用户名: 密码: 验证码:
不同性能滤料负载粉尘层联合脱除模拟烟气中气态汞的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着第二次工业革命时代的到来,燃煤汞污染的控制问题便成为了环保领域内一个热点课题;自上世纪九十年代起,我国对燃煤汞污染控制技术的重视都提到了一个新的高度,国家“973”计划和“863”计划均将燃煤汞控制列为一个重点的专项研究课题,本文的研究内容也是这些研究计划中的一个重要组成部分。
     本论文着重叙述了燃煤汞赋存特性以及国内外有关燃煤电站汞测量和控制技术的研究进展和方法,并在此基础上,完善和优化了一整套适用于干法联合脱除Hg0试验研究的装置及设备;在固定床试验系统上,研究了不同滤料纤维、燃煤飞灰、PPS掺炭纤维协同飞灰以及滤料负载粉尘层对模拟烟气中Hg0的脱除性能,并就吸附反应温度、入口Hg0浓度、烟气停留时间等因素,对PPS掺炭纤维协同飞灰以及滤料负载粉尘层联合脱除Hg0性能的影响进行了研究,为干法联合脱除可吸入颗粒物及重金属汞、研究飞灰和不同性能纤维滤料联合脱除Hg0提供有益的参考。
     研究表明:从七种纤维中优选出PPS纤维是最适宜制作掺炭纤维的材料,最佳掺炭比为1:1;PPS掺炭纤维对Hg0的脱除率随着活性炭纤维比重的增加而增大,但脱汞率并不是成正比关系上升的;燃煤飞灰和PPS掺炭纤维对Hg0的吸附是物理吸附和化学吸附的共同结果,它们各自的脱汞效率分别可达27%和65%左右;PPS掺炭纤维负载飞灰的联合脱汞效率并不是二者单独脱除效率的代数叠加,它分别受到吸附反应温度、入口汞浓度和烟气停留时间等因素的影响。吸附反应温度越高,燃煤飞灰和PPS掺炭纤维对Hg0的联合脱除效率越低;入口汞浓度的增加并不一定会提高脱除效率;烟气停留时间越大,越有利于Hg0的脱除。
     经试验优选得到的华博特滤料和燃煤飞灰粉尘层对Hg0分别有一定的脱除作用,脱除效率可达35%和42.5%,它们对Hg0的脱除是物理吸附和化学吸附共同作用的结果;同时,华博特滤料负载燃煤飞灰粉尘层对Hg0的联合脱除效率受到吸附反应温度、入口汞浓度和烟气停留时间等因素的影响,最佳脱汞率可达64.4%;吸附反应温度越高,脱除效率越低;烟气停留时间越大,脱除效率越高;入口汞浓度的提高并不一定提高华博特滤料负载飞灰粉尘层的脱汞效果。
     利用干法联合脱除燃煤可吸入颗粒物及重金属汞试验装置对试验系统进行了可靠性测试;并分别以吸附反应器和袋式除尘器为试验装置,探讨了流态化飞灰对Hg。的脱除效果,以及飞灰在袋式除尘器空间内和滤袋表面,受到过滤风速、压差等影响因素对Hg0的脱除能力。
     飞灰以不同的方式对Hg0脱除时,对流吸附反应方式更有利于Hg0的吸附,脱除率最佳可达37.9%;飞灰对Hg0的脱除效率随着吸附反应温度的升高而降低,吸附反应温度越高,Hg0的脱除效率越低;入口Hgo浓度对脱汞效率有一定的影响,随着入口Hg0浓度的增大,脱汞效率也逐渐增大;飞灰对Hg0的脱除率受C/Hg的影响较大,对Hg0的脱除率随着C/Hg的增大而增大。在袋式除尘器内,过滤风速越高,布袋除尘器对Hg0的脱除效率越低;随着飞灰的喷入,袋式除尘器前后的压差逐渐大;对Hg0的脱除率随着反应时间的进行,脱除率逐渐下降,最佳脱汞率达42.4%;反吹清灰后,脱汞效率略有上升。干法联合脱除燃煤可吸入颗粒物及重金属汞试验装置对Hg0的脱除率可达63.1%,联合脱汞效率较高。
With the arrival of second industrial revolution era, how to control coal-fired mercury pollution becomes a hot topic in the field of environmental protection. Since 1990's, the Chinese government pay more and more attention on control technology of coal-fired mercury pollution, both national "973" Program and "863" Program take the control coal-fired mercury pollution as an important special research subject.The research content in this paper is an important part of this projects.
     This paper focuses on describing the characteristics of coal-fired mercury and the control technology and methods of mercury in coal-fired power station domestic and abroad. Assembling and optimized a set-up for dry process to united removing Hg0 depending on these methods.The different performance was investigated by changing elements. Such as different filter fiber, coal fly ash, PPS-carbon fiber co-doped load of fly ash, filter dust layer and so on. The different performance was investigated by changing different adsorption reaction temperature, inlet Hg0 concentration, flue gas residence time and other factors. It will provide useful reference for combined fly ash with different fiber filter removal of particulate matter and mercury by dry process.
     The results find that PPS fiber could be the best C-loaded fiber which is choosen from seven fibers and the best doped proportion is 1:1. The removal rate of Hg0 is increasing with the higher proportion of activated carbon fiber. However, the removal rate of mercury is not proportional increasing. The adsorption of coal fly ash and PPS-carbon fiber for mercury is the combination of physical adsorption and chemical adsorption. Their own mercury removal efficiency is 27% and 65%, respectively. The joint removal of mercury removal efficiency of PPS carbon fiber load of fly ash is not the simple algebraic superposition of the removal efficiency. It depends on the reaction temperature, inlet concentration and gas residence time of mercury and other factors. The higher the adsorption temperature, the lower unied removal Hg0 efficiency of coal fly ash and mixed with carbon fiber PPS. Increase the mercury concentration at the entrance will not necessarily improve the removal efficiency; the longer flue gas residence time, the more favorable for Hg0 removal.
     The optimized materials by trial were HBT filter and coal-fired fly ash dust layer, by which removal efficiencies of Hg0 was 35% and 42.5%, respectively. The removal efficiency of the HBT filter with coal-fired fly ash cake was affected by adsorption temperature, initial concentration of mercury vapor and gas retention time, among other factors. The removal efficiency of 64.4% can be achieved at optimized conditions. The higher the adsorption temperature, the lower the removal efficiency; and the longer gas retention time, the higher the removal efficiency. Increment of the initial mercury concentration did not increase necessarily the removal efficiency of mercury by the HBT fibrous filter with fly ash dust cake.
     We exploit dry process combined removal particulate matter from coal combustion and heavy metals like mercury experimental device to given reliability test. We are taking adsorption reactor and bag filter as the experimental device, studing the removal effiency of Hg0 by fludization of ash. We also studied the Hg0 removal capacity of the fly ash in the bag and on the bag surface under different filtration velocity, pressure and other factors.
     Fly ash can removal Hg0 in different ways, the convection mode is more benefit for adsorption, the best removal efficiency is up to 37.9%. The removal Hg0 efficiency of fly ash was reduced when the temperature increased. The higher the adsorption temperature, the lower the removal efficiency. Injet Hg0 concerntation has a certain impact of Hg0 removal efficiency.The higher the concentration, the better the removal efficiency. The removal of Hg0 by fly ash is affected greatly by C/Hg. The removal of HgO increases with the increase of C/Hg. The higher the filtration velocity, the lower the bag filter removal efficiency. As the fly ash is injected into the bag filter, the gradual pressure becomes larger. The longer the reaction time, the less the removal efficiency. The best removal efficiency is 42.4%. The removal efficiency slightly increased after reverse blow for dust-clean. The removal efficiency of the device for removing particulate matter and elemental mercury by dry process is up to as high as 63.1%.
引文
[1]世界环境与发展委员会.我们共同的未来[C].北京:世界知识出版社,1989:34-35.
    [2]徐旭常,陈昌和,祈海鹰,等.我国燃煤污染控制技术与对策的研究[J].苏州科技学院学报(工程技术版),2003,16(1):8-15.
    [3]郑楚光.洁净煤技术[M].武汉:华中理工大学出版社,1996:39-40.
    [4]郑楚光.燃煤痕量元素的排放和控制[M].湖北科学技术出版社,2002:76-78.
    [5]百度网.国际能源署发布 《世界能源展望:2008》http://baike.baidu.com/view/21312.htm?fr=ala0_1
    [6]王泉海.煤燃烧过程中汞排放及其控制的试验及机理研究[D].武汉,华中科技大学,2006:15-16.
    [7]王光军.可持续发展理念下的能源产业战略[J].油气田环境保护,2004,14(4):1-8.
    [8]岑可法.洁净煤燃烧发电技术报告[C].中国煤炭学会第二次洁净煤技术研讨会.杭州,2001.
    [9]庄德安,杨明珍,岳涛.关于“十五”期间我国火电站脱硫设施建设与运行情况调查之一,2006.(来源于:http://www.cennews.com.cn/news/2006-10-31/22676.php).
    [10]中国电力报.电力“十一五”规划凸显八大问题,2006.来源于http://finance.people.com).
    [11]中国科技信息研究所.全国“十一五”电力规划出台(来源于:http://www.chinainfo.gov.cn).
    [12]冯新斌,洪业汤,倪建宇,等.贵州煤中汞的分布、赋存状态及对环境的影响[J].煤田地质与勘探,1998,26(2):12-14.
    [13]凌勇乐.化学元素的发现[M].上海:上海科学技术出版社,1981:42-43.
    [14]联合国环境规划署,世界卫生组织合编,《环境卫生基准(I)汞》霍本兴译.中国环境科学出版社,1990.
    [15]国家环保局《水和废水监测分析方法》编委会,水和废水监测分析方法指南[M].北京:中国环境科学出版社,1990:121-123.
    [16]王宏,徐智.汞在环境中的污染和迁移转化[J].内蒙古环境保护,2000,12(1):46-47.
    [17]J. A. Sorensen, Airborne mercury deposition and watershed characteristics in relation to mercury concentrations in water, sediments, plankton, and fish of eighty northern minnesota Lakes [J]. Environment Science Technology,1990.24(11):1716.
    [18]E. B. Swain. Increasing rates of atmospheric mercury deposition in midcontinental North America [J]. Science,1992,257:784.
    [19]廖自基.微量元素的环境化学及生物效应[M].北京:中国环境科学出版社.1992:231-241.
    [20]Thomas D. Brown, Dennis N. Smith, Richard A. Hargis, Jr., Winiam J. O'Dowd. Mercury easurement and its control:what we know, have learned, and need to furthur investigate [J]. Jomal of the air & waste management assoeiation,1999:6.
    [21]H.A.施罗德著.痕量元素与人[M],科学出版社,1979:130.
    [22]Swaie D J. Trace elements in coal[M]. London:Butterworth,1990:109-113.
    [23]Home R A. The Chemistry of Our Environment[M]. John Wiley & Sons, New York,1978.
    [24]Linak W P, Wendt J OL. Trace metal transformation mechanisms during coal combustion [J]. Fuel Processing Technology,1994,39(2):173-198.
    [25]Kevin C G, Christopher J Z. Mercury transformations in coal combustion flue gas[J]. Fuel Processing Technology,2000,66(6):289-310.
    [26]Fitzgerald W F. Is mercury increasing in the atmosphere? the need for an atmospheric mercury network (AMNET) [J]. Water, Air and Soil Pollution,1995,80:245-254.
    [27]Fahlke J, Bursik A. Impact of the state-of-the-art flue gas cleaning on mercury species emissions from Coal-fired steam generators [J]. Water, Air, Soil Pollute,1995,80:209-215.
    [28]Sloss L L, Smith I M. Trace element emissions[M]. IEA Coal Research, ISBN 92-9029-344-6, 2000:83.
    [29]Linak W P. Toxic metal emission from incineration:mechanisms and control [J]. Prog.Energy Combustion Sci.,1993,19:145-185.
    [30]Ron Zevenhoven, Pia Kilpinen. Control of pollutants in flue gases and fuel gases [M], the Helsinki University of Technology course ENE-47.153, ISBN 951-22-5527-8.
    [31]National guidelines and legislation, IEA Coal Research,1999.
    [32]杨振宇,羌宁,季学李.美国燃煤电厂锅炉烟气中汞的研究进展[J].能源环境保护,2003,17(5):3-7.
    [33]GB9078-1996,工业炉窑大气污染物排放标准[S]北京:国家环境保护局,1996.
    [34]GB16297-1996,大气污染物综合排放标准[S].北京:国家环境保护局,1996.
    [35]中华人民共和国大气污染防治法(修正)[S].北京:全国人大常委会,1987.
    [36]GB3838-88,地面水环境质量标准[S].北京:国家环境保护局,1988.
    [37]GB5749-85,生活饮用水卫生标准[S].北京:中华人民共和国卫生部,1985.
    [38]Leej Y, Juy, Keener T C, Varmas R S. Development of cost-Effective Noncarbonated Sor- bents for Hg0 removal form Coal-Fired Power Plants. Environ Science & Technology,2006. 40:2714-2720.
    [39]冯立品,路迈西.汞污染控制[J].选煤技术,2007,8(4):140-143.
    [40]F.J. Smit, N. Moro, G. L. Shields. Reduction of toxic elements in coal by advanced coal cleaning, in proceedings of 13th annual international Pittsburgh coal conference[J], Pittsburgh, PA.1996,(2):879-884.
    [41]Luttrell G.H., KobLmueneh J.N., Roe-Hoan Yoon. An evaluation of coal preparation technologies for controlling trace element emissions [J]. Fuel Professing Technology, 2000:65-66,407-422.
    [42]Merriam, Norman W., Grimes R., et al. Process for low mercury coal:U S,5403365. April 30, 1995.
    [43]Min Wang. Keener Tim. the effect of coal volatility on mercury removal from bituminous coal during mild paralysis [J]. Fuel Processing Technology,2000(67):147-161.
    [44]D. Guffey, A.E. Bland. Thermal pretreatment of low-ranked coal for control of mercury emissions [J]. Fuel Processing Technology,2004,85:521-531.
    [45]Kira Ohki, Kota Sagayama, Shomei Tanamachi, et al. Release behavior of mercury during mild paralysis of coals and nitric acid-treated coals[J]. Powder Technology,2008,180:30-34.
    [46]Lissianski, V., Maly, P., Seeker, R. Combustion staging-first step in reduction of mercury emissions [J]. Combined Power Plant Air Pollution Control, Mega Symposium, Washington, D C(2004).
    [47]Christopher R.McLarnon, Evan J.Granite,Henry W Pennline. The PCO process for photo--chemical removal of mercury from flue gas[J].Fuel Processing Technology,2005,87,85-89.
    [48]Nolan, P.S., Redinger, K. E., Alnrhein, G. T., et al. Mereury emissions control in wet FGD systems. Presented at the Air Quality 111 Conferenee, Arlington, VA(2002).
    [49]Senior,C.L. Oxidation of mercury across SCR-catalysts in coal-fired power plants burning low rank coals presented a DOE/NETL mercury control technology R&D Program Review Meeting, Pittsburgh, Augustl2-13(2003)
    [50]T.D.Brown, D.N.Smith, WJ.O'Dowd, R.A.Hargis Jr. Control of mercury emissions from coal- fired power plants:a preliminary cost assessment and the next steps for accurately assessing control costs[J].Fuel Processing Technology,2000,(65-66):311-341.
    [51]Granite E J, Pennline H W. Novel sorbents for mercury removal from flue gas [J]. Industrial &Engineering Chemistry Research,2000,39:1020-1029.
    [52]Brna T QKilgroe J D. The impact of particulate emissions control on the control of other MWC air emissions, Journal of the air& waste management association,1990: 40(9):1324-1328.
    [53]Tai-Gyu Lee. Study of mercury kinetics and control methodologies in simulates combustion flue gases, dissertation[D], University of Cincinnati,1999:12-13.
    [54JEPRI. Electric utility traces substances synthesisi report[M], EPRI TR-104614-V3,3 (Appendix O),1995:56-58.
    [55]C.R.MeLarnon, M.D.Jones. Electro-catalytic oxidation process for multi-pollutant control at first energy's R.E.Burger generating station[C]. Eleetrie Power 2000 Cincilmati Convention Center Aprils,2000.
    [56]F.Alix, S.Neister, C.MeLamon. Barrier discharge conversion of SO2 and NOx to Aeids[J], U.S.Patent No.5,871,703, February,1999.
    [57]Monroe L.,Cushing K.,Hatrison W., Altman R.. Testing of a combined dry and wet electrostatic precipitator for control of fine particulate emissions from a coal-fired boiler[J].EPRI-DOE-EPA Combined Utility Air Pollutant Control Sylmposium, Wash-ington D.C.,August1997.
    [58]C.R.MeLamon, M.L.Horvath. Electro-catalytic oxidation technology applied to mercury and trace elements removal from flue gas[J]. Conference on Air Quality Ⅱ MeLean, VA, September20,2000.
    [59]Si-Hyun Lee, Young-Ok Park.Gas-phase mercury removal by carbon-based sorbents[J].Fuel Processing Technology,2003,84:197-206.
    [60]Si Hyun Lee,Young Jun Rhim,Sung Pill Cho,et al.Carbon-based novel sorbent for removing gas-phase mercury[J].Fuel,2006,85:219-226.
    [61]Ho Kyung Choi,Chang Lee,Hyung Keun Lee,et al.Gaseous mercury removal in a hybrid particulate collector[J].Korean Journal Chemical Engineering,2007,24(2):361-367.
    [62]H.K.Choi, S.H.Lee, S.S.Kim.The effect of activated carbon injection rate on the removal of element mercury in a particulate collector with fabric filters.Fuel Processing Technology,2009, 90:107-112.
    [63]高洪亮.模拟燃煤烟气中汞形态转化及脱除技术的试验及机理研究[D].杭州:浙江大学,2004:12.
    [64]周劲松,王岩,胡长兴,等.N2气氛下活性炭的汞吸附性能[J].动力工程.2008,28(4):625-628.
    [65]胡长兴,周劲松,骆仲泱,等.烟气脱汞过程中活性炭喷射量的影响因素[J].化工学报,2005,56(11):2172-2177.
    [66]高洪亮,周劲松,骆仲泱.模拟燃煤烟气中汞在活性炭上吸附的动力学研究[J].中原工学院学报,2005,16(6):1-5.
    [67]任建莉,陈俊杰,罗誉娅,等.活性炭纤维脱除烟气中气态汞的试验研究[J].中国电机工程学报.2010,30(5):28-33.
    [68]高洪亮,周劲松,骆仲涣,等.改性活性炭对模拟燃煤烟气中汞吸附的试验研究[J].中国电机工程学报,2007,27(8):26-30.
    [69]任建莉,周劲松,骆仲泱,等.新型吸附剂脱除烟气中气态汞的试验研究[J].中国电机工程学报,2007,27(2):48-53.
    [70]周劲松,石建祥,高洪亮,等.改性蛭石对气态汞的吸附效果[J].动力工程,2006,26(4):558-562.
    [71]胡长兴,周劲松,何胜,等.静电除尘器和湿法烟气脱硫装置对烟气汞形态的影响与控制[J].动力工程,2009,24(4):400-404.
    [72]杨祥花.燃煤电站锅炉系统的汞排放分析及其预测[D].南京:东南大学,2006:9-11.
    [73]王运军,段钰锋,杨立国,等.湿法、半干法和循环流化床炉内脱硫技术的脱汞特性[J].燃烧科学与技术,2009,15(4):368-373.
    [74]鲍静静,印华斌,杨林军,等.湿法烟气脱硫系统的脱汞性能研究[J].动力工程,2009,29(7):664-670.
    [75]杨立国,段钰锋,王运军,等.新式整体半干法烟气脱硫技术的脱汞试验研究[J].中国电机工程学报,2008,28(2):66-71.
    [76]江贻满,段钰峰,王运军,等.220MW燃煤机组飞灰对汞的吸附特性研究[J].热能动力工程,2008,23(1):55-59.
    [77]江贻满,段钰峰,杨祥花,等.ESP飞灰对燃煤锅炉烟气汞的吸附特性[J].东南大学学报,2007,37(3):436-440.
    [78]杨立国,段钰锋,王运军,等.锅炉容量对汞富集规律的影响[J].动力工程,2008,28(2):302-307.
    [79]杨立国,段钰锋,杨祥花,等.燃煤电厂汞排放特性试验研究[J].东南大学学报,2007,37(5):817-821.
    [80]黄治军,段钰锋,王运军,等.电厂飞灰对烟气中汞吸附性能的试验研究[J].锅炉技术,2008,39(6):70-74.
    [81]王运军,段钰锋,杨立国,等.燃煤电站布袋除尘器和静电除尘器脱汞性能比较[J].燃料化学学报,2008,36(1):23-29.
    [82]孟素丽,段钰锋,黄治军,等.燃煤飞灰的物化性质及其吸附汞影响因素的试验研究[J].热力发电,2009,38(8):46-51.
    [83]孟素丽,段钰锋,黄治军,等.燃煤飞灰吸附气态汞影响因素的试验研究[J].动力工程,2009,29(5):487-491.
    [84]孟素丽,段钰锋,黄治军,等.烟气成分对燃煤飞灰汞吸附的影响[J].中国电机工程学报,2009,29(20):66-73.
    [85]杨祥花,段钰锋,江贻满,等.燃煤锅炉烟气和飞灰中汞形态分布研究[J].煤炭科学技术,2007,35(12):55-58.
    [86]段钰锋,江贻满,杨立国,等.循环流化床锅炉汞排放和吸附试验研究[J].中国电机工程学报,2008,28(32):1-5.
    [87]曾汉才,王欣,李松柳,等.活性炭纤维脱除燃煤烟气中汞的试验研究[J].华中科技大学学报(自然科学版),2006,34(7):1-4.
    [88]许绿丝,钟毅,金峰,等.催化活性炭纤维脱硫除汞性能试验研究[J].安全与环境学报,2004,4(2):10-12.
    [89]许绿丝,曾汉才,曾伟.活性炭纤维脱除SO2/NOx/Hg中传递过程的影响[J].华中科技大学学报(自然科学版),2008,36(9):129-132.
    [90]王欣.活性炭纤维低温吸附脱除汞的试验研究[D].武汉:华中科技大学,2006:30-35.
    [91]E.M. Prestbo, N.S. Bloom. Mercury speciation adsorption (MESA) method for combustion flue gas:methodology, artifacts, intercomparsion, and atmospheric implications [J].Water, Air, and Soil Pollution,1995,80(1-4):145-158.
    [92]Felsvallg K, Gleiser R. Activated carbon injection in spry dry/ESP/FF for mercury and toxic control [J]. Fuel Processing Technology,1994,39:417-430.
    [93]CooPer J A. Recent advances in sampling and analysis of coal-fired power plant emissions for air toxics compounds[C]. Second International Conference on Managing Hazardous Air Pollutants. July 13-15,1993, Washington, D.C.
    [94]Munthe J, Schroeder WH, Xioa Z et al. Removal of gaseous mercury form air using gold coated denuder[J].Atoms Environ,1990,24A(8):2271-2274.
    [95]Lajava k, Laitinen T. Application of the diffusions screen technique to the determination of gaseous mercury and mercury Ⅱ Chloride in flue gases[J]. Int J Environ Ana. Chem,1993, 52(1-4):65-731.
    [96]EPA Method 29, Determination of metals emissions from stationary sources,40 CFR Part 61, Appendix B. U.S. Government Printing Office, Washington, D C, February,2000:1461-1531.
    [97]EPA Method 101 A[S], Determination of particulate and gaseous mercury emissions from sewagesludge incinerators,40 CFR Part 61, Appendix B, U.S. Government Printing Office, Washington, D C, February,2000:1731-1754.
    [98]Standard Test Method for Elemental, Oxidized, Particle-Bound, and Total Mercury in Flue Gas Generated from Coal-Fired Stationary Sources(Ontario Hydro Method), ASTM Standard,September 2001.
    [99]黄文辉,杨宜春.中国煤中的汞[J].中国煤田地质,2002,145:37-40.
    [100]Thomas D. Brown, Dennis N Smiht,Richard A Hargis, et al. Mercury measurement and its control:what we know, have learned, and need to futherinvestigate [J].Journal of the air & waste management association,1999,6(49):628.
    [101]Duan Yufeng, Cao Yan, Shawn Kellie, et al. In-suit measurement and distribution on flue gas mercury for a utility PC boiler system[J].Journal of Southeast University(English Edition). 2005,21(1):53-57.
    [102]Shawn Kellie, Yuefng Duna, Yan Cao, et al. Mercury emissions from 100-MW wall-fired boiler as measured by semi continuous mercury monitor and Ontario Hydro Method[J].Fuel processing Technology,2004,85(6,7):487-499.
    [103]中华人民共和国国家标准,煤中汞的测定方法(GB/T 16659-1996)[S].1996.
    [104]麻壮伟,沈文国,李武东,燃烧法测定煤炭中的微量汞[J].河北煤炭,1993,3:28-30.
    [105]孙沂.几种汞的分析方法简介[J].环境化学,1984,2:73.
    [106]EPA,Method 7471a[S].1994:9.
    [107]科研协作组编.环境污染分析方法[M].《环境污染分析方法》.第2版.北京:科学出版社,1987.
    [108]冯新斌,洪业汤.密闭溶样两次金汞齐冷原子吸收光谱法测定煤中微量汞[J].分析测试学报,1998,17(2):42-43.
    [109]吴晓萍.动态冷原子吸收法快速测定地球化学样品中微量汞[J].光谱试验室,1998,15(3):52-57.
    [110]牛建军,汪炳武.痕量汞分析现状和展望[J].分析化学1991,19(2):1448.
    [111]赵毅,于欢欢,贾吉林,等.烟气脱汞技术研究进展[J].中国电力,2006,39(12):59-62.
    [112]周劲松.燃煤循环流化床锅炉汞排放及控制试验研究[D].浙江大学博士学位论文,2003:5.
    [113]韩军,徐明厚.燃煤痕量元素排放的控制研究[J].动力工程,2003,23:2744.
    [114]Brown T. Mercury measurement and its control:what we know, have learned, and need to further investigate [J].Journal of Air and Waste Management Association,1999, 49(12):1469-1473.
    [115]Robert P. Mercury removal standards are coming, where's the technology [J]. Power, 2003,147(4):40-47.
    [116]赵毅,马双忱,华伟,庞庚林.电厂燃煤过程中汞的迁移转化及控制技术研究[J].环境污染治理技术与设备,2003,4(11):59.
    [117]P. Sehager, B Hall, O. Linquist. Retention of gaseous mercury on fly ashes[C]. Second international conference on mercury as a Global Pollutant,Monterey CA,June 1992.
    [118]E. J. Granite,H. W. Pennline,R. A. Hargis. Novel sorbents for mercury removal from flue gas[J].Industrial & engineering Chemistry Research,2000,39(4):1020-1029.
    [119]M Van Wormer. Control of mercury emissions from combustion applications[C]. AIChE National Meeting,1992.
    [120]彭苏萍,王立刚.燃煤飞灰对锅炉烟道气的吸附研究[J].煤炭科学技术,2002,30(9):33-36.
    [121]Aurora M. Rubel, James C. Hower, Sarah M. Mardon, Matthew J. Zimmerer. Thermal stability of mercury captured by ash[J]. Fuel,2006,85 (17/18):2509-2515.
    [122]E. G. Waugh. Mercury and acid gas control in utility baghouses through sorbent injection piot-scale demonstration[C]. Power-gen international'97, Dalls, TX, December9-11,1997.
    [123]K. E. Redinger, A. Evans, R. Bailey. Mercury emissions control in FGD systems[J]. EPRI/DOC/EPA Combined Air Pollutant Control Symposium, Washington, Dc,1997:25.
    [124]Y. Marshall. Adsorption of mercury vapor on the surface of activated carbons modifield by oxidation or iodization[J]. Atmos. Environ.,1974,8:1321.
    [125]K. Felvang, R. Gleiser, G. Juip, K. Nielsen. Activated carbon injection in sprey dryer/ESP /FF for mercury and toxics control [C]. Proceedings of the second international conference on managing hazardous air Pollutants, Washington, DC,July 1993.
    [126]T. Marshall.The use of activated earth on for flue gas treatment[C] First international symposium on incineration and flue gas treatment technologies,Sheffield, UK, July,1997.
    [127]D. Karatza, A. Laneia, D. Musmarra, F. Pepe, Adsorption of metallic mercury on activated carbon,Twenty-sixth symposium on combustion,Pittsburgh, PA, July,1996a.
    [128]Y. H. Li,C. W. Lee,B. K. Gullett,Importance of activated carbon's oxygen surface functional groups on elemental mercury adsorption[J]. Fuel,2003,82:451-457.
    [129]胡晓敏,刘华章.活性炭纤维及其在催化中的应用[J].工业催化,2005,13(1):1-4.
    [130]刘占莲,潘鼎,曾凡龙.粘胶基活性炭纤维的制备[J].炭素,2003,115(3):9-13.
    [131]任建莉,周劲松,骆仲泱,等.活性碳吸附烟气中气态汞的试验研究[J].中国电机工程学报,2004,24(2):171-175.
    [132]D. V. Radisav,P. S. Dolglas. Vapor-phase elemental mercury adsorption by activated carbon impregnated with chloride and cheating agents [J]. Carbon,2001, (39):3-14.
    [133]S. B. Ghorishi, S. C. Jozewic, W. S. Sedman, C. B. Srivastava. Simultaneous control of Hg0, SO2, and NOx by novel oxidized calcium-based sorbents[J]. J. Air Wast. Man. Assoc.,2002.
    [134]T. G. Lee, P. Biswas, E. Hedrick. Comparison of Hg0 capture efficiencies of three in situ generated sorbents[J]. Aiche Journal,2001.47(4):954.
    [135]W. M. Mieer,D. H. olson,C. Baerlocher. Atlas of zeolite structure types,4th ed. Elsevier: London,1996.
    [136]C. Y. Wu,T. GLee,E. Aiar,P. Bismas. Novel in situ generated sorbent methodology and UV irradiation for mercury capture in combustion environments[C]. EPRI-DOE-EPA Combined Utility Air Pollution Control Symposium, Washington,DC,1997.
    [137]Shannon D.Serre. Adsorption of elemental mercury on pulverized fly ash[M], Dissertation,Uni. Utah, August 1999.
    [138]D. Aesehliman,G. Norton. Collection and thermal evolution behaviors of different mercury species captured with gold[J]. Environmental science teleology,1999,(33):2278-2283.
    [139]A. Kolker, C. L. Senior, J. C. Quick, mercury in coal and the impact of coal quality on mercury emission from combustion systems [J].Appl. Geo.,2006,21:1821.
    [140]Y. Wang, Y. Duan, L. Yang, Y. Jiang, C. Wu, Q. Wang. Comparison of mercury removal characteristic between fabric filter and electrostatic precipitators of coal-fired power plants[J]. J Fuel Chem. Technol.,2008.36(1):26.
    [141]F. Scala, H. L. Clack. Mercury emissions from coal combustion:modeling and comparison of Hg capture in a fabric filter versus an electrostatic precipitator. J. Hazard.,2008.152:616.
    [142]EPRI. An Assessment of Mercury Emissions from U. S. Coal-fired Power Plants[M]. EPRI: Palo Alto, CA,2000.
    [143]B. K. Gullett, S. B. Ghorishi, W. Jozewiez, The advantage of illinois coal for FGD removal of mercury[C],Final technical report,2000.
    [144]Mendelsohn, M. H.; Harkness, J. B. L.. Enhanced flue-gas denitrification using ferrous. EDTA and a polyphenolic compound in an aqueous scrubber system[J]. Energy& Fuels,1991, 5(2):244-247.
    [145]姚强,陈超.洁净煤技术[M].北京:化学工业出版社,2004:55-56.
    [146]M. Hocquel, et al.. Verhalten von Quecksilberemissionen bei der Mitverbrennung von Klarschla mmen in Kohlestaufeuerungen[M]. Wege des Abfalls, VDI berichte 1540, ISBN3-18-091540-4.
    [147]C. Senior, C. J. Bustard, M. Durham, et al. Characterization of fly ash from full-scale demonstration of sorbent injection for mercury control on coal-fired power plants[J]. Fuel Process, Technol,2004,(85):601-612.
    [148]许绿丝,程俊峰,曾汉才.燃煤飞灰对痕量重金属吸附脱除的研究[J].热力发电,2004,(4):10-13.
    [149]祝平.燃煤电厂应积极采用袋式除尘器[J].山西能源与节能,2005,(3):10-11.
    [150]Fabrizio Scala. Modeling mercury capture in coal-fired power plant flue gas[J]. Industrial & Engineering Chemistry Research,2004, (43):2575-2589.
    [151]杨宏旻,曹晏,潘伟平.吸附剂的汞吸附特性试验[J].燃烧科学与技术,2006,12(6):486-489.
    [152]NORTAN GSA, DERALB E L, MALABY K L. Elemental composition of suspended particulate matter from the combustion of coal refuses mixtures[J]. Environment Sci & Tech, 1986,20(6):56-61.
    [153]张明.PPS纤维的结构与热性能[J].山东纺织科技,2008,4:48-50.
    [154]Kow alczyk P,Gunko V M,Terzyk A P,et al. The comparative characterization of structural heterogeneity of mesoporous activated carbon fibers (ACFs). App lied Surface Science, 2003,206 (1/2/3/4):67-77.
    [155]S.D Serre.G.D Silcox.2000. Adsorption of elemental mercury on the residual carbon in coal fly ash[J]. Industrial & Engineering Chemical Resource,39:1723.
    [156]王立刚,陈昌和.飞灰残炭对零价汞蒸汽的吸附特征[J].北京科技大学学报,2004,26(4):353-356.
    [157]S.A. Nortang, E.L. Deralb, K.L. Malaby. Elemental composition of suspended particulate matter from the combustion of coal and coal refuse mixtures[J]. Environment Science & Technology,1986,20(6):56-61
    [158]任建莉.燃煤过程汞析出及模拟烟气中汞吸附脱除试验和机理研究[D].杭州.浙江大学.2003:34-37.
    [159]Maroto-valer M M, Zhang Y Z, Graniteb E J, et al.2005. Effect of porous structure and surface functionality on the mercury capacity of a fly ash carbon and its activated sample[J].Fuel,84(1):105-108.
    [160]赵毅,刘松涛,马宵颖,等.改性粉煤灰吸收剂对单质汞的脱除研究[J].中国电机工程学报,2008,28(20):55-60.
    [161]Rong Yan, D.T. Liang, T. Leslie, et al. Bench-scale experimental evaluation of carbon performance on mercury vapor adsorption[J]. Fuel,2004,83(17/18):2401-2409.
    [162]沈猛Bench-Scale低成本高效联合脱除可吸入颗粒物及Hg0装置总体设计与试验研究[D].上海,东华大学,2009:
    [163]冯孝庭.吸附分离技术[M].北京:化学工业出版社,2000:6-13.
    [164]北川浩,铃木谦一郎.吸附的基础与设计[M].北京:化学工业出版社,1983:35-39.
    [165]王军辉,史惠祥,汪大翚.固定床活性炭吸附元素态汞的试验研究[J].浙江大学学报(理学版),2008,35(1):69-72.
    [166]Li Y H, Lee C W, Gullett B K. The effect of activated carbon surface moisture on low temperature mercury adsorption[J]. Carbon,2002,40(1):65-72.
    [167]Jozewicz W, Gullet B K, Sorption of elemental mercury by activated carbons[J]. Environmental Science Technology,1994,28(3):1506-1512.
    [168]Suarez-Ruiz J C, Hower GA, Thomas A, et al. Hg and Se capture and fly ash carbons from combustion of complex pulverized feed blends mainly of anthracitic coal rank in spanish power plants [J].Energy Fuels,2007,21:59-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700