Twinning behavior in AZ31-B polycrystal texturesubjected to in-situ bending test [J]. Materials Science Forum,2010,654:715-718.
    [193] Zilberg Y V, Bach F W, Bormann D, Rodman M, Sharper M, Hepke M, Effect ofalternating bending on the structure and properties of strips from AZ31magnesiumalloy [J]. Metal Science and Heat Treatment,2009,51:170-175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700