用户名: 密码: 验证码:
水稻秸秆纤维素发酵转化燃料乙醇的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国水稻秸秆资源丰富,年产量达3亿多吨。利用水稻秸秆生产燃料乙醇,对解决未来我国能源问题、实现节粮代粮和环保有着巨大的潜力和广阔的应用前景。水稻秸秆的主要成分是纤维素,对纤维素的利用最主要的限制性因素是将纤维素转化为可发酵还原糖。解决的办法主要有两类途径:(1)提高纤维素酶生产的经济性,主要涉及纤维素酶高产菌的获得及纤维素酶的生产技术,提高其合成效率以降低单位纤维素酶生产成本;(2)提高纤维素酶利用效率,主要涉及纤维素酶解催化过程,以降低单位可发酵还原糖生产成本。因此,本研究从菌种的选育着手,研究了菌株的产酶特性,用响应面策略优化发酵培养基,形成了5L发酵罐分批发酵生产高活力纤维素酶技术;分离纯化了纤维素酶;构建了代谢纤维二糖的酿酒酵母工程菌;对酿酒酵母工程菌细胞固定化发酵进行了研究,利用二级串联式生物反应器耦合系统生物协同酶解水稻秸秆发酵生产燃料乙醇等。主要研究结果如下:
     1.筛选到一株纤维素酶高产菌株(Penicillium YT01),原生质体紫外诱变后得到突变株YT02,YT02以水稻秸秆为碳源,豆饼粉和硫酸铵为氮源,在29℃,初始pH6.0发酵120 h,纤维素酶活力达到最高,摇瓶发酵滤纸酶活(FPA)、CMC酶活(CMCase)和β-葡萄糖苷酶活(CB)分别达3.86 IU/mL、207.41 IU/mL和1.40 IU/mL。
     2.用响应面方法(RSM)优化的发酵培养基组成为:水稻秸秆为41.95g/L,豆饼粉为24.83g/L,麸皮为22.16 g/L,(NH_4)_2SO_4、KH_2PO_4为4g/L,MgSO_4为0.5g/L;起始pH6.0。以优化的培养基发酵120 h,滤纸酶活、CMC酶活和β-葡萄糖苷酶活分别达到8.8967IU/mL、357.41 IU/mL and 3.704 IU/mL。远高于优化前的纤维素酶活水平。
     3.在5L发酵罐中研究了温度、pH值和溶氧对菌体生长和产酶的影响,确定了分批发酵的工艺条件为:0-32 h时发酵温度32℃,溶氧70%;32 h至120 h发酵结果发酵温度29℃,溶氧50%,发酵液初始pH值6.0,发酵96 h滤纸酶活、CMC酶活和β-葡萄糖苷酶活分别达到11.13 IU/mL、465.24 IU/mL and 4.08 IU/mL,均高于摇瓶发酵水平,分批发酵动力学过程显示,突变菌YT02菌体生长和纤维素酶各组分均为部分耦联。
     4.利用DEAE Sephadex A-25和Sephadex G-75分离纯化了二个内切葡聚糖酶(CMCase)和一个β-葡萄糖苷酶,CMCase纯化倍数为13.48,回收率为10.54%,β-葡萄糖苷酶纯化倍数为18.62,回收率为8.62%,经SDS-PAGE得到单蛋白分子条带,经分子量测定分别为73 kDa、43 kDa和57.8 kDa,并对其进行了N端测序和质谱分析。
     5.以生产乙醇性能优良的酿酒酵母菌株NAN-27作为工程菌株的受体菌。利用稳定性能良好的多拷贝整合型载体pYMIKP,使纤维二糖代谢基因BGL1整合到酿酒酵母的染色体上。从而在酿酒酵母工业菌株中建立了稳定的纤维二糖代谢途径,拓展了酒精生产的底物利用范围,降低了纤维二糖对纤维素酶解的抑制作用。采用海藻酸钙凝胶包埋固定代谢纤维二糖酿酒酵母工程菌,固定化细胞与游离细胞相比,发酵时间缩短,乙醇产率提高20%以上,并能有效地利用水稻秸秆水解液进行酒精发酵。
     6.对水稻秸秆酶解过程中底物性质、酶解温度、酶解pH、底物浓度及纤维素酶用量等关键因子进行了研究。由于YT02纤维素酶系中纤维二糖酶活力较低(CB/FPA为0.38),经稀酸稀碱预处理后的水稻秸秆纤维素对乙醇转化率仅为18%。采用代谢纤维二糖酿酒酵母工程菌游离细胞发酵,可部分去除纤维二糖对酶解的抑制,水稻秸秆纤维素对乙醇转化率可提高至20%。进一步利用采用海藻酸钙凝胶包埋固定代谢纤维二糖酿酒酵母工程菌发酵,水稻秸秆纤维素对乙醇转化率可达26%。这方面的研究结果有助于深入了解纤维素酶的协同降解机制。
     7.将纤维原料的酶解、固定化代谢纤维二糖酿酒酵母工程菌的作用有机耦联,构建成新型的二级串联式生物反应器,在该反应器体系的协同作用下,可有效解除纤维二糖和葡萄糖对纤维素酶的反馈抑制作用,促进纤维原料水稻秸秆的酶水解,发酵40 h,乙醇浓度达25.5g/L,纤维素对乙醇的转化率达43.0%(纤维素对乙醇的理论转化率为56.61%),是游离细胞同时糖化发酵(SSF)的1.65倍,生产效率达0.64g/(L·h)。采用分批添料式协同酶解发酵工艺,可提高纤维底物的终浓度达250g/L,产物乙醇的终浓度66.51g/L,有效提高了纤维素酶的利用率和乙醇生产效率,降低乙醇的生产成本。该反应器性能稳定,反应效率高,固定化细胞可以重复使用,便于自动化控制。
Cellulosic material is the most abundant renewable carbon source in the world. The annual output of rice straw is mor than three hundreds million tons in China. Rice straw cellulose may be hydrolyzed by cellulase to produce glucose, and then glucose can be used for the production of fuel ethanol. The utilization of renewable biomass can not only save the foodstuff but also reduce the environmental pollution. Based on the screening and breeding of strains, the researches investigated the characters of the production of cellulase by the strains and the kinetic process of the fermentation, built the batch fermentation technologies, separated and purified the cellulase, constructed the engineering yeast strain with the cellobiose metabolizing pathway, studied the fermentation with immobilized engineering yeast cells, discussed the cellulase hydrolysis technology of rice straw, and finally investigated the production of fuel ethanol using the two-step coupling bio-reactor. The research results are as follows:
     1. A strain named YT01 (Penicillium) with high cellulase activity was screened, and then it was mutated by ultraviolet with protoplast and optimized by liquid fermentation, which is named as YT02. The medium with rice straw powder as carbon source, bean powder and (NH_4)_2SO_4 as nitrogen source was optimal and the maximum cellulase activity was reached in the conditions of 29℃and origin pH 6.0 when cultivated for 120 h. The CMCase activity, filter paper activity andβ-glucosidase activity were 3.86 IU/mL, 207.41 IU/mL and 1.40 IU/mL respectively in shaking flask.
     2. Response surface methodology was used to optimize the medium for cellulase production by YT02. The optimized composition of fermentation medium was (g/L): rice straw powder, 41.95; bean powder, 24.83; bran powder, 22.16; (NH_4)_2SO_4, 4; KH_2PO_4, 4; MgSO_4, 0.5. The CMCase activity, filter paper activity andβ-glucosidase activity were 8.8967 IU/mL, 357.41 IU/mL and 3.704 IU/mL respectively after the fermentation in the optimized medium for 120 h. All results are higher than before.
     3. Since the production of cellulase was the major contribution to the bioconversion process, the DO, temperature and pH value of submerged fermentation by YT02 was studied. The fermentation was scaled up in a 5 L stirred fermenter, and the technical conditions of batch fermentation are as follows: fermentation temperature at 0-32 h was 32℃, DO 70 %; fermentation temperature at 32-120 h was 29℃, DO 50 %; origin pH value of fermentation broth was 6.0. The CMCase activity , filter paper activity andβ-glucosidase activity were 11.13 IU/mL, 465.24 IU/mL and 4.08 IU/mL respectively after 4 days, which were higher than the values in shaking fermentation. The dynamic results of batch fermentation showed that the growth of YT02 and the cellulase activity were coupled partially.
     4. CMCase andβ-glucosidase were purified by DEAE Sephadex A-25 and Sephadex G-75. The purification multiple was 13.48-fold and 18.62-fold to homogeneity by ammonium sulfate precipitation, gel filtration, and ion exchange chromatography with a recovery yield of 10.54 % and 8.62 % respectively. It appeared as a single protein band on SDS-PAGE gel with a molecular mass of approx. 73 kDa, 43 kDa and 57.8 kDa. N-end amino acid sequences and MALDI-TOF analysis of the cellulases were also performed.
     5. The strategy for direct integration of a cellobiase gene (BGL1) into the Saccharomyces cerevisia chromosome is an effective method for the stable expression of cellobiase in the industrial strain of Saccharomyces cerevisia NAN-27, using an integrating vector pYMIKP which containing a rDNA portion as a homologous recombination sequence to obtain multicopy integrants and PGK1 promoter and terminator, and with the G418 resistance gene (KanMX) as dominant selection marker. This integrating vector is an ideal vector for construction of the genetically engineered S. cerevisiae that used industrial strain as the host. The strategy expended the substrate for fuel ethanol production, and reduced the inhibitor of cellobiose to cellulase hydrolysis. It was found that the engineering Saccharomyces cerevisia NAN-28 cells were immobilized efficiently and rich in cellobiase entrapped into calcium alginate gels. Comparing with the traditional immobilization of pure enzyme protein, this new method was more convenient and economical. The activity of enzyme was not destroyed, and the immobilized cells were quite stable with a long half-life and could accelerate the synergetic hydrolysis process of cellulosic biamass. Comparing with free cells, the fermentation term of immobilized cells was shortened, and the yield of fuel ethanol was improved. The immobilized cells could utilize cellulosic hydrolysate to produce fuel ethanol efficiently.
     6. During the saccharification of cellulosic material, the key influence factors including character and concentration of substrate, enzyme dosage, temperature and pH were investigated. Since the cellulase system from YT02 was poor in cellobiase (CB/FPA was 0.38), the yield of rice straw residue to ethanol was only 18 %. When under the synergetic reaction of YT02 cellulase and immobilized engineering Saccharomyces cerevisia NAN-28 cells, the yield of rice straw residue to ethanol was raised to 26 %, while the yield of rice straw residue to ethanol in free cells was just 20 %. All results were significant for the elucidation of synergistic degradation mechanism of cellulase.
     7. A two-step coupling bioreactor was set up by coupling the cellulose hydrolysis, the immobilized cells and the immobilized cells producing cellobiase together. In this coupling bioreactor, the feedback inhibition to cellulase reaction caused by the accumulation of cellobiose and glucose was eliminated, and the hydrolysis of cellulosic material was promoted. The yield of fuel ethanol from cellulose reached 25.5 g/L at 40 h for fermentation, the conversion rate was 43.0 % (the theoretical conversion rate was 56.61 %), and the production efficiency was 0.64 g/( L·h) which was the 1.65 times of SSF in free cells. The new reactor was stable and efficient, and the immobilized cells could be repeatedly used for a long time. Under fed-batch process, the final concentration of cellulosic substrate and ethanol were increased to 250 g/L and 66.51 g/L respectively. The utilization of cellulase and the productive efficiency of ethanol were both improved. The bioreactor showed a good performance in synergetic saccharification and fermentation. This research work simplified the equipment, facilitated the automatic operation, and was important for cost-saving.
引文
[1] Sun, R. C., Cheng, J. Hydrolysis of lignocellulosic materials for ethanol production [J]. Bioresource Technology, 2002, (83): 1-11
    [2] Ghosh, P., Ghose, T. K. Bioethanol in India: recent past and emerging future [J]. Adv Biochem Eng Biotechnol, 2003, 85: 1-27
    [3] Farrell, A. E., Plevin, R. J., Turner, B. T. et al. Ethanol Can Contribute to Energy and Environmental Goals [J]. Science, 2006, 311 (1): 506-508
    
    [4] 杨涛.纤维素类物质生产酒精的研究进展[J].中国酿造, 2006, 8:11-15
    
    [5] Von Sivers, M., Zacchi, G. A techno-economical comparison of three processes for the production of ethanol from wood [J]. Bioresource Technology, 1995, (51): 43-52
    [6] Hakamada, Y., Endo, K., Takizawa, S. et al. Enzymatic properties, crystallization, and deduced amino acid sequence of an alkaline endoglucanase from Bacillus circulans [J]. Biochim Biophys Acta, 2002, 1570 (3): 174-180
    [7] M. H, D., M. J. F, S.-v. L. et al. Purification and characterization of beta-amylase from Curculigo pilosa [J]. Appl. Microbiol. Biotechnol., 1999, (52): 802-805
    [8] Y. F, M., D. E, E., S. J, L. et al. Mutations of barley beta-amylase that improve substrate-binding affinity and thermostability [J]. Mol Genet Genomics, 2001, (266): 345-352
    [9] Khan, M. H., Ali, S., Fakhru'l-Razi, A. et al. Use of fungi for the bioconversion of rice straw into cellulase enzyme [J]. J Environ Sci Health B, 2007, 42 (4): 381-386
    [10] Rodriguez, A., Moral, A., Serrano, L. et al. Rice straw pulp obtained by using various methods [J]. Bioresour Technol, 2008, 99 (8): 2881-2886
    
    [11] J, V. Nutritional properties of the leaf and stem of rice straw [J]. Animal Feed Science and Technology, 2000, 83: 57-65
    [12] Momcilovic, D., Schagerlof, H., Wittgren, B. et al. Improved chemical analysis of cellulose ethers using dialkylamine derivatization and mass spectrometry [J]. Biomacromolecules, 2005, 6 (5): 2793-2799
    [13] Chen, Y., Sharma-Shivappa, R. R., Chen, C. Ensiling agricultural residues for bioethanol production [J]. Appl Biochem Biotechnol, 2007, 143 (1): 80-92
    [14] Vargas-Garcia, M. C., Suarez-Estrella, F., Lopez, M. J. et al. Effect of inoculation in composting processes: modifications in lignocellulosic fraction [J]. Waste Manag, 2007, 27 (9): 1099-1107
    [15] Xiao, C., Bolton, R., Pan, W. L. Lignin from rice straw Kraft pulping: effects on soil aggregation and chemical properties [J]. Bioresour Technol, 2007, 98 (7): 1482-1488
    [16] Yu, H. Y., Zeng, G.M., Huang, G.H. et al. [Lignin degradation by Penicillium simplicissimum] [J]. Huan Jing Ke Xue, 2005, 26 (2): 167-171
    [17] Kabel, M. A., Bos, G., Zeevalking, J. et al. Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw [J]. Bioresour Technol, 2007, 98 (10): 2034-2042
    [18] Negro, M. J., Manzanares, P., Ballesteros, I. et al. Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass [J]. Appl Biochem Biotechnol, 2003, 105 -108 87-100
    [19] Sun, Y., Cheng, J. Hydrolysis of lignocellulosic materials for ethanol production: a review [J]. Bioresour Technol, 2002, 83 (1): 1-11
    [20] Mosier, N., Wyman, C., Dale, B. et al. Features of promising technologies for pretreatment of lignocellulosic biomass [J]. Bioresour Technol, 2005, 96 (6): 673-686
    [21] Oliva, J. M., Saez, F., Ballesteros, I. et al. Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus [J]. Appl Biochem Biotechnol, 2003, 105 -108 141-153
    [22] Sassner, P., Galbe, M., Zacchi, G. Steam pretreatment of Salix with and without S02 impregnation for production of bioethanol [J]. Appl Biochem Biotechnol, 2005, 121-124 1101-1117
    [23] Lee, Y.Y., Dale, B. E. Biomass pretreatment and hydrolysis [J]. Appl Biochem Biotechnol, 2004, 113 :935-936
    [24] van Walsum, G. P., Shi, H. Carbonic acid enhancement of hydrolysis in aqueous pretreatment of corn stover [J]. Bioresour Technol, 2004, 93 (3): 217-226
    [25] Emmel, A., Mathias, A. L., Wypych, F. et al. Fractionation of Eucalyptus grandis chips by dilute acid-catalysed steam explosion [J]. Bioresour Technol, 2003, 86 (2): 105-115
    [26] Kim, T. H., Lee, Y. Y. Pretreatment of corn stover by soaking in aqueous ammonia [J]. Appl Biochem Biotechnol, 2005, 121-124 1119-1131
    
    [27] Moldes, A. B., Bustos, G., Torrado, A. et al. Comparison between different hydrolysis processes of vine-trimming waste to obtain hemicellulosic sugars for further lactic acid conversion [J]. Appl Biochem Biotechnol, 2007, 143 (3): 244-256
    [28] Zahrai, S., Wikstrom, G. Mathematical modeling of flow and kinetics in a reactor for dilute-Acid hydrolysis of cellulose particles: a mixture flow approach [J]. Appl Biochem Biotechnol, 2007, 136 (2): 141-152
    [29] Jordan, S. N., Mullen, G. J. Enzymatic hydrolysis of organic waste materials in a solid-liquid system [J]. Waste Manag, 2007, 27 (12): 1820-1828
    [30] Zheng, C., Lei, Y., Yu, Q. et al. Enzymatic hydrolysis of waste sugarcane bagasse in water media [J]. Environ Technol, 2002, 23 (9): 1009-1016
    [31] Pimenova, N.V., Hanley, T. R. Effect of corn stover concentration on rheological characteristics [J]. Appl Biochem Biotechnol, 2004, 113-116 347-360
    [32] Pasha, C., Kuhad, R. C., Rao, L. V. Strain improvement of thermotolerant Saccharomyces cerevisiae VS strain for better utilization of lignocellulosic substrates [J]. J Appl Microbiol, 2007, 103 (5): 1480-1489
    [33] Hong, J., Wang, Y., Kumagai, H. et al. Construction of thermotolerant yeast expressing thermostable cellulase genes [J]. J Biotechnol, 2007, 130 (2):114-123
    [34] Berlin, A., Maximenko, V., Gilkes, N. et al. Optimization of enzyme complexes for lignocellulose hydrolysis [J]. Biotechnol Bioeng, 2007, 97 (2): 287-296
    [35] Jing, D., Li, P., Xiong, X. Z. et al. Optimization of cellulase complex formulation for peashrub biomass hydrolysis [J]. Appl Microbiol Biotechnol, 2007, 75 (4): 793-800
    [36] Rajoka, M. I., Zia, Y. A surface immobilization method of endoglucanase from Cellulomonas biazotea mutant improved catalytic properties of biocatalyst during processing [J]. Protein Pept Lett, 2007, 14 (7): 734-741
    [37] T, R. E., H, S. R. G., S, L. H. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis [J]. J Bacteriol, 1950, 59: 485
    [38] M, W.T. Fungal cellulases [J]. Biochem Soc Trans, 1992, 20: 46-53
    [39] 高(?)菊,李春.真菌与细菌纤维素酶研究进展[J].唐山师范学院学报,2005,27(2): 7-1O
    [40] 蓝贤勇.瘤胃微生物纤维素酶的研究与应用前景[J].黄牛杂志,2003,(29):36-39
    [41] Pou, J., Fernandez, M. J., Defaye, J. et al. Induction of cellulases and xylanases in Aureobasidiumpullulans] [J]. Microbiologia, 1988, 4 (2): 87-96
    [42] 刘守安.嗜热毛壳菌热稳定纤维素酶(EGⅡ)的纯化及基因(cbh和cbh2)的克隆和表达[M].山东农业大学硕士学位论文,2006,山东泰安16
    [43] Riedel, K., Bronnenmeier, K. Active-site mutations which change the substrate specificity of the Clostridium stercorarium cellulase CelZ implications for synergism [J]. Eur J Biochem, 1999, 262 (1): 218-223
    [44] 阎伯旭,齐飞,张颖舒等.纤维素酶分子结构和功能进展[J].生物化学和生物物理进展,1999,(26):233-240
    [45] M, L., L, M. M., M, K. et al. Identification of functionally important amino acids in the cellulose-binding domain of Trichaderma reesei cellobichydrolase 1 [J]. Protein Sci, 1995, 4 (6): 1056-1064
    [46] 高培基,曲音波,汪天虹.微生物降解纤维素机制的分子生物学研究进展[J].纤维素科学与技术,1995,(3):16-19
    [47] 阎伯旭,曲音波,高培基 等.真菌和细菌纤维素酶的差别及内、外切葡聚糖苷酶的 底物专一性[J].生命科学,1999, 11(增刊) 61-64
    
    [48] 杨永彬,黄谚谚,林跃鑫。纤维素酶的结构及分子多样性[J].生命的化学, 2004, 24 (3): 211-213
    [49] Zhang, Y. H., Lynd, L. R. A functionally based model for hydrolysis of cellulose by fungal cellulase [J]. Biotechnol Bioeng, 2006, 94 (5): 888-898
    [50] Matsuoka, S., Yukawa, H., Inui, M. et al. Synergistic interaction of Clostridium cellulovorans cellulosomal cellulases and HbpA [J]. J Bacteriol, 2007, 189 (20): 7190-7194
    [51] Rosgaard, L., Andric, P., Dam-Johansen, K. et al. Effects of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw [J]. Appl Biochem Biotechnol, 2007, 143 (1): 27-40
    [52] Tu, M., Chandra, R. P., Saddler, J.N. Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates [J]. Biotechnol Prog, 2007, 23 (2): 398-406
    [53] Yoon, M. H., Choi, W. Y. Characterization and action patterns of two beta-1, 4-glucanases purified from cellulomonas uda CS1-1 [J]. J Microbiol Biotechnol, 2007, 17 (8): 1291-1299
    [54] Ogura, J., Toyoda, A., Kurosawa, T. et al. Purification, characterization, and gene analysis of cellulase (Cel8A) from Lysobacter sp. IB-9374 [J]. Biosci Biotechnol Biochem, 2006, 70 (10): 2420-2428
    [55] Yoon, J. J., Cha, C. J., Kim, Y. S. et al. The brown-rot basidiomycete Fomitopsis palustris has the endo-glucanases capable of degrading microcrystalline cellulose [J]. J Microbiol Biotechnol, 2007, 17 (5): 800-805
    [56] Naika, G. S., Kaul, P., Prakash, V. Purification and characterization of a new endoglucanase from Aspergillus aculeatus [J]. J Agric Food Chem, 2007, 55 (18): 7566-7572
    [57] Lee, Y. J., Kim, B.K., Lee, B. H. et al. Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull [J]. Bioresour Technol, 2008, 99 (2): 378-386
    [58] Ko, C. H., Chen, W. L., Tsai, C. H. et al. Paenibacillus campinasensis BL11: A wood material-utilizing bacterial strain isolated from black liquor [J]. Bioresource Technology, 2007, (98): 2727-2733
    [59] 李亚玲,李多川,滕芳超.嗜热毛壳菌外切葡聚糖纤维二糖水解酶的纯化和部分性质研究[J].微生物学报,2006,46(1):143-146
    [60] 余玮,邓泽元,范亚苇等.粗壮脉纹孢菌所产纤维素酶的性质研究[J].食品科学,2006,27(12):50-53
    [61] 杨阳,任大明.黑曲霉β-葡萄糖苷酶稳定性的研究[J].现代畜牧兽医,2006,(5): 22
    [62] 王冬梅,白复芹.嗜热酶的稳定性及其应用前景[J].山东农业大学学报(自然科学版),2006,37(3):477-478
    [63] Lenting, H. B., Warmoeskerken, M. M. Guidelines to come to minimized tensile strength loss upon cellulase application [J]. J Biotechnol, 2001, 89 (2-3): 227-232
    [64] Picart, P., Diaz, P., Pastor, F.I. Cellulases from two Penicillium sp. strains isolated from subtropical forest soil: production and characterization [J]. Lett Appl Microbiol, 2007, 45 (1): 108-113
    [65] Latifian, M., Hamidi-Esfahani, Z., Barzegar, M. Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions [J]. Bioresour Technol, 2007, 98 (18): 3634-3637
    [66] Watanabe, T., Sato, T., Yoshioka, S. et al. Purification and properties of Aspergillus niger beta-glucosidase [J]. Eur J Biochem, 1992, 209 (2): 651-659
    [67] 王巧兰,郭刚,林范学.纤维素酶研究综述[J].湖北农业科学,2004,(3): 14-19
    [68] 石家骥,崔福绵.产β-葡聚糖酶菌种T199的选育及发酵条件[J].微生物学报,2001,41(6):750-752
    [69] 姚强,黄琰,陈冠军.产耐碱性纤维素酶丝状真菌的筛选及鉴定[J].山东大学学报(理学版),2005,40(1):119-124
    [70] 兰时乐,陈娴,李慧.产纤维素酶菌种TP1202的选育及产酶条件研究[J].生物技术,2003,13(2):12-13
    [71] 曾胤新,俞勇,陈波.低温纤维素酶产生菌的筛选、鉴定、生长特性及酶学性质[J].高技术通讯,2005,15(4):58-62
    [72] 王慧杰,张晓静.降解秸秆的纤维素酶高产菌的选育[J].河南科学,2006,24(1):60-62
    [73] 谢占玲,李秀萍,杨家华.青海高原降解纤维素微生物的调查、分离、鉴定[J].微生物学通报,2004,31(2):91-94
    [74] Fujii, K., Shintoh, Y. Degradation of mikan (Japanese mandarin orange) peel by a novel Penicillium species with cellulolytic and pectinolytic activity [J]. J Appl Microbiol, 2006, 101 (5): 1169-1176
    [75] 江龙法,钱志刚,夏泽华等.分解酒糟生物质的纤维素酶生产菌的筛选研究[J].淮海工学院学报(自然科学版),2006,(16):51-54
    [76] 金显春,郭文杰,杨勇等.直接降解稻草秸秆的菌株筛选及其发酵过程研究[J].安徽农业科学,2006,34(20):5144-5145
    [77] 张建强,李亚澜,李勇.纤维素降解菌的分离鉴定及固态发酵条件[J].西南交通大学学报,2006,(41):442-446
    [78] 蔡勇,阿依木古丽.碱性纤维素酶高产菌株Bacillus sp.CY123的诱变选育[J].西北民族大学学报(自然科学版),2007,28(6):13-16
    [79] 李西波,刘胜利,王耀民等.高产纤维素酶菌株的诱变选育和筛选[J].食品与生物技术学报,2006,25(6):108-110
    [80] 杜娟,曲音波,林觐勤等.灰绿曲霉高产纤维素酶突变株的选育[J].厦门大学学报(自然科学版),2006,45(5):23-26
    [81] 崔彬彬,朱维红,冯大领.细胞融合技术研究进展[J].保定师范专科学校学报,2007,20(4):48-50
    [82] Li, H.J., Liu, J., Zhang, X. X. Important bio-thermal physical problems and latest advancement in laser cell engineering [J]. Space Med Med Eng (Beijing), 2001, 14 (5): 387-390
    [83] Urban, A., Neukirchen, S., Jaeger, K. E. A rapid and efficient method for site-directed mutagenesis using one-step overlap extension PCR [J]. Nucleic Acids Res, 1997, 25 (11): 2227-2228
    [84] Rabhi, I., Guedel, N., Chouk, I. et al. A novel simple and rapid PCR-based site-directed mutagenesis method [J]. Mol Biotechnol, 2004, 26 (1): 27-34
    [85] Wang, W. K., Kruus, K., Wu, J.H. Cloning and expression of the Clostridium thermocellum celS gene in Escherichia coli [J]. Appl Microbiol Biotechnol, 1994, 42 (2-3): 346-352
    [86] Scheirlinck, T., Mahillon, J., Joos, H., Dhaese, P et al. Integration and expression of alpha-amylase and endoglucanase genes in the Lactobacillus plantarum chromosome [J]. Appl Environ Microbiol, 1989, 55 (9): 2130-2137
    [87] Lee, J. H., Lim, M. Y., Kim, M. J. et al. Constitutive coexpression of Bacillus endoxylanase and Trichoderma endoglucanase genes in Saccharomyces cerevisiae [J]. J Microbiol Biotechnol, 2007, 17 (12): 2076-2080
    [88] Toda, H., Takada, S., Oda, M. et al. Gene cloning of an endoglucanase from the basidiomycete Irpex lacteus and its cDNA expression in Saccharomyces cerevisiae [J]. Biosci Biotechnol Biochem, 2005, 69 (7): 1262-1269
    [89] Hou, Y., Wang, T., Long, H . et al. Cloning, sequencing and expression analysis of the first cellulase gene encoding cellobiohydrolase 1 from a cold-adaptive Penicillium chrysogenum FS010 [J]. Acta Biochim Biophys Sin (Shanghai), 2007, 39 (2): 101-107
    [90] Schmoll, M., Kubicek, C. P. A unique gene expressed only during growth of Hypocrea jecorina (anamorph: Trichoderma reesei) on cellulose [J]. Curr Genet, 2005, 48 (2): 126-133
    [91] 管斌,孙艳玲,谢来苏等.纤维素酶高产菌株的选育[J].中国酿造,2002,120(4): 18-21
    [92] 艾云灿,孟繁梅,许耀才.曲霉与木霉属间融合重组单倍体ATH-1376的动力学杂种优势[J].生物工程学报,1997,13(3):241-245
    [93] 刘春芬,贺稚非,蒲海燕等.纤维素酶及应用现状[J].粮食与油脂,2004,(1):15-17
    [94] Biebl, H. Fermentation of glycerol by Clostridium pasteurianum?batch and continuous culture studies [J]. J Ind Microbiol Biotechnol, 2001, 27 (1): 18-26
    [95] Li, Y., Chen, J., Song, Q. et al. Fed-batch culture strategy for high yield of baker's yeast with high fermentative activity [J]. Chin J Biotechnol, 1997, 13 (2): 105-113
    [96] Papagianni, M., Boonpooh, Y., Mattey, M. et al. Substrate inhibition kinetics of Saccharomyces cerevisiae in fed-batch cultures operated at constant glucose and maltose concentration levels [J]. J Ind Microbiol Biotechnol, 2007, 34 (4): 301-309
    [97] Liu, Y., Sha, Q., Wu, S. et al. Enzymatic resolution of racemic phenyloxirane by a novel epoxide hydrolase from Aspergillus niger SQ-6 and its fed-batch fermentation [J]. J Ind Microbiol Biotechnol, 2006, 33 (4): 274-282
    [98] 曹小红,蔡萍,李凡等.利用响应面法优化Bacillus natto TK-1产脂肽发酵培养基[J].中国生物工程杂志,2007,27(4):59-65
    [99] 董书阁,管斌,熊三玉等.利用响应面分析法优化醋酸菌AD1的发酵条件[J].食品与发酵工业,2007,33(3):78-81
    [100] 孙海彦,张伟国.Penicillium sp. X-1液态发酵生产生淀粉酶的优化[J].食品与生物技术学报,2007,26(3):106-109
    [101] 郑毅,叶海梅,石磊.响应面分析法优化耐高温蛋白酶发酵培养基[J].生物数学学报,2007,22(1):113-118
    [102] Sharma, L., Kumar Singh, A., Panda, B. et al. Process optimization for poly-beta-hydroxybutyrate production in a nitrogen fixing cyanobacterium, Nostoc muscorum using response surface methodology [J]. Bioresour Technol, 2007, 98 (5): 987-993
    [103] Yuan, Y. J., Lu, Z. X., Huang, L. J. et al. Optimization of a medium for enhancing nicotine biodegradation by Ochrobactrum intermedium DN2 [J]. J Appl Microbiol, 2006, 101 (3): 691-697
    [104] Altaf, M., Naveena, B. J., Reddy, G. Use of inexpensive nitrogen sources and starch for L(+) lactic acid production in anaerobic submerged fermentation [J]. Bioresour Technol, 2007, 98 (3): 498-503
    [105] Moreira, R, J., Goldemberg, Jose. Alcohol program [J]. Energy Pol icy, 1999, 27 (4): 229-245
    [106] Lin, Y., Tanaka, S. Ethanol fermentation from biomass resources: current state and prospects [J]. Appl Microbiol Biotechnol, 2006, 69 (6): 627-642
    [107] Saha, B.C., Iten, L. B., Cotta, M. A. et al. Dilute acid pretreatment,enzymatic saccharification, and fermentation of rice hulls to ethanol [J]. Biotechnol Prog, 2005, 21 (3): 816-822
    [108] Wingren, A., Galbe, M., Roslander, C. et al. Effect of reduction in yeast and enzyme concentrations in a simultaneous- saccharification-and-fermentation-based bioethanol process: technical and economic evaluation [J]. Appl Biochem Biotechnol, 2005, 121-124 485-499
    [109] Ruiz, E., Cara, C., Ballesteros, M. et al. Ethanol production from pretreated olive tree wood and sunflower stalks by an SSF process [J]. Appl Biochem Biotechnol, 2006, 129-132 631-643
    [110] Patel, M. A., Ou, M.S., Ingram, L O. et al. Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp [J]. Biotechnol Prog, 2005, 21 (5): 1453-1460
    [111] Iyer, P. V., Lee, Y. Y. Simultaneous saccharification and extractive fermentation of lignocellulosic materials into lactic acid in a two-zone fermentor-extractor system [J]. Appl Biochem Biotechnol, 1999, 77-79 409-419
    [112] Bissett, F., Sternberg, D. Immobilization of Aspergillus beta-glucosidase on chitosan [J]. Appl Environ Microbiol, 1978, 35 (4): 750-755
    [113] Aguado, J., Romero, M. D., Rodriguez, L. Immobilization of beta-glucosidase from Penicillium funiculosum on nylon powder [J]. Biotechnol Appl Biochem, 1993, 17:49-55
    [114] Tu, M., Zhang, X., Kurabi, A. et al. Immobilization of beta-glucosidase on Eupergit C for lignocellulose hydrolysis [J]. Biotechnol Lett, 2006, 28 (3): 151-156
    [115] Ong, E., Gilkes, N. R., Miller, R.C. et al. Enzyme immobilization using a cellulose-binding domain: properties of a beta-glucosidase fusion protein [J]. Enzyme Microb Technol, 1991, 13 (1): 59-65
    [116] Qiu, Y. Z., Han, J., Chen, G. Q. Metabolic engineering of Aeromonas hydrophila for the enhanced production of poly(3-hydroxybutyrate-co-3-hydro- xyhexanoate) [J]. Appl Microbiol Biotechnol, 2006, 69 (5): 537-542
    [117] Sawada, M., Kamataki, T. Genetically engineered cells stably expressing cytochrome P450 and their application to mutagen assays [J]. Mutat Res, 1998, 411 (1): 19-43
    [118] Metzgar, D., Bacher, J. M., Pezo, V. et al. Acinetobacter sp. ADP1: an ideal model organism for genetic analysis and genome engineering [J]. Nucleic Acids Res, 2004, 32 (19): 5780-5790
    [119] Nielsen, J., Jewett, M. C. Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae [J]. FEMS Yeast Res, 2008, 8 (1): 122-131
    [120] Nielsen, J., Olsson, L. An expanded role for microbial physiology in metabolic engineering and functional genomics: moving towards systems biology [J]. FEMS Yeast Res, 2002, 2 (2): 175-181
    [121] Varner, J., Ramkrishna, D. Metabolic engineering from a cybernetic perspective: aspartate family of amino acids [J]. Metab Eng, 1999, 1 (1): 88-116
    [122] Lee, J. Y., Jung, K. H., Choi, S. H. et al. Combination of the tod and the tol pathways in redesigning a metabolic route of Pseudomonas putida for the mineralization of a benzene, toluene, and p-xylene mixture [J]. Appl Environ Microbiol, 1995, 61 (6): 2211-2217
    [123] Baez-Viveros, J. L., Flores, N., Juarez, K. et al. Metabolic transcription analysis of engineered Escherichia coli strains that overproduce L-phenylalanine [J]. Microb Cell Fact, 2007, 6: 30
    [124] Skatrud, P. L., Queener, S. W. An electrophoretic molecular karyotype for an industrial strain of Cephalosporium acremonium [J]. Gene, 1989, 78 (2): 331-338
    [125] Brown, J., Smalley, M. E. Inhibition of the in vitro growth of Plasmodium falciparum by human polymorphonuclear neutrophil leucocytes [J]. Clin Exp Immunol, 1981, 46 (1): 106-109
    [126] Hammond, J. R. Genetically-modified brewing yeasts for the 21st century. Progress to date [J]. Yeast, 1995, 11 (16): 1613-1627
    [127] Hahn-Hagerdal, B., Karhumaa, K., Jeppsson, M. et al. Metabolic engineering for pentose utilization in Saccharomyces cerevisiae [J]. Adv Biochem Eng Biotechnol, 2007, 108: 147-177
    [128] Pizarro, F., Vargas, F. A., Agosin, E. A systems biology perspective of wine fermentations [J]. Yeast, 2007, 24 (11): 977-991
    [129] Wisselink, H. W., Toirkens, M. J., del Rosario Franco Berriel, M. et al. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose [J]. Appl Environ Microbiol, 2007, 73 (15): 4881-4891
    [130] Shigechi, H., Koh, J., Fujita, Y. et al. Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and alpha-amylase [J]. Appl Environ Microbiol, 2004, 70 (8): 5037-5040
    [131] Ho, N.W., Chen, Z., Brainard, A.P.et al. Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol [J]. Adv Biochem Eng Biotechnol, 1999, 65: 163-192
    [132] 鲍晓明,高东,曲音波等.木糖代谢基因表达水平对酿酒酵母重组菌株产物形成的影响[J].生物工程学报,1997,13(4):355-361
    [133] Fujita, Y., Takahashi, S., Ueda, M. et al. Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes [J]. Appl Environ Microbiol, 2002, 68 (10): 5136-5141
    [134] 张梁,石贵阳,洪剑辉等.酿酒酵母纤维二糖代谢途径的搭建[J].酿酒科技,2005,129(3):30-33
    [135] 周衍,张梁,王正祥等.扣囊复膜孢酵母β-葡萄糖苷酶基因在工业酿酒酵母中的表达[J].中国生物工程杂志,2007,27(2):64-69
    [136] 洪剑辉,张梁,石贵阳等.利用纤维二糖的酵母工程菌构建[J].应用环境生物学报,2006,12(3):391-394
    [137] Hahn-Hagerdal, B., Karhumaa, K., Fonseca, C. et al. Towards industrial pentose-fermenting yeast strains [J]. Appl Microbiol Biotechnol, 2007, 74 (5): 937-953
    [138] Larsson, S., Cassland, P., Jonsson, L J. Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase [J]. Appl Environ Microbiol, 2001, 67 (3): 1163-1170
    [139] 汪维云,朱金华,吴守一.纤维素科学及纤维素酶的研究进展[J].江苏理工大学学报,1998,19(3):20-28
    [140] Chakravarti, D.N. Das Gupta Memorial Oration [J]. Indian J Public Health, 1970, 14 (2): 72-77
    [141] Rosgaard, L., Pedersen, S., Langston, J. et al. Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated Barley straw substrates [J]. Biotechnol Prog, 2007, 23 (6): 1270-1276
    [142] Martins, L F., Kolling, D., Camassola, M., et al. Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates [J]. Bioresour Technol, 2008, 99 (5): 1417-1424
    [143] Piel, J., Atzorn, R., Gabler, R.et al. Cellulysin from the plant parasitic fungus Trichoderma viride elicits volatile biosynthesis in higher plants via the octadecanoid signalling cascade [J]. FEBS Lett, 1997, 416 (2): 143-148
    [144] 张萍,郭辉军,刀志灵等.高黎贡山土壤微生物的数量和多样性[J].生物多样性,1999,7(4):297-302
    [145] 魏景超.真菌鉴定手册[M].上海:上海科学技术出版社,1979,503-508
    [146] 周德庆.微生物学实验教程 [M].北京:高等教育出版社,2005,58-74
    [147] 施巧琴,吴松刚.工业微生物育种学[M].北京:科学出版社,2006,292-295
    [148] 张年凤,赵允麟.纤维素酶菌株的选育及其产酶条件[J].粮食与饲料工业,2003,(5): 23-25
    [149] Juhasz, T., Szengyel, Z., Szijarto, N. et al. Effect of pH on cellulase production of Trichoderma reesei RUT C30 [J]. Appl Biochem Biotechnol, 2004, 113-116 201-211
    [150] 王玉万,徐文玉.木质纤维素固体基质发酵物中半纤维素、纤维素和木质素的定量分析程序[J].微生物学通报,1987,14(2):81-84
    [151] 杨涛,马美湖.生物质降解酶酶活的测定方法[J].中国酿造,2006,11:67-69.
    [152] 高培基.纤维素酶活力测定方法研究进展[J].工业微生物,1985,(6):5-8
    [153] Galbe, M., Zacchi, G. Pretreatment of lignocellulosic materials for efficient bioethanol production [J]. Adv Biochem Eng Biotechnol, 2007, 108: 41-65
    [154] Rosgaard, L., Pedersen, S., Meyer, A. S. Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw [J]. Appl Biochem Biotechnol, 2007, 143 (3): 284-296
    [155] Wen, Z., Liao, W., Chen, S. Production of cellulase by Trichoderma reesei from dairy manure [J]. Bioresour Technol, 2005, 96 (4): 491-499
    [156] 张苓花,王运吉.固态混合发酵生产纤维素酶的研究[J].中国饲料,1998,(2):14-17
    [157] 王景林,尹清强,吴东林等.高活力纤维素酶菌株康氏木霉B-7的选育与产酶条件的研究[J].生物技术,1996,6(6):14-17
    [158] 王成华,王健鹏,马梦瑞等.高活性纤维素酶的研究[J].中国饲料,1997,(8):22-24
    [159] Bezerra, M. A., Bruns, R. E., Ferreira, S. L. Statistical design-principal component analysis optimization of a multiple response procedure using cloud point extraction and simultaneous determination of metals by ICP OES [J]. Anal Chim Acta, 2006, 580 (2): 251-257
    [160] Cutright, T. J., Meza, L Evaluation of the aerobic biodegradation of trichloroethylene via response surface methodology [J]. Environ Int, 2007, 33 (3): 338-345
    [161] Kawaguti, H. Y., Buzzato, M. F., Sato, H. H. Isomaltulose production using free cells: optimisation of a culture medium containing agricultural wastes and conversion in repeated-batch processes [J]. J Ind Microbiol Biotechnol, 2007, 34 (4): 261-269
    [162] Korbahti, B. K. Response surface optimization of electrochemical treatment of textile dye wastewater [J]. J Hazard Mater, 2007, 145 (1-2): 277-286
    [163] Ahmad, A. L., Wong, S. S., Teng, T. T. et al. Optimization of coagulation-flocculation process for pulp and paper mill effluent by response surface methodological analysis [J]. J Hazard Mater, 2007, 145 (1-2): 162-168
    [164] Kumar, P., Satyanarayana, T. Optimization of culture variables for improving glucoamylase production by alginate-entrapped Thermomucor indicae-seudaticae using statistical methods [J]. Bioresour Technol, 2007, 98 (6): 1252-1259
    [165] Li, Y., Jiang, H., Xu, Y. et al. Optimization of nutrient components for enhanced phenazine-1-carboxylic acid production by gacA-inactivated Pseudomonas sp. M18G using response surface method [J]. Appl Microbiol Biotechnol, 2008, 77 (6): 1207-1217
    [166] Li, J., Ma, C., Ma, Y. et al. Medium optimization by combination of response surface methodology and desirability function: an application in glutamine production [J]. Appl Microbiol Biotechnol, 2007, 74 (3): 563-571
    [167] Kathiresan, S., Sarada, R., Bhattacharya, S.et al. Culture media optimization for growth and phycoerythrin production from Porphyridium purpureum [J]. Biotechnol Bioeng, 2007, 96 (3): 456-463
    [168] Amini, M., Younesi, H., Bahramifar, N. et al. Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger [J]. J Hazard Mater, 2007,11:30-31
    [169] Mohana, S., Shrivastava, S., Divecha, J. et al. Response surface methodology for optimization of medium for decolorization of textile dye Direct Black 22 by a novel bacterial consortium [J]. Bioresour Technol, 2008, 99 (3): 562-569
    [170] 庄新妹,王树荣,安宏等.纤维素低浓度酸水解制取液体燃料的试验研究[J].浙江大学学报(工学版),2006,40(6):997-1001
    [171] 刘小杰,何国庆,袁长贵.康氏木霉液体摇瓶发酵产纤维素酶的初步研究[J].食品科学,2003,24(1):125-128
    [172] 李忠兴,焦旭东,郝志军.康宁木霉液体发酵生产纤维素酶[J].微生物学通报,1999,26(6):403-405
    [173] Alam, M. Z., Muyibi, S. A., Wahid, R. Statistical optimization of process conditions for cellulase production by liquid state bioconversion of domestic wastewater sludge [J]. Bioresour Technol, 2007, 8: 12-17
    [174] Camassola, M., Dillon, A. J. Production of cellulases and hemicellulases by Penicillium echinulatum grown on pretreated sugar cane bagasse and wheat bran in solid-state fermentation [J]. J Appl Microbiol, 2007, 103 (6): 2196-2204
    [175] Singhania, R. R., Sukumaran, R.K., Pandey, A. Improved cellulase production by Trichoderma reesei RUT C30 under SSF through process optimization [J]. Appl Biochem Biotechnol, 2007, 142 (1): 60-70
    [176] Asha Poorna, C., Prema, P. Production of cellulase-free endoxylanase from novel alkalophilic thermotolerent Bacillus pumilus by solid-state fermentation and its application in wastepaper recycling [J]. Bioresour Technol, 2007, 98 (3): 485-490
    [177] Jorgensen, H., Vibe-Pedersen, J., Larsen, J. et al. Liquefaction of lignocellulose at high-solids concentrations [J]. Biotechnol Bioeng, 2007, 96 (5): 862-870
    [178] Lecault, V., Patel, N., Thibault, J. Morphological characterization and viability assessment of Trichoderma reesei by image analysis [J]. Biotechnol Prog, 2007, 23 (3): 734-740
    [179] Bailey, M. J., Tahtiharju, J. Efficient cellulase production by Trichoderma reesei in continuous cultivation on lactose medium with a computer-controlled feeding strategy [J]. Appl Microbiol Biotechnol, 2003, 62 (2-3): 156-162
    [180] Desvaux, M., Guedon, E., Petitdemange, H. Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium [J]. Appl Environ Microbiol, 2000, 66 (6): 2461-2470
    [181] Zhang, Y., Lynd, L. R. Quantification of cell and cellulase mass concentrations during anaerobic cellulose fermentation: development of an enzyme-linked immunosorbent assay-based method with application to Clostridium thermocellum batch cultures [J]. Anal Chem, 2003, 75 (2): 219-227
    [182] 赵东峰.乙酰异戊酰泰乐菌素的发酵研究[M].山东大学硕士论文,2006,12
    [183] Berovic, M., Herga, M. Heat shock on Saccharomyces cerevisiae inoculum increases glycerol production in wine fermentation [J]. Biotechnol Lett, 2007, 29 (6): 891-894
    [184] 孙志浩.生物催化工艺学[M].北京:化学工出版社,2005,224-225
    [185] 俞俊棠.新编生物工艺学(上册)[M].化学工业出版社,2003,166-170
    [186] Seletzky, J. M., Noak, U., Fricke, J. et al. Scale-up from shake flasks to fermenters in batch and continuous mode with Corynebacterium glutamicum on lactic acid based on oxygen transfer and pH [J]. Biotechnol Bioeng, 2007, 98 (4): 800-811
    [187] Diaz-Barrera, A., Pena, C., Galindo, E. The oxygen transfer rate influences the molecular mass of the alginate produced by Azotobacter vinelandii [J]. Appl Microbiol Biotechnol, 2007, 76 (4): 903-910
    [188] Oncu, S., Tari, C., Unluturk, S. Effect of various process parameters on morphology, rheology, and polygalacturonase production by Aspergillus sojae in a batch bioreactor [J]. Biotechnol Prog, 2007, 23 (4): 836-845
    [189] Nishida, Y., Suzuki, K., Kumagai, Y.et al. Isolation and primary structure of a cellulase from the Japanese sea urchin Strongylocentrotus nudus [J]. Biochimie, 2007, 89 (8): 1002-1011
    [190] Gao, J., Weng, H., Xi, Y. et al. Purification and characterization of a novel endo-beta-1, 4-glucanase from the thermoacidophilic Aspergillus terreus [J]. Biotechnol Lett, 2008, 30 (2): 323-327
    [191] Landreth, G. E., Neale, E. A., Neale, J. H. et al. Evaluation of [3-H]proline for radioautographic tracing of axonal projections in the teleost visual system [J]. Brain Res, 1975, 91 (1): 25-42
    [192] E.科林根著,J.,李慎涛译.精编蛋白质科学实验指南[M].北京:科学出版社, 2007, 217-240
    [193] Gallagher, S.R. One-dimensional SDS gel electrophoresis of proteins [M]. Curr Protoc Cell Biol, 2007, Chapter 6 Unit 6 1
    
    [194] Sato, S., Murata, A., Uesugi, M. Identification of the cardiac beta-adrenergic receptor protein: solubilization and purification by affinity chromatography] [J]. Tanpakushitsu Kakusan Koso, 2007, 52 (13 Suppl): 1782-1783
    [195] Yuri, Y., Hayashi, Y., Kiso, Y. An approach to the targeted attachment of peptides and proteins to solid supports [J]. Tanpakushitsu Kakusan Koso, 2007, 52 (13 Suppl): 1784-1785
    [196] Hori, Y. Crystal structure of the Aequorea victoria green fluorescent protein [J]. Tanpakushitsu Kakusan Koso, 2007, 52 (13 Suppl): 1768-1769
    
    [197] Lage, H. Proteomics in cancer cell research: an analysis of therapy resistance [J]. Pathol Res Pract, 2004, 200 (2): 105-117
    [198] RM., M., G. D., M., P., L. et al. Mass Spectrometric Peptide Fingerprinting of Proteins after Western Blotting on Polyvinylidene Fluoride and Enhanced Chemiluminescence Detection [J]. J Proteome Res, 2005, (4): 2216-2224
    [199] Ohgren, K., Bengtsson, O., Gorwa-Grauslund, M. F. et al. Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400 [J]. J Biotechnol, 2006, 126 (4): 488-498
    [200] Shen, Y., Zhang, Y., Ma, T. et al. Simultaneous saccharification and fermentation of acid-pretreated corncobs with a recombinant Saccharomyces cerevisiae expressing beta-glucosidase [J]. Bioresour Technol, 2007,10:37-42
    [201] Yu, J., Zhang, X., Tan, T. An novel immobilization method of Saccharomyces cerevisiae to sorghum bagasse for ethanol production [J]. J Biotechnol, 2007, 129 (3): 415-420
    [202] 刘向勇,沈煜,郭亭等.rDNA介导的多拷贝整合表达载体的构建及其在酿酒酵母工业菌株中的应用[J].山东大学学报(理学版),2005,(3):
    [203] Burke, P. V., Kwast, K. E. Oxygen dependence of expression of cytochrome C and cytochrome C oxidase genes in S. cerevisiae [J]. Adv Exp Med Biol, 2000, 475: 197-208
    [204] Verbelen, P. J., De Schutter, D. P., Delvaux, F.et al. Immobilized yeast cell systems for continuous fermentation applications [J]. Biotechnol Lett, 2006, 28 (19): 1515-1525
    [205] Ma, M. -h., Yang, T., Zhou, H. et al. Xylitol production from corn cobs hydrolysate by adapted and encapsulated Candida tropical is LF04 [J]. 食品科学(英文版),2007,(12):301-304
    [206] 唐国敏,钟丽婵,杨开宇等.具有糖化酶活性的工业啤酒酵母菌的构建及其发酵特性[J].生物工程学报,1996,12(4):489-491
    [207] TS, L., J, K., AE, V. et al. High-copy-number integration into the ribosomal DNA of Saccharomyces cerevisiae: a new vector for high-level expression [J]. Gene, 1989, 79 199-206
    [208] Y, W., L, S. W., Y, L. X. et al. Establishment of xylose metabolic pathway in industrial strain NAN-27 Saccharomyces cerevisiae [J]. Biotechnology Letters, 2004, 26 (11): 885-890
    [209] Yinbo, Q., Zhu, M., Liu, K. et al. Studies on cellulosic ethanol production for sustainable supply of liquid fuel in China [J]. Biotechnol J, 2006, 1 (11): 1235-1240
    [210] Gray, K.A., Zhao, L., Emptage, M. Bioethanol [J]. Curr Opin Chem Biol, 2006, 10 (2): 141-146
    [211] Szijarto, N., Szengyel, Z., Liden, G. et al. Dynamics of cellulase production by glucose grown cultures of Trichoderma reesei Rut-C30 as a response to addition of cellulose [J]. Appl Biochem Biotechnol, 2004, 113-116 115-124
    [212] Mtui, G., Nakamura, Y. Bioconversion of lignocellulosic waste from selected dumping sites in Dar es Salaam, Tanzania [J]. Biodegradation, 2005, 16 (6): 493-499
    [213] Ward, O. P., Singh, A. Bioethanol technology: developments and perspectives [J]. Adv Appl Microbiol, 2002, 51: 53-80
    [214] 沈雪亮,夏黎明.利用纤维原料在串联式生物反应器中协同酶解发酵乳酸[J].高校化学工程学报,2005,19(3):356-361

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700