用户名: 密码: 验证码:
改性活性炭对烟气中气态汞的吸附研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汞是煤中的痕量元素之一,其随着煤的燃烧释放到大气中。由于汞污染物具有较强的生理毒性和生物累积性,所以其污染控制受到了人们的普遍关注。我国作为以煤为主要能源结构的国家,对燃煤电站汞的排放控制研究刻不容缓。
     本研究以目前燃煤烟气汞污染控制的主流吸附剂——活性炭为对象,从活性炭表面官能团出发,采用高温惰性氛围加热法去除活性炭表面所有酸性含氧官能团,继而通过化学浸渍法制备改性样品。通过吸附实验,研究改性前后样品的物理化学性质对Hg~0吸附的影响,并建立了活性炭固定床吸附Hg~0的简单数学模型。
     研究的主要内容和结果如下:
     (1)改性样品的制备
     通过惰性氛围高温热处理去除活性炭表面的官能团,在此基础上采用化学浸渍法制备了不同负载量的酚羟基和羧基改性样品。为了考察活性炭表面水分对气态汞吸附的影响,对原材料(BPL)进行加湿处理,得到表面含有不同水分的样品。
     (2)常温活性炭固定床吸附Hg~0实验
     在常温下考察活性炭的物理化学性质对Hg~0吸附的影响。结果表明,在常温下,活性炭对Hg~0的吸附是物理和化学作用的结果。在吸附过程的最初阶段,物理吸附比化学吸附更具竞争力。孔径对Hg~0吸附影响实验证实:相对于中孔来说,微孔更有利于Hg~0的吸附。酚羟基和羧基改性样品对Hg~0吸附实验表明,酚羟基对Hg~0的吸附不起促进作用,而羧基有利于其对Hg~0的吸附,且当羧基负载量为28.89 mg/g时,活性炭的吸附性能达到最佳。活性炭表面存在适量水分有利于Hg~0的吸附。在本研究中,当活性炭表面含水率为14.49%时,样品吸附性能达到最佳。
     (3)高温活性炭固定床吸附Hg~0实验
     在140℃下考察改性样品对Hg~0的吸附性能,在此基础上,筛选出对Hg~0有较好吸附效果的样品,继而考察温度和进口汞浓度等因素对其吸附性能的影响。结果表明,活性炭对Hg~0的吸附过程既有物理作用也有化学作用,随着吸附温度的升高,物理作用减弱,而化学作用增强。酚羟基对Hg~0的吸附起抑制作用,而羧基对Hg~0的吸附起促进作用,且当羧基负载量为28.89 mg/g时,活性炭的吸附性能达到最佳。随着反应温度的升高,羧基改性样品对Hg~0的吸附量降低,而且反应温度越高,下降的幅度越大。在一定范围内,进口汞浓度对羧基改性样品吸附Hg~0具有正效应,但过大的进口汞浓度,其负效应远大于正效应。对于BPL样品,当进口汞浓度为48μg/m~3时,其对Hg~0的吸附能力达到最佳,而对于羧基负载量为28.89 mg/g样品(BPL-s4),当进口汞浓度为60μg/m~3时,其对Hg~0的吸附能力达到最佳。
     (4)活性炭吸附Hg~0的数学模型
     在参考前人和本人实验结果的基础上,建立了活性炭固定床吸附Hg~0的简单数学模型,研究了汞在BPL-s4样品上的吸附平衡过程和动力学过程。结果表明,活性炭对Hg~0的吸附过程较容易进行,但相对于高温来说,低温更有利于活性炭对Hg~0的吸附。燃煤烟气中Hg~0在BPL-s4样品上的吸附符合一级反应动力学方程,吸附速率常数与反应温度呈正相关,吸附反应的活化能为25.86 KJ/mol,指前因子为22.16 min~(-1)。
Mercury is one of trace elements in coal,it is emitted into the atmosphere during the coal combustion process.Mercury control is arosed great attention because of its high physiological toxicity and bioaccumulation.Coal is the major energy source in China,so the control of mercury emission from coal-fired power plants demands immediate actions.
     This research is focused on activated carbons which are the major sorbents used for mercury removal in coal-fired power plants currently.The oxygen-containing functional groups on activated carbon surfaces were studied.They could be removed by heating in nitrogen(1000℃).After heat treatment,carboxyl and phenol groups were added separately to the surface of activated carbons by chemical immersion method.The effect of physical-chemical properties for original activated carbons and modified activated carbons was studied by adsorption experiment,and simple mathematic models were developed to describe mercury adsorption on fixed-bed activated carbon system.The major contents and results of this research were as follow:
     (1) Preparation of modified samples
     The oxygen-containing functional groups on activated carbon surfaces were removed by heating in nitrogen(1000℃).After heat treatment,carboxyl and phenol groups were added separately to the surface of activated carbons by chemical immersion method.The origin materials were sprayed with some deionized water to prepare samples containing different contents of moisture,and then the effect of moisture on mercury adsorption was studied.
     (2) Mercury adsorption experiment on fixed-bed activated carbon system at room temperature
     The effect of physical-chemical properties of activated carbons on mercury adsorption was studied at room temperature.The results show that the mechanism of mercury adsorption on activated carbons is a combination of physical and chemical adsorption.At the first phase of adsorption,physical reaction is more competitive than chemical reaction.Compared to the mesopore structure,micropore structure on the surface of activated carbons is in favor of capturing mercury from carrier gas.The phenol groups may have no effect on mercury adsorption,while the carboxyl groups are beneficial to the mercury adsorption.When the modification ratio is 28.89 mg carboxyl groups per gram activated carbon,the mercury adsorption capacity reaches the best result.The presence of moisture on the surface of activated carbons can enhance their mercury adsorption capacities,and when the moisture content is 14.49%,the adsorption capacity reaches the best result.
     (3) Mercury adsorption experiment on fixed-bed activated carbon system at high temperature
     The capacity of modified samples on mercury adsorption was studied at 140℃, and then samples which show a good adsorption capacity were chosen for studying the effect of temperature and mercury inlet concentration on mercury adsorption.The results show that the mechanism of activated carbons on mercury adsorption is a combination of physical and chemical adsorption.As the adsorption temperature increases,physical adsorption is weaken,while the chemical adsorption is reinforced. The phenol groups inhibit mercury adsorption,while the carboxyl groups are beneficial to the mercury adsorption.When the modification ratio is 28.89 mg carboxyl groups per gram activated carbon,the mercury adsorption capacity reaches the best result.The capacity of mercury adsorption on carboxyl-modified samples decreases as the reaction temperature increases.And the degressive amounts of mecury adsorption are increased as the reaction temperature increases.There is a positive relation between mercury inlet concentration and mercury adsorption capacity in a certain range.When mercury inlet concentration is over the best point, the negative effect is stronger than positive effect.When mercury inlet concentration is 48μg/m~3,the mercury adsorption capacity for BPL samples reaches the best result. While mercury inlet concentration is 60μg/m~3,the mercury adsorption capacity for BPL-s4 samples(the modification ratio is 28.89 mg carboxyl groups per gram activated carbon) reaches the best result.
     (4) Kinetic models for Hg~0 adsorption on activated carbons
     Simple kinetic models were developed based on literatures and the results of this research,and then kinetic properties of mercury adsorption onto BPL-s4 sample was studied.The results show that the process of mercury adsorption onto activated carbons could be occured easily,but compared to high temperature,the process is more beneficial at lower temperature.The adsorption datum fit the first order reaction,and the adsorption rate constant is shown to be positively correlated with the adsorption temperature.The activation energy is 25.86 KJ/mol,and the kinetic constant is 22.16 min~(-1).
引文
[1]王少锋,冯新斌,仇广乐等.大气汞的自然来源研究进展[J].地球与环境,2006,34(2):1-11.
    [2]王立刚,刘柏谦.燃煤汞污染及其控制[M].北京:冶金工业出版社,2008:15.
    [3]王启超,沈文国,麻壮伟.中国燃煤汞排放量估算[J].中国环境科学,1999,19(4):318-321.
    [4]濮洪九.推进洁净煤技术产业化是适合国情的能源结构优化措施[R].中国煤炭学会第二次洁净煤技术研讨会(杭州),2001.
    [5]毛健雄,毛健全,赵树民.煤的清洁燃烧[M].北京:科学出版社,1998:1-5.
    [6]岑可法.洁净煤燃烧发电技术报告[R].中国煤炭学会第二次洁净煤技术研讨会(杭州),2001.
    [7]US Statutes at Large.Provisions for attainment and maintenance of National Ambient Air Quality Standards[C].Public Law 101-549,1990:2353-3358.
    [8]黄文辉,杨宜春.中国煤中的汞[J].中国煤田地质,2002(S1):38-41.
    [9]陈冰如,钱琴芳,杨亦男等.我国110个煤矿样中微量元素的浓度分布[J].核技术,1985(6):43-44.
    [10]Senior C L,Helble J J,Sarofim A F.Emissions of mercury,trace elements,and fine particles from stationary combustion sources[J].Fuel Processing Technology,2000,65:263-288.
    [11]Tan Y W,Mortazavi R,Dureau B,et al.An investigation of mercury distribution and speciation during coal combustion[J].Fuel,2004,83(16):2229-2236.
    [12]王建英,贺克雕,马丽萍.燃煤烟气中单质汞的净化脱除[J].能源环境保护,2007,21(3):5-7.
    [13]王泉海,邱建荣,吴昊.煤燃烧过程中汞释放的研究现状[J].热能动力工程,2002,17(6):547-550.
    [14]EPA.Selective catalytic reduction mercury field sampling project[J].National Risk Management Research Laboratory,2004.
    [15]Sakulpitakphon T,Hower J C,Trimble A S,et al.Mercury capture by fly ash:Study of the combustion of a high-mercury coal at a utility boiler[J].Energy&Fuels,2000,14(3):723-733.
    [16]张军营,任德贻.煤中汞及其对环境的影响[J].环境科学进展,1999,7(3):100-104.
    [17]郭欣,郑楚光.煤中汞、砷、硒赋存形态的研究[J].工程热物理学报,2001,22(6):763-766.
    [18]贺克雕.燃煤烟气中汞的析出及形态变化机理研究[D].昆明理工大学,2007:29.
    [19]Chang J C S,Ghorishi S B.Simulation and evaluation of elemental mercury concentration increase in flue gas across a wet scubber[J].Environmental Science&Technology,2003,37(24):5763-5766.
    [20]Pavlish J H,Sondreal E A,Mann M D,et al.Status review of mercury control options for coal-fired power plants[J].Fuel Processing Technology,2003,82(2):89-165.
    [21]Livengood C D,Mendelsohn M H.Progress for combined control of mercury and nitric oxide[C].EPRI-DOE-EPA Combined Utility Air Pollution Control Symposium,1999.
    [21]高洪亮.模拟燃煤烟气中汞形态转化及脱除技术的实验及机理研究[D].浙江大学,2004:13-14.
    [23]金峰.活性炭对燃煤烟气中汞的吸附研究[D].华中科科技大学,2003:20-26.
    [24]孙巍,晏乃强,贾金平.负载硫氯化合物的活性炭去除单质汞的研究[J].环境科学与技术,2006,29(12):84-86.
    [25]Li Z,Sun X,Luo J J,et al.Unburned carbon from fly ash for mercury adsorption:Ⅱ.Adsorption isotherms and mechanisms[J].Journal of Minerals&Materials Characterization&Engineering,2002,1(2):79-96.
    [26]Maroto-Valer M M,Zhang Y Z,Granite E J,et al.Effect of porous structure and surface functionality on the mercury capacity of a fly ash carbon and its activated sample[J].Fuel,2005,84(1):105-108.
    [27]Ghorishi S B,Singer C F,Sedman C B.Preparation and evaluation of modified lime and silica-lime sorbents for mercury vapor emission control[R].EPRI-DOE-EPA Combined Utility Air Pollution Control Symposium,1999.
    [28]任建莉,周劲松,骆仲泱.钙基类吸附剂脱除烟气中气态汞的试验研究[J].燃料化学学报,2006,34(5):557-561.
    [29]任建莉,周劲松,骆仲泱等.新型吸附剂脱除烟气中气态汞的试验研究[J].中国电机工程学报,2007,27(2):48-53.
    [30]Serre S D.Adsorption of elemental mercury on pulverized fly ash[D].University of Utah,1999:8.
    [31]Aeschliman D B,Norton G A.Collection and thermal evolution behaviors of different mercury species captured with gold[J].Environmental Science&Technology,1999,33(13):2278-2283.
    [32]Poulston S,Granite E J,Pennline H W,et al.Metal sorbents for high temperature mercury capture from fuel gas[J].Fuel,2007,86(14):2201-2203.
    [33]张乐.燃煤过程汞排放测试及汞排放量估算研究[D].浙江大学,2007:7.
    [34]Chingombe P,Saha B,Wakeman R J.Surface modification and characterisation of a coal-based activated carbon[J].Carbon,2005,43(15):3132-3143.
    [35]Li Y H,Lee C W,Gullett B K.The effect of activated carbon surface moisture on low temperature mercury adsorption[J].Carbon,2002,40(1):65-72.
    [36]高洪亮,周劲松,骆仲泱等.燃煤烟气中汞在活性炭上的吸附特性[J].煤炭科学技术,2006,35(5):49-52.
    [37]高洪亮,周劲松,骆仲泱.改性活性炭对模拟燃煤烟气中汞吸附的实验研究[J].中国电机工程学报,2007,27(8):26-30.
    [38]Padak B,Brunetti M,Lewis A,et al.Mercury binding on activated carbon[J].Environmental Progress,2006,25(4):319-326.
    [39]童新,王军辉.氧化改性活性炭吸附脱除游离态汞[J].中国环保产业,2007(12):52-54.
    [40]Jozewicz W,Krichnan S V,Gullett B K.Bench-scale investigation of mechanisms of elemental mercury capture by activated carbon[R].Proceedings of Second International Conference on Managing Hazardous Air Pollutants,1993.
    [41]Yan R,Liang D T,Tsen L,et al.Bench-scale experimental evaluation of carbon performance on mercury vapour adsorption[J].Fuel,2004,83(17):2401-2409.
    [42]王光凯.燃煤电厂汞排放测试及脱汞产物汞稳定性研究[D].浙江大学,2006:8.
    [43]冯孝庭.吸附分离技术[M].北京:化学工业出版社,2000:3-4.
    [44]邓修,吴俊生.化学分离工程[M].北京:科学出版社,2001:316-322.
    [45]顾惕人,朱珍瑶,李外郎.表面化学[M].北京:科学出版社,1994:234-254.
    [46]何余生,李忠,奚红霞.气固吸附等温线的研究进展[J].离子交换与吸附,2004,20(4):376-384.
    [47]范延臻,王宝贞.活性炭表面化学[J].煤炭转化,2000,23(4):26-30.
    [48]沈曾民,张文辉,张学军等.活性炭材料的制备与应用[M].北京:化学工业出版社,2006:9-14.
    [49]Wu Y W,Li Z,Xi H X,et al.Areview of oxygen-containing surface groups and surface modification of activated carbon.Chinese Journalof Reactive Polymers[J].2004,13(1):89-96.
    [50]孟冠华,李爱民,张全兴.活性炭的表面含氧官能团及其对吸附影响的研究进展[J].离子交换与吸附,2007,23(1):88-94.
    [51]Li Y H,Lee C W,Gullett B K.Importance of activated carbon's oxygen surface functional groups on elemental mercury adsorption[J].Fuel,2003,82(4):451-457.
    [52]Dunham G E,Miller S J,Chang R,et al.Mercury capture by an activated carbon in a fixed-bed bench-scale System[J].Environmental Progress,1998,17(3):203-208.
    [53]Kwon S,Borguet E,Vidic R D.Impact of surface heterogeneity on mercury uptake by carbonaceous sorbents under UHV and atmospheric pressure[J].Environmental Science&Technology,2002,36(19):4162-4169.
    [54]Lee S F,Seo Y C,Jurng J,et al.Removal of gas-phase elemental mercury by iodine and chlorine-impregnated activated carbons[J].Atmospheric Environment,2004,38(29):4887-4893.
    [55]Bansal R C,Donnet J B,Stoeckli F.Activated carbon[M].New York:Marcel Dekker,1988.
    [56]Tcssmer C H,Vidic R D,Uranowski L J.Impact of oxygen-containing surface functional groups on activated carbon adsorption of phenols[J].Environmental Science&Technology,1997,31(7):1872-1878.
    [57]Dandekar A,Baker R T K,Vannice M A.Characterization of activated carbon,graphitized carbon fibers aud synthetic diamond powder using TPD and DRIFTS[J].Carbon,1998,36(12):1821-1831.
    [58]立本英机,安部郁夫.活性炭的应用技术--其维持管理及存在问题[M].南京:东南大学出版社,2002:5.
    [59]陆安慧,郑经堂,王茂章等.H-K法研究ACFs的微结构[J].新型炭材料,2000,15(1):23-27.
    [60]Figueiredo J L,Pereira M F R,Freitas M M A,et al.Modification of the surface chemistry of activated carbons[J].Carbon,1999,37(9):1379-1389.
    [61]Menendez J A,Xia B,Phillips J,et al.On the modification and characterization of chemical surface properties of activated carbon:microcalorimetric,electrochemical,and thermal desorption probes[J].Langmuir,1997,13(13):3414-3421.
    [62]乔志军,李家俊,赵乃勤等.高温热处理对活性炭纤维微孔及表面性能的影响[J].新型炭材料,2004,19(1):44-47.
    [63]Chang R,Often G R.Mercury emission control technologies:An EPRI synopsis[J].Power Engineering,1995,99(11):51-57.
    [64]Skodras G,Diamantopoulou I,Sakellaropoulos G P.Role of activated carbon structural properties and surface chemistry in mercury adsorption[J].Desalination,2007,210(1):281-286.
    [65]Krishnan S V,Gullett B K,Jozewicz W.Sorption of elemental mercury by activated carbons[J].Environmental Science&Technology,1994,28(8):1506-1512.
    [66]金峰,曾汉才,钟毅.颗粒活性炭对汞的吸附研究[J].电力科学与工程,2003(1):1-4.
    [67]Olson E S,Miller S J,Sharma R K,et al.Catalytic effects of carbon sorbents for mercury capture[J].Journal of Hazardous Materials,2000,74(1):61-79.
    [68]Roberts D L,Stewart R M.Novel process for removal and recovery of vapor phase mercury[Z].Federal Energy Technology Center,1996.
    [69]Luo J J,Hein A M,Hwang J Y.Adsorption of vapor phase mercury on various carbons[J].Journal of Minerals&Materials Characterization&Engineering,2004,3(1):13-22.
    [70]高洪亮,用劲松,骆仲泱.模拟燃煤烟气中汞在活性炭上吸附的动力学研究[J].中原工学院学报,2005,16(6):1-5.
    [71]王军辉.活性炭吸附脱除烟气中汞的研究[D].浙江大学,2006:27-28.
    [72]北川浩,铃木谦一郎.吸附的基础和设计[M].北京:化学工业出版社,1983:33-35.
    [73]王光信,盂阿兰,任志华.物理化学[M].北京:化学工业出版社,2007:264-268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700