用户名: 密码: 验证码:
微细铣削工艺基础与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在微小零件日益广泛应用的今天,各领域对微小型零件的需求越来越多样化,以微机电系统(Micro-Electro-Mechanical System,MEMS)为代表的硅基材料微细加工技术逐渐因为可加工材料单一,可加工几何形状简单而显示出不足。利用微细切削特别是微细铣削技术加工微小零件是一个有潜力的发展方向。在微小型机床上进行微细铣削加工具有成本低、柔性强的特点,尤其适合于加工多种工程材料以及带有复杂曲面的三维微结构。在微细铣削中每齿进给量与刀具切削刃直径之比要高于常规铣削,而背吃刀量与切削刃钝圆半径在同一量级甚至更小,背吃刀量的微小变化都会带来单位切削力的显著变化,鉴于此类微细铣削中的特性问题,本文在系统分析国内外有关微细切削加工装备及相关切削机理研究的基础上,对微细铣削的残余应力检测、表面粗糙度预报、切削力建模及超细晶粒硬质合金微刀具的磨损机理等关键技术进行了深入研究。
     残余应力引起的任何微量变形都会对微型零件的工作性能产生重要影响,甚至直接导致其失效。由于受到特征尺寸的限制,目前的测试手段在对微型零件加工后的残余应力表征方面还存在一定的困难。本文首先在自主研制的精密微型铣床上制备出了3J21恒弹性合金薄膜微槽结构,此微结构可用于某关键国防武器的导航部件之中。然后将MEMS技术中研究硅基薄膜力学特性的微桥法引入金属微细切削领域,基于纳米压痕及弹性力学薄板理论建立3J21恒弹性合金薄膜微槽结构加载下的力学模型,得到此微结构底部极薄部分的杨氏模量为56.05±3.96Gpa,残余应力为拉应力,其值为189.4±3.61MPa。
     表面粗糙度是衡量已加工表面质量的主要指标之一,当前研究中对微细铣削表面质量控制的关注不足。文中利用响应曲面法(Regress Surface Method,RSM)进行多元非线性回归,建立了表面粗糙度的预报模型,方差分析显示此模型可以在97.5%的置信水平上反映表面粗糙度与输入参量之间的相关性。以表面粗糙度为目标,以各切削参量的输入水平为约束,利用序列二次规划方法得到了微细铣削的最佳切削参量组合,实际加工后检测结果与理论最优解之间误差8.1%,证明了优化组合的正确性。利用析因设计分析切削参量的主效应及交互效应对加工表面质量的影响,结果表明:与常规铣削不同,在微立铣中刀具直径和悬伸量对表面粗糙度的影响要远大于轴向切深和每齿进给量,其主次依次为刀具直径、刀具悬伸量、轴向切深和每齿进给量;另外在尺寸效应的作用下,表面粗糙度并不随着每齿进给量的减小而一直减小,而是当每齿进给量小于其最小切削厚度后,每齿进给量的减小反而会带来表面质量的变差。
     切削力对于研究微细铣削机理,制定合理的切削用量,优化刀具几何参数以及监控切削过程具有重要意义。基于剪切-滑移线场理论建立微细铣削三维切削力模型。所建模型考虑了常规铣削力模型中忽略的切削刃钝圆半径、最小切削厚度以及耕犁域弹性恢复对微细切削力的影响;模型中以瞬态未变形切削厚度算法来体现微铣刀切削刃的次摆线运动轨迹。所建模型与传统铣削模型相比,其仿真结果可以更好的吻合切削力测量曲线(最大误差11%);另外在实验基础上研究了了切削参量对切削力的影响规律。
     对刀具磨损形态及其形成机理的研究是分析微刀具磨损原因,改善切削性能,提高微刀具使用寿命进而降低工件加工成本的前提。文中通过一系列微刀具磨损实验研究超细晶粒硬质合金微铣刀的磨损机理,确定了TiAlN涂层及无涂层微铣刀加工铝合金及恒弹性合金时的四种主要磨损形态并分析其形成机理,发现与常规铣削加工不同的一个显著特点是,微细铣削时刀具的磨破损并不像常规切削中那样集中在后刀面,而是发生在刀尖附近的微小区域内,且刀尖破损严重。
Nowadays, the requirements of miniature and microparts have a high growth in the academic and industrial fields. With the variety of microcomponents demands, the conventional micromanufacturing technology, Micro-Electro-Mechanical System (MEMS), has limitations in the fabrication of workpieces with different materials and complex shapes. The microcutting technology can fabricate microcomponents with 3D free form surfaces and various engineering materials, and fill the gap between micro/nano and macro domain. Based on systemically summarizing the micromachining equipments and processing mechanism, the key technologies about micromachining, such as measuring the residual stress in the micro milled elastic alloy film, predicting the surface roughness, modeling the 3D microcutting force and analyzing the wear mechanism of ultra-fine grain carbide microcutter, have been investigated.
     Any micro deformation caused by the residual stress will damage the performance of the micro parts. There are difficulties to measure the residual stress for the micro/nano characteristic dimension of the micro components. In this paper, the microgroove in 3J21 elastic alloy thin film was fabricated using the developed 3-axis precision micromilling machine tool, with the TiAlN coated carbide micro-end-milling cutter. The cutting diameter of the micromilling tool is 0.15mm, the minimum thickness of the film in the microgroove bottom is 8μm, and the yield is greater than 80%. Nanoindentation is used to measure the relationship between the load and deformation, using the Nano Indenter XP system, MTS. Based on the deep measurement theory and the data of load-deformation, the Young’s modulus of the thin film in the microgroove bottom is 56.05±3.96GPa. The microbridge testing theory, using in the manufacturing of silicon materials with MEMS, is introduced to the metal micromachining field. The mechanical model is developed based on the microbridge testing and the plate theory. The residual tension stress is 189.4±3.61MPa using the developed mechanical model. This method has solved the problem that the residual stress in the micro milled elastic alloy thin film couldn’t be measured.
     The surface roughness is an important parameter for the evaluation of the surface quality. The mathematical model was developed for the surface roughness prediction using RSM. Analysis of variance was performed to evaluate the significance of regression. The fitting degree of the model is 97.5%. The SQP was used to optimize the processing parameters. The error between the theoretical optimum solution and the measuring value is 8.1%. The results show that the optimum solution is authentic. The influence of cutting parameter’s main and interactive effects on the surface finish was analyzed by factorial design. The results show that: L and D take more effects on surface roughness than fz and ap. This is the major difference from the conventional end milling. The surface finish will go to bad with the decrease of fz for the size effect of edge radius when fz is less than the minimum cutting thickness.
     The cutting force is important to understand the micromilling mechanism, plan appropriate cutting conditions, optimize the micro tool geometry, and monitor the process state. A 3D mechanical cutting force model was developed based on the shear and slip-line field method. The size effects of tool edge radius, minimum chip thickness and elastic restitution in the ploughing field were included in the cutting force model. A new instantaneous undeformed chip thickness was used to represent the real trajectory of the tool tip. The simulated cutting force profile of the proposed model has good agreement with the experimental data, compared to the conventional cutting force model with the assumption that the tool tip is sharp. The influence of cutting conditions on the cutting force was analyzed based on the experiments.
     The investigation of microcutter’s wear type and mechanism is helpful to understand the microcutter’s wear reason, improve machinability, and prolong the cutter life. Series of cutter wear experiments were conducted to research the main wear type and its mechanisms of the TiAlN coated and uncoated carbide microcutter. The results show that the notable feature in the wear of microcutter, different from the traditional milling technique, is that the wear of microcutter mainly occurs in the mini field of the micro tool nose. And tool nose breakage is serious than conventional milling.
引文
1孙雅洲,梁迎春,程凯.微米和中间尺度机械制造.机械工程学报.2004,40(5):1~6
    2 X. C. Luo, K. Cheng, D. Webb. Design of ultraprecision machine tools with applications to manufacture of miniature and microcomponents. Journal of Materials Processing Technology. 2005, 167(2-3):515~528
    3孙雅洲,梁迎春,董申.微小型化机床的研制.哈尔滨工业大学学报.2005,37(5):591~593
    4 K. Ashida, N. Mishima, H. Maekawa. Development of desktop machining microfactory. Proc. J-USA Symposium on Flexible Automation. 2000:175-178
    5 http://www.mech.northwestern.edu/mfg/aml/m4/m4-rkshop%20report.html
    6 N. Kawahran, T. Suto, T. Hirano. Microfactories. Microsystem Technology. 1997, 3(2):37-41
    7 T. Kitahara, K. Ashida, M. Tanaka. Microfactory and microlathe. Proc. IWMS. 1998:1-8
    8 H. Ogawa. Indispensable technologies for microassembly. Proc. 2nd International Workshop on Microfactories. 2000:103-106
    9 Y. Okazaki, T. Kitahara. NC microlathe to machine micro-parts. Proc. 2000 ASPE Annal Meeting. 2000:575-578
    10 Y. Okazaki, T. Mori, N. Morita. Desktop NC milling machine with 200krpm spindle. Proc. 2001 ASPE Annal Meeting. 2001:192-195
    11 X. Liu, R. E. DeVor, S. G. Kapoor, et al. The mechanics of machining at the microscale: Assessment of the current state of the science. Journal of Manufacturing Science and Engineering, Transactions of the ASME. 2004, 126(4):666~678
    12 M. P. Vogler, R. E. Devor, S. G. Kapoor. On the modeling and anslysis of machining performance in micro milling Journal of Manufacturing Science and Engineering. 2004, 126(4):684~693
    13袁哲俊,王先逵.精密和超精密加工技术.机械工业出版社.1999
    14王振龙.微细加工技术.国防工业出版社.2005
    15 http://www.istis.sh.cn/list/list_n.asp?id=3196&st=N
    16范伟政,马炳和.微机械和微细加工技术.西北工业大学出版社.1999:43~62
    17 M. K. Ghantasala, R. C. Barber, N. Moldovan, et al. Fabrication of 3-D high aspect ratio micro-fluidic components using laser machining and LIGA. Bangalore, India, The International Society for Optical Engineering. 2002:342-346
    18 R. K. Kupka, F. Bouamrane, C. Cremers, et al. Microfabrication: LIGA-X and applications. Applied Surface Science. 2000, 164:97-110
    19 C. K. Malek, V. Saile. Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: A review. Microelectronics Journal. 2004, 35(2): 131-143
    20陈安骏.超声点解复合加工在微器件制作中的基础研究.南京航空航天大学硕士学位论文.2005
    21 D. Dornfeld, S. Min, Y. Takeuchi. Recent advances in mechanical micromachining. CIRP Annals. 2006, 55(2):745~768
    22 T. Masuzawa. State of the art of micromachining. CIRP Annals. 2000, 49(2):473~488
    23 H. Weule, V. Huntrup, H. Tritsohle. micro-cutting of steel to meet new requirements in miniaturization. CIRP Annals. 2001, 50(l):61~64
    24 M. Tanaka. Development of desktop machining microfactory. Riken Review. 2001, (34):46~49
    25 Y. B. Bang, K. M. Lee. 5-axis micro milling machine for machining micro parts International Journal of Advanced Manufacturing Technology. 2004, 25(9-10):888~894
    26 M. Y. Ali, A. S. Ong. Fabricating micromilling tool using wire electro-discharge grinding and focused ion beam sputtering. International Journal of Advanced Manufacturing Technology. 2006, 31(5-6):501~508
    27 L. Alting, F. Kimura, H. N. Hansen. Micro engineering. Annals of CIRP Keynote STC-O. 2003
    28 G. L. Benavides, D. P. Adams, P. Yang. Meso-machining capabilities. Sanding Report. 2001
    29 J. Chae, S. S. Park, T. Freiheit. Investigation of micro-cutting operations.International Journal of Machine Tools and Manufacturing. 2006, 46:313-332
    30 B. N. Damazo, M. A. Davies, B. S. Dutter. A summary of micro-milling studies. Proc. 1st European Society Precision Engineering Nanatechnology. Bremen. 1999, 1:322-325
    31 S. Dimov, D. T. Pham, A. Ivanov, et al. Micromilling strategies: Optimization issues. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2004, 218(7):731~736
    32 A. El-fatatry. EUSPEN vision online: transferring microsystems technology. NEXUS Report. 2003.
    33蒋放,王西彬,刘志兵.微细切削的尺度效应研究.工具技术.2004, 38(8):6~9
    34李红涛,来新民,李成峰等.介观尺度微型铣床开发及性能测试.机械工程学报.2006,42(11):162~167
    35 M. P. Vogler, X. Liu, S. G. Kappor, et al. Development of meso-scale machine tool (mMT) system. Technical Paper of Society of Manufacturing Engineering. 2002, (181): 1-9
    36 Y. C. Liang, Y. Zhao, Q. S. Bai, et al. Study on micromachine tools in fabrication of microparts. Proc. lstNEMS. Zhuhai. 2006, 1:858-861
    37 C. Li, X. Lai, H. Li, et al. Modeling of three-dimensional cutting forces in micro-end-milling. Journal of Micromechanics and Microengineering. 2007, 17(4):671~678
    38张霖,赵东标,张建明.微细切削用小型数控铣床的研制.东南大学学报.2007,37(1):26~29
    39 H. Onikura, O. Ohnishi, Y Take. Fabrication of micro carbide tools by ultrasonic vibration grinding. CIRP Annals. 2000, 49(l):257~260
    40 D. P. Adams, J. Vasilem, G. Benavides, et al. Micromilling of metal alloy with focused ion beam-fabricated tool. Precision Engineering. 2001, 25(2):107~113
    41 F. Z. Fang, H. Wu, X. D. Liu. Tool geometry study in micromachining. Journal of Micromechanics and Microengineering. 2003, 13(5):726~731
    42 M. L. Hupert, W. J. Guy, S. D. Llopis, et al. High-precision micromilling for low-cost fabrication of metal mold masters. Proc. of SPIE. 2006,6112(61120B):l~12
    43 J. C. Miao, G. L. Chen, X. . Lai, et al. Review of dynamic issues in micro-end-milling. Int. J. Adv. Manuf. Technol. 2007, 31:897-904
    44 C. J. Kim, J. R. Mayor, J. Ni. A static model of chip formation in microscale milling. Journal of Manufacturing Science and Engineering. 2004, 126:710-719
    45 X. Liu, M. B. Jun, R. E. Devor. Cutting mechanics and their influence on dynamic forces, vibrations and stability in micro-end-milling. Proc.of ASME Manufacturing Engineering Div., Anaheim. 2004, (15):583~592
    46 S. M. Son, H. S. Lim, J. H. Ahn. Effects of friction coefficient on the minimum cutting thickness in micro cutting. International Journal of Machine Tools and Manufacture. 2005, 45(4-5):529~535
    47 M. P. Vogler, R. E. Devor, S. G. Kapoor. Micro-structure-level force prediction model for micro-milling of multi-phase materials. Journal of Manufacturing Science and Engineering. 2003, 125(2):202~209
    48 R. Lee, D. A. Dornfeld. An experimental study on burr formation in micro milling aluminum and copper. Trans. NAMRI/SME. 2002, 30:255-262
    49 J. D. Kim, D. S. Kim. Throretical analysis of micro-cutting characteristic in ultra-presicion machining. J. Mater. Precess Technolo. 1995, 49(3-4):387~398
    50 T. Moriwaki, E. Shamoto. Ultra precision diamond turning of stainless steel by applying ultrasonic vibration. CIRP Annals. 1991, 40(l):559~562
    51 D. A. Dlucca, R. L. Rhorer, R. Komanduri. Energy dissipate in the ultra precision machining of copper. CIRP Annals. 1991, 40(l):69~72
    52 V. Jarret, H. Zahouani, J. L. Loubet. Understanding and quantification of elastic and plastic deformation during scratch test. Wear. 1998, 218(1):8~14
    53 T. A. Dow, E. L. Miller, K. Garrard. Tool force and deflection compensation for small milling tools. Precision Engineering. 2004, 28(1):31~45
    54 W. Y. Bao, I. N.Tansel. Micro-end-milling operation. Part I: analytical cutting force model. Int. J. Mach. Tools Manuf. 2004, 40(15):2155~2175
    55韩桂泉,胡喜兰,张增志.TiN涂层硬质合金刀具切削奥氏体高锰钢的磨损破损研究.航空制造技术.2005,(6):88~91
    56谢宏,肖逸峰,贺跃辉等.硬质合金涂层刀具研究的新进展.中国钨金.2006,21(2):33~37
    57林晨光.中国超细晶粒WC-Co硬质合金研究进展.稀有金属.2004, 28(4):762~766
    58 I. N. Tansel, T. T. Arkan, W. Y. Bao. tool wear estimation in micro machining. Part 1: tool usage-cutting force relationship. Int. J. Mach. Tools Manuf. 2000, 40(4):599~608
    59 I. N. Tansel, T. T. Arkan, W. Y. Bao, et al. Tool wear estimation in micro-machining. Part II: Neural-network-based periodic inspector for non-metals. International Journal of Machine Tools and Manufacture. 2000, 40(4):609~620
    60 L. Zhou, C. Y. Wang, Z. Qin. Wear characteristics of micro-end mill in high-speed milling graphite electrod. Key Engineering Materials. 2004, 259:858-863
    61张定铨,何家文.材料中残余应力的X射线衍射分析和作用西安交通大学出版社,1999
    62蔡在壇.金属切削原理.同济大学出版社.1994
    63 Y J. Su, C. F. Qian, M. H. Zhao, et al. Microbridge testing of silicon oxide/silicon nitride bilayer films deposited on silicon wafers. Acta Mater. 2000,48:4901-4915
    64 X. S. Wang, J. R. Li, T. Y Zhang. Microbridge tests: I . On asymmetrical trilayer films. Journal of Micromechanics and Microengineering. 2006, 16:122-133
    65 B. Huang, T. Y Zhang. Microbridge tests: II. On buckled thin gold films. Journal of Micromechanics and Microengineering. 2006, 16:134-142
    66陈隆庆,赵明嗥,张统一.薄膜的力学测试技术.机械强度.2001, 23(4):413~429
    67徐宏,滕宏春,崔波.残余应力非破坏性测试技术的发展现状简介.理化检验—物理分册.2003,39(11):595~598
    68 W. D. Nix. Mechanical properties of thin films. Metall. Trans. 1999, 20:2217-2245
    69 T. Y Zhang, Y J. Su, C. R Qian, et al. Microbridge testing of silicon nitride thin films deposited on silicon wafers. Acta Materialia. 2000,48(11):2843~2857
    70 Y. Zhou, C. S. Yang, J. A. Chen, et al. Measurement of Young's modulus and residual stress of copper film electroplated on silicon wafer. Thin Solid Films. 2004, 460(1-2): 175-180
    71 Z. M. Zhou, Y. Zhou, C. S. Yang, et al. The evaluation of Young's modulus and residual stress of copper films by microbridge testing. Sensors and Actuators, A: Physical. 2006, 127(2):392~397
    72 P. G. Benardos, G. C. Vosniakos. Predicting surface roughness in machining: A review. International Journal of Machine Tools and Manufacture. 2003, 43(8):833~844
    73 D. K. Baek, T. J. Ko, H. S. Kim. Optimization of feedrate in a face milling operation using a surface roughness model. International Journal of Machine Tools and Manufacture. 2001, 41(3):451-462
    74 R. Baptista, J. F. Antune Simoes. Three and five axes milling of sculptured surfaces. Journal of Materials Processing Technology. 2000, 103(3):398~403
    75 L. Ki Yong, K. Myeong Chang, J. Yung Ho, et al. Simulation of surface roughness and profile in high-speed end milling. Journal of Materials Processing Technology. 2006, 113:410-415
    76 K. H. Fuh, C. F. Wu. Proposed statistical model for surface quality prediction in end-milling of Al alloy. International Journal of Machine Tools & Manufacture. 1995, 35(8): 1187-1200
    77 J. Kopac, M. Bahor, M. Sokovic. Optimal machining parameters for achieving the desired surface roughness in fine turning of cold pre-formed steel workpieces. International Journal of Machine Tools and Manufacture. 2002, 42(6):707~716
    78 D. C. Montgomery. Design and analysis of experiments, 1998:220-222
    79 P. S. Alexopoulos, T. C. Osullivan. Mechanical properties of thin films. Annual Review of Materials Science. 1990, 20:391-420
    80 J. Chae, S. S. Park. High frequency bandwidth measurements of micro cutting forces. International Journal of Machine Tools & Manufacture. 2007, 47(9):1433~1441
    81中山一雄.金属切削加工理论.机械工业出版社.1985
    82 J. Tlusty, P. Macneil. Dynamics of cutting forces in end milling. Annals of CIRP. 1975, 24(1):21~25
    83 H. Ernst, M. E. Merchant. Chip formation, friction and high quality machined surfaces, in "surface treatment of metals". American Society of Metals. 1941, 29(2):299~305
    84 L. E. Lee, D. W. Shaffer. The theory of plastic applied to a problem of machining. Trans. ASME. J. Appl. Mech. . 1951, 18(4):405~413
    85 P. L. B. Oxley, A. G. Humphreys, A. Larizadeh. The influence of rate of strain hardening in machining. Proceeding of Institute of Mechanical Engineering. 1961, 175:881-891
    86 X. Liu, R. E. DeVor, S. G. Kapoor. An analytical model for the prediction of minimum chip thickness in micromachining. Journal of Manufacturing Science and Engineering, Transactions of the ASME. 2006, 128(2):474~481
    87 M. P. Vogler, R. E. Devor, S. G. Kapoor. On the modeling and analysis of machining performance in micro-end-milling, part II : cutting force prediction. J. Manuf. Sci. Eng. 2004, 126(4):695~705
    88 M. P. Vogler, R. E. Devor, S. G. Kapoor. On the modeling and analysis of machining performance in micro-end-milling, part I : surface generation. J. Manuf. Sci. Eng. 2004, 126(4):685~694
    89 Z. J. Yuan, M. Zhou, S. Dong. Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining. J. Mater. Process. Technol. 1996, 62:327-330
    90 V. Jardret, H. Zahouani, J. L. Loubet. Understanding and quantification of elastic and plastic deformation during scratch test. Wear. 1998, 218(1):8~14
    91 X. W. Liu, K. Cheng, D. Webb, et al. Prediction of cutting force distribution and its influence on dimensional accuracy in peripheral milling. Int. J. Mach. Tools Manufact. 2002, 42:791-800
    92 K. Shirase, Y. Altintas. Cutting forces and dimensional surface error generation in peripheral milling with variable pitch helical end mills. Int. J. Mach. Tools Manufact. 1996, 36(65):567~584
    93艾兴,刘镇昌.高速切削技术的研究和应用.全国生产工程第8届学术大会暨第3届青年学者学术会议论文集.1999:146~150
    94刘战强.高速切削技术的研究与应用.山东大学博士后研究工作报告.2001:49~52
    95 S. Filiz, C. M. Conley, O. B. Ozdoganlar, et al. An experimental in vestigation of micro-machinability of copper 101 using tungsten carbide micro-endmills. Int. J. Mach. Tools Manufact. 2007, 47:1088-1100
    96周忆,梁锡昌.超高速铣削刀具的磨损机理.重庆大学学报.2003, 26(9):47~49
    97贾庆莲,乔彦封.涂层硬质合金刀具磨损机理的研究.工具技术.2005,39(11):37~40
    98解丽静,刘志兵,王西彬.硬质合金刀具铣削高强度钢的磨损机理研究.兵工学报.2005,26(4):519~521
    99 X. Li, X. P. Zhao, J. Chen, et al. Tool wear prediction in micro-end-milling with hard material. Journal of Shanghai Jiaotong University (Science). 2007, 12E(3):359~363
    100 L. Zhou, C. Y. Wang, Z. Qin. Wear characteristics of micro-end mill in high-speed milling of graphite electrode. Key Engineering Materials. 2004:259-263
    101张华伟.小直径铣刀高速铣削淬硬钢过程动力学仿真与有限元分析.广西大学硕士学位论文.2005:37~55
    102 M. Rahman, A. S. Kumar, J. R. S. Prakash. Micro milling of pure copper. Journal of Materials Processing Technology. 2001, 116:39-43
    103 K. Popov, S. Dimov, D.T. Pham, et al. Micromilling strategies for machining thin features. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2006, 220(11): 1677-1684
    104辛民,王西彬,康运江等.高速干切削粉末冶金零件时细晶粒硬质合金刀具的切削性能研究.工具技术.2006,40(6):7~10
    105张之敬,金鑫,周敏.精密微小型制造理论、技术及其应用.机械工程学报.2007,43(1):49~62
    106刘战强,雷原忠.微切削加工技术.工具技术.2006,40(6):28~34
    107刘志兵,王西彬,解丽静等.微细切削刀具的特征及其制备技术.工具技术.2006,40(10):16~19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700