用户名: 密码: 验证码:
活性炭纤维低温吸附脱除汞的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃煤排放的汞是大气中汞的重要来源,其大部分以气相存在于烟气中,若不加控制排入大气将会污染环境。单质汞具有较高的挥发性和较低的水溶性,是最难控制的形态之一。本文利用活性炭纤维作为吸附剂在低温下进行试验研究,研究其脱除汞的能力以及影响汞脱除的因素。
     在一维煤粉燃烧试验台上利用三种不同活性炭纤维进行了脱除燃煤烟气中汞的试验研究,采用Ontario-Hydro方法研究燃煤烟气中汞的形态分布情况,探讨不同活性炭纤维的吸附效果以及水分和温度对汞吸附脱除的影响。结果表明,活性炭纤维表面含氧、含氮官能团以及水分对汞的吸附,特别是对Hg~0的吸附氧化有促进作用。在本试验条件下,对于经过催化处理的聚丙烯腈活性炭纤维试样,反应温度升高有利于化学吸附但是随着温度升高导致物理吸附下降,在70℃时增加水分,有利于汞的吸附。
     采用固定床试验系统,模拟燃煤烟气中的主要气体成分,选取粘胶基活性炭纤维研究温度、不同进口汞浓度以及SO_2、NOx气体对Hg吸附脱除的影响。结果表明,随着Hg~0入口含量的增加,活性碳纤维的吸附量增加;活性炭纤维作为一种低温吸附剂,未经过催化处理时在温度较低情况下物理吸附作用较强,随着吸附反应温度的升高其对汞蒸汽的吸附量有所降低;SO_2气体会导致活性炭纤维吸附效率的下降;NO在有O_2存在的条件下使汞的吸附量增加,即NO_2对Hg~0的吸附有利。当SO_2和NO同时存在时,SO_2和NO会和Hg~0在活性炭表面活性位的催化作用下发生一系列反应,当SO_2浓度过高时对Hg~0的吸附非常不利。这些气体之间的相互影响表明活性碳纤维对Hg~0的吸附不仅是物理吸附过程,也包括化学吸附过程,因而烟气中各气体成分对活性碳吸附能力的影响是不可忽视的。
     最后根据活性炭纤维填充吸附床内气相以及吸附剂孔内质量平衡,利用等温吸附平衡关系式建立了对单质汞吸附的动力学模型,并与试验结果进行拟合得到吸附过程的一些参数,为进一步的预测提供参考。
Coal-fired plants is a main emission source for mercury in atmosphere, which exists in flue gas as gas phase, and without control the released mercury will contaminate the environment. Elemental mercury possess high volatility and low water-solubility, thus is one of the most intractable form. Herein experimental researches are carried out to study the adsorption ability for mercury and to investigate influencing factors using activated carbon fibres (ACFs) as adsorbent at low temperature.
     Research on mercury adsorption by three different ACFs in coal-fired flue gas is conducted on a one-dimensional combustion test facility to investigate mercury speciation using Ontario-Hydro method and to discuss adsorption efficiency of different ACFs and the influence of moisture and temperature to mercury adsorption. The experimental results indicate that surface oxygen and nitrogen functional groups on ACFs and moisture show positive effects on mercury adsorption especially for the sorption and oxidation of element mercury. Under the specific experimental conditions, increasing reaction temperature is favorable to chemical adsorption while it leads to decrease of physical adsorption, therefore, according to the catalyzed polyacrylonitrile-based ACF sample, at 70℃increasing moisture content is advantageous to the adsorption of mercury.
     Moreover, by adopting fixed-bed experimental system and simulating flue gas components, researches are done to study the influence of temperature and varied inlet mercury concentration and SO_2 and NOx to mercury adsorption using viscose-based ACF. It is indicated that with the increase of inlet elemental mercury concentration the adsorptive capacity enhances; ACF is a low temperature adsorbent, the physical adsorption ability of which is stronger at low temperature if untreated while the ability decreases when the reactive temperature increases; SO_2 would make adsorption ability decline; with the existence of O_2, NO enhances the adsorption capacity of ACF for mercury viz. NO_2 is in favor of adsorption of element mercury. When SO_2 and NO coexists, there would be a series of reactions among SO_2 and NO and mercury happening on surface of ACF attributed to catalyzed effects of activated sites while too high concentration of SO_2 is disbenefit to the adsorption of mercury. The interaction among these gases indicates that the process of elemental mercury adsorption by ACF is not only a physical adsorptive course but also a chemical adsorptive one, thus cannot be ignored.
     Finally, based on mass balance of gas in the packed bed reactor and inside the pores of fiber, a dynamical model of elemental mercury adsorption is established using isothermal adsorption equilibrium equation, which is fitted with experiment results to obtain some parameters, therefore provides reference for further forecasting.
引文
[1] 岑可法,洁净煤燃烧发电技术报告,中国煤炭学会第二次洁净煤技术研讨会,杭州,2001。
    [2] 王起超,沈文国,麻壮伟,中国燃煤汞排放量估算,中国环境科学,1999,19(4):318-321。
    [3] Xuchang Xu, Yuqun Zhuo,Yufeng Duan, et al. Onsite mercury emission test for coal-fired power plants, China Workshop on Mercury Control from Coal Combustion, Beijing, China, Oct. 31 – Nov. 2, 2005。
    [4] 任建莉,周劲松,骆仲泱等,煤中汞燃烧过程析出规律试验研究,环境科学学报,2002,22(3):289-293。
    [5] Ravi Srivastava, Nick Hutson, Frank Princiotta, Reduction of mercury emission from coal-fired electric utility boilers, the DOE/NETL’s Mercury Control Technology R&D Program Review, Pittsburgh, PA, July12, 2005.
    [6] Standard test method for mercury from coal-fired stationary sources (Ontario Hydro Method ), EPA, USA , July7, 1999.
    [7] 午旭杰,以半干法为基础的新型燃煤汞排放控制机理及试验研究,[硕士学位论文],浙江:浙江大学工程热物理,2004.2。
    [8] Brochures of SM-3 mercury stack gas monitor and VM-3000 mercury vapor monitor, http://www.mercury-instruments.de/index_Mercury_Instruments.html。
    [9] 黄文辉,杨宜春,中国煤中的汞,中国煤田地质,2002,14(7):37-40。
    [10] 任建莉,燃煤过程汞析出及模拟烟气中汞吸附脱除试验和机理研究,[博士学位论文],浙江:浙江大学机械与能源工程学院,2003.5。
    [11] John H. Pavlish,Everett A. Sondreal,Michael D. Mann, et al. Status review of mercury control options for coal-fired power plants, Fuel Processing Technology, 2003, 82(2): 89-165。
    [12] 高洪亮,模拟燃煤烟气中汞形态转化及脱除技术的实验及机理研究,[博士学位论文],浙江:浙江大学机械与能源工程学院,2004.4。
    [13] 金峰,曾汉才,钟毅等,颗粒活性炭对汞的吸附实验研究,电力科学与工程,2003(1):1-4。
    [14] 许绿丝,钟毅,金峰等,催化活性炭纤维脱硫除汞性能试验研究,安全与环境学报,2004,4(2):10-12。
    [15] 张鹏宇,曾汉才,张柳,活化处理的活性炭吸附汞的试验研究,电力科学与工程,2004(2):1-3。
    [16] 张旺玺,宋清臣,一种全新活性炭——活性炭纤维,金山油化纤, 2001(2): 42-46。
    [17] Rong Yan, David Tee Liang, Leslie Tsen,et al. Bench-scale experimental evaluation of carbon performance on mercury vapour adsorption, Fuel, 2004, 83(18): 2401–2409.
    [18] Kazuhiko Tsuji, Ikuo Shiraishi, Combined desulfurization, denitrification and reduction of toxics using activated coke: Activity of activated coke, Fuel, 1997, 76(6): 549-553.
    [19] 岑泽文,曾汉才,张鹏宇等,PAN- ACF表面物化特性及其吸附能,电力环境保护,2004,20(3):57-59。
    [20] Jacques Lahaye, The chemistry of carbon surface, Fuel, 1998,77(6):543~547.
    [21] U. Zielke, K.J Huttinger, W.P. Hoffman, Surface-oxidized carbon fibers:1. Surface structure and chemistry. Carbon, 1996, 34(8):983~999.
    [22] Y.H. Li, C.W. Lee, B.K. Gullett, Importance of activated carbon’s oxygen surface functional groups on elemental mercury adsorption, Fuel, 2003, 82(4): 451–457.
    [23] Radisav D. Vidic,Douglas P. Siler,Vapor-phase elemental mercury adsorption by activated carbon impregnatee with chloride and chelating agents, Carbon, 2001, 39(1): 3-14.
    [24] E.J. Granite, H.W. Pennline, R.A. Hargis,Novel sorbents for mercury removal from flue gas, Industrial & Engineering Chemistry Research, 2000, 39(4): 1020–1029.
    [25] Sung Jun Lee,Yong-Chil Seo,Jongsoo Jurng, et al. Removal of gas-phase elemental mercury by iodine-and-chlorine-impregnated activated carbons, Atmospheric Environment, 2004, 38(29): 4887–4893.
    [26] Frank E. Huggins, Nora Yap, Gerald P. Huffman, et al. XAFS characterization of mercury captured from combustion gases on sorbents at low temperatures, Fuel Processing technology, 2003, 82(2-3):167– 196.
    [27] Kazuhiko Tsuji, Shiraishi Ikuo, Combined desulfurization, denitrification and reduction of toxics using activated coke: Process application and performance ofactivated coke, Fuel, 1997, 76(6): 555-560.
    [28] Mochida Isao, Korai Yozo, Shirahama Masuaki, et al. Removal of SOx and NOx over activated carbon fibers, Carbon, 2000, 38(2): 227-239.
    [29] L.Laudal Dennis, D.Brown Thomas, R.Nott Babu, Effects of flue gas consitituent on mercury speciation, Fuel Processing Technology, 2000, 65–66: 157-165.
    [30] Jason D. Laumb, Steven A. Benson, Edwin A. Olson, X-ray photoelectron spectroscopy analysis of mercury sorbent surface chemistry, Fuel Processing Technology, 2004, 85(6-7):577-585.
    [31] E.S. Olson, R.K. Sharma, S.J. Miller, et al. Identification of the breakthrough oxidized mercury species from sorbents in flue gas, Proceedings of the Specialty Conference on Mercury in the Environment, Minneapolis, MN, Sept. 15–17, 1999: 121– 126.
    [32] 刘义, 曹子栋, 唐强等,水涤脱附条件下活性炭脱硫中吸附反应空间的研究,西安交通大学学报,2004,38(1):73-76。
    [33] Y.H. Li, C.W. Lee, B.K. Gullett, The effect of activated carbon surface moisture on low temperature mercury adsorption, Carbon, 2002, 40(1): 65–72.
    [34] Frank B. Meserole, Ramsay Chang, Todd R. Carey, et al. Modeling mercury removal by sorbent injection, J. Air & Waste Manage. Assoc. 1999, 49(6): 694-704.
    [35] Joseph R.V. Flora, Radisav D.Vidic, Wei Liu, et al. Modeling powdered activated carbon injection for the uptake of elemental mercury vapors, J. Air & Waste Manage. Assoc. 1998, 48(12): 1051-1059.
    [36] T.C. Ho, N. Kobayashi, Y.K. Lee, et al. Modeling of mercury sorption by activated carbon in a confined, a semi-fluidized, and a fluidized bed, Waste Management 2002, 22 (4): 391–398.
    [37] 刘振宇,郑经堂,刘平光等,粘胶活性炭纤维的吸附性能及其孔结构表征。合成纤维工业,1998,21(2):24~26。
    [38] 刘振宇,郑经堂,王茂章,活性炭纤维孔结构控制和表面改性,离子交换与吸附,1997,13(4):353~358。
    [39] 岑泽文,曾汉才,张鹏宇等,PAN- ACF 表面物化特性及其吸附能,电力环境保护,2004,20(3):57-59。
    [40] 冯孝庭主编,吸附分离技术,北京:化学工业出版社,2000:45~50。
    [41] 袁履冰主编,有机化学,北京:高等教育出版社,1999:732~735。
    [42] 范延臻,王宝贞,活性炭表面化学,煤炭转化,2000, 23(4):26-29。
    [43] Grant E. Dunham, Raymond A. DeWall, Constance L. Senior, Fixed-bed studies of the interactions between mercury and coal combustion fly ash, Fuel Processing Technology, 2003, 82(2-3): 197-213.
    [44] Kevin C. Galbreath, Christopher J. Zygarlicke, Mercury transformation in coal combustion flue gas, Fuel Processing Technology, 2000, 65-66: 289 - 310.
    [45] E.Raymundo Pinero, D. Cazorla Amoros, A.Linares Solano, et al. Structural characterization of N-containing activated carbon fibers prepared from a low softening point petroleum pitch and a melamine resin. Carbon, 2002, 40(4): 597–608.
    [46] G.P. Reed, A.Ergudenler, J.R. Grace et al. Control of gasifier mercury emissions in a hot gas filter: the effect of temperature. Fuel, 2001, 80(5):623~ 6 34.
    [47] 金峰,催化活性炭脱硫脱硝除汞的试验研究,[硕士学位论文],武汉:华中科技大学,2003:25~30。
    [48] E.S. Olson, S.J. Miller, R.K. Sharma, Catalytic effects of carbon sorbents for mercury capture,Journal of Hazardous Materials,2000,74 (1): 61–79。
    [49] Stanley J. Miller, Grant E. Dunham, Edwin S. Olson, et al. Flue gas effects on a carbon-based mercury sorbent, Fuel Processing Technology, 2000, 65-66: 343-362.
    [50] 任建莉,周劲松,骆仲泱等,活性炭吸附烟气中气态汞的试验研究,中国电机工程学报,2004,24(2):171-175。
    [51] 高洪亮,周劲松,骆仲泱等,NO对燃煤烟气中汞形态影响的实验研究,工程热物理学报,2004,25(6):1057-1060。
    [52] 修国华,于千,金革等,间歇吸附器内活性炭吸附水中微量三氯甲烷-孔扩散模型和表面扩散模型,化工学报,1994, 45(4): 499-503。
    [53] Hyun Kim Dong, A new linear approximation formula for cyclic adsorption in a biporous adsorbent. Chemical Engineering Science, 1997, 52(20):3471-3482.
    [54] 柳正辉,王果庭,杨孔璋编译,吸附的动力学特性,科学出版社,1964:41-53。
    [55] Sudhakar Adapa, Vivekanand Gaur, Nishith Verma, Catalytic oxidation of NO by activated carbon fiber (ACF), Chemical Engineering Journal , 2006,116(1):25–37.
    [56] Tongbao Cheng, Yi Jiang, Yinping Zhang, et al. Prediction of breakthrough curvesfor adsorption on activated carbon fibers in a fixed bed, Carbon, 2004, 42(15): 3081–3085.
    [57] 张兵,活性炭纤维填充床吸附法脱除水中苯和氯苯及其再生的研究,[硕士学位论文],沈阳:沈阳化工学院化学工程,2003:38-40。
    [58] Debasish Das, Vivekanand Gaur, Nishith Verma, Removal of volatile organic compound by activated carbon fiber, Carbon , 2004, 42(14):2949–2962.
    [59] J.M.Smith, Chemical Engineering Kinetics, 3rd ed. McGraw-Hill, New York, USA,1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700