用户名: 密码: 验证码:
多釜串联生物反应器系统中自絮凝颗粒酵母乙醇连续发酵的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模拟现有酒精发酵的工艺流程和发酵罐结构,建立了一套多釜串联反应器系统(TIR),以脱胚脱皮玉米粉双酶法制备的糖化液为种子培养基和发酵底物,进行了絮凝颗粒酵母SPSC01乙醇连续发酵的实验研究。
     在配置种子罐的条件下,由三级发酵罐串联和一个种子培养罐组成的组合反应器系统,种子罐培养基还原糖浓度为100g/L,添加(NH_4)_2HPO_4和KH_2PO_4各2.0g/L,以0.017h~(-1)的恒定稀释速率流加,并溢流至后续发酵系统。发酵底物初始还原糖浓度220g/L,添加(NH_4)_2HPO_4 1.5g/L和KH_2PO_42.5g/L,流加至第一级发酵罐,稀释速率分别控制为0.017、0.025、0.033、0.040和0.050h~(-1)。实验数据表明,种子罐呈均匀悬浮的恒化状态,但自絮凝颗粒酵母在各发酵罐中呈部分固定化状态,在稀释速率0.040h~(-1)条件下,发酵系统呈一定的震荡行为,其他四个稀释速率实验组均达拟稳态。当稀释速率不超过0.033h~(-1),流出末级发酵罐的发酵液中酒精浓度可以达到12%(v/v)以上,残还原糖和残总糖分别在0.15%和0.35%(w/v)以下,发酵罐的设备生产强度达到2.71g/(L·h)。在不配置种子罐的条件下,使用相同的培养基,平均发酵时间为25h~30h,发酵终点酒精浓度达到13%(v/v),残还原糖和残总糖分别在0.30%和0.40%(w/v)以下,发酵罐的设备生产强度达到3.47g/(L·h)。两组工艺路线的实验数据都表明,自絮凝颗粒酵母体系完全可以适用于现有酒精发酵装置工艺流程和发酵罐设备结构,可以用于对现有酒精发酵装置进行技术改造,提升其工艺技术水平。
     在此基础上,从减轻废糟液处理负荷,实现清洁生产的需要出发,进行了无种子罐条件下酒精蒸馏废液直接全循环使用的自絮凝颗粒酵母酒精连续发酵实验研究,十三次全循环运行得到的实验数据,与无废液循环的实验结果相比,虽然平均发酵时间略增至30h~40h,但发酵终点酒精浓度仍达到12.5%(v/v)以上,残还原糖和残总糖分别在0.70%和0.90%(w/v)以下,说明循环积累物对发酵的影响有限,废糟液直接全循环使用的工艺技术路线可行。
A bioreactor system composed of multi-stage tank fermentors in series was established, in which a self-flocculating yeast strain developed by protoplast fusion technology was applied to ferment corn powder two-stage enzymatic hydrolyzate to produce ethanol.
    Firstly, a seed fermentor was coupled into the fermentation system composed of three tanks in series, and the hydrolyzate medium containing reducing sugar 100 g/L, added 2.0g/L (NH4)2HPO4 and KH2PO4, respectively, was fed into the seed fermentor at the dilution rate of 0.017h~' for the self-flocculating yeast seed cultivation. Meanwhile, the hydrolyzate medium containing reducing sugar 220 g/L, added 1.5g/L (NH4)2HPO4 and 2.5g/L KH2PO4) was fed into the first fermentor at the dilution rates of 0.017, 0.025, 0.033, 0.040 and 0.050 h-1, respectively. The experimental results showed that Chemostat states were developed for seed cultivation and ethanol fermentations under the dilution rates of 0.017, 0.025, 0.033 and 0.050 h-1. However, the oscillations of fermented parameters, including residual sugar, ethanol and biomass concentrations, were observed under the dilution rate of 0.040 h-1 for this continuous ethanol fermentation system. Over 12% (v/v) ethanol was achieved, at the same time, residual reducing sugar and total sugar were maintained below 0.15% and 0.35% (w/v) when the dilution rate was controlled no more than 0.033 h-1. The ethanol productivity of the entire fermentation system was calculated to be 2.71g/(L-h).
    Secondly, the seed fermentor was removed from the above bioreactor syatem, and the yeast floes grown inside fermentors were used to support ethanol fermentation. Using same ferment medium, over 13% (v/v) ethanol was achieved, at the same time, residual reducing sugar and total sugar were maintained below 0.30% and 0.40% (w/v) when the dilution rate was controlled no more than 0.040 h-1. The ethanol productivity of the entire fermentation system was calculated to be 3.47g/(L-h). These experimental running indicated that this new ethanol fermentation technology using self-flocculating yeast cells can be applied to such a fermentation system composed of tanks in series that was widely used in ethanol fermentation industry in China at present and help improve its efficiency and save production cost.
    Finally, the effect of the complete recycling use of distilled effluent on ethanol fermentation was examined in order to save the cost for the treatment of waste distillage and promote cleansing production. Based on the data of 13 circulations, although the average fermentation time needed to be extended to 30~40 hours, over 12.5% (v/v) ethanol was achieved, at the same time, residual reducing sugar and total sugar were maintained below 0.70% and 0.90% (w/v), which indicates that the negative effect of the completely recycling use of waste distillage was limited, and the waste distillage can be completely recycled within the fermentation system.
引文
[1] 李盛贤,新型大容积发酵罐的设计,酿酒,2001,Vol.28(2):6~8
    [2] 贾树彪等,势能自流式酒精连续发酵罐组的设计与分析,酿酒,2002,Vol.29(1):6~8
    [3] 韩德奇,燃料乙醇的生产进展和应用探讨,化工技术经济,2002,20(6):9~15
    [4] 章克昌,发展“燃料酒精”的建议,中国工程科学,2000,2(6):89~93
    [5] 刘铁男,中国燃料乙醇产业发展,中国能源,2002,3:6~10
    [6] 黄丹宇等,世界燃料酒精生产形式,酿酒,2001,28(5):24~26
    [7] 黄宇彤等,美国的燃料酒精工业,酿酒科技,2001,5:99~101
    [8] 李卓丹,论我国酒精工业推行清洁生产的潜力和机会,环境科学研究,1999,12(2):1~7
    [9] 黄治玲,燃料乙醇的生产与利用,化工科技,2003,11(4):44~47
    [10] 谢林等,对酒糟离心液回流工艺的探讨,酿酒科技,1999(5):81~82
    [11] 邹东辉等,酒精糟液的综合利用,酿酒,2002,29(3):82~83
    [12] 王成红,精制玉米胚芽油生产工艺,现代化农业,1998,(12):21
    [13] 章克昌,酒精与蒸馏酒工艺学,北京:轻工业出版社,1995,6,70,159,
    [14] 魏华等,大米挤压膨化对传统酒精发酵的影响,食品与发酵工业,1995,1:8~12
    [15] 马云,渗透汽化膜分离乙醇水溶液的研究,南京经济学院学报,1997(4):59~63
    [16] 吕仪军,发酵法生产乙醇技术进展,四川化工与腐蚀控制,1999(4):51~53
    [17] 邬显章,酒精发酵技术进展,生物工程进展,1989,9(4):10~18
    [18] T.K. Ghose et al. , Simultaneous saccharification and fermentation (SSF) of lignocellulosics to ethanol under vacuum cycling and step feeding , Biotechnol. Bioeng.,1984, (26):377~381
    [19] 尚龙安等,固定化酵母乙醇萃取发酵研究,化学工程,1997,25(6):27~29
    [20] Lencki R.W., Online extraction of ethanol from fermentation broths using hydrophobic absorbents, Biotechnol. Bioeng. Symp.,1983, (13):617~628
    [21] 范立梅,用大网格树脂从发酵液中吸附分离乙醇,浙江农业大学学报,1999,25(1):59~61
    [22] Frank Talor, et al.,Control of packed column fouling in the continuous fermentation and stripping of ethanol, Biotechnology and Bioengineering, 1999, 51(1): 33~39
    [23] P.K. Walsh , Ethanol separation from water in a tow-stage adsorption process , Biotechnol. Bioeng.,1983(13):629~647
    [24] 杨富国等,膜分离技术在低聚糖制备及酒精发酵中的应用,林产化学与工业,2002,22(1):77~81
    [25] Matsumun M, Mark H. elimination of ethanol inhabitation by penetration, Biotechnol. Bioeng., 1986, (16):534~338
    [26] Udriot H., Extractive fermentation of ethanol using membrane distillation, Extractive Biotech. Lett.,1989,11(7):509~517
    [27] W.J. Choi, Continuous production of enantiopure 1,2-epoxyhexane by yeast epoxide hydrolase in a two-phase membrane bioreactor, Appl. Microbiol. Biotechnol., 2000, (54) :641~64
    [28] 高以煊,叶凌碧,膜分离技术基础,北京:科学技术出版社,1989
    [29] 时钧等,膜技术手册,北京:化学工业出版社,2001
    [30] 姚鹏,固定化细胞发酵—膜蒸馏耦合生产乙醇的研究,北京化工大学学报,1998,Vol.25(4):6~10
    [31] FW Bai, LJ Chen, Z. Zhang, WA Anderson and M Moo-Young , Continuous ethanol production
    
    and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions, J. Biotechnol, 2004, 110 (3), 287~293
    [32] DP Bayrock and W Michael Ingledew, Application of multistage continuous fermentation for production of fuel al cohol by very-high-gravity fermentation technology, Journal of Industrial Microbiology & Biotechnology, 2001, (27): 87~93
    [33] D.S. Fang et al., High proguctivity ethanol production by immobilized yeast cells, Biotech. and Bioeng., 1983,13:457~464
    [34] M.J. Nunez et al., Cell immobilization: Application to alcohol production, Enzyme Microb. Technol., 1987 9:642~651
    [35] 白凤武,无载体固定化细胞的研究发展,生物工程进展,2000,20(2):32~37
    [36] Feng PS (冯朴荪) , Xu GL (许贵林) ,A study of continuous fermentation to produce ethanol using Schizosaccharomyces pombe yeast flocs, Chinese Journal of Biotech.,生物工程学报, 1989, 5 (1): 70~76
    [37] 白凤武等,以玉米为原料采用絮凝颗粒酵母连续发酵新技术生产酒精并副产SCP饲料工艺的探讨,食品与发酵工业,1994(3):60~65
    [38] 白凤武等,絮凝法固定化增殖细胞悬浮床生物反应器中试放大过程研究,食品与发酵工业,1994(2):14~19
    [39] 白凤武等,融合株SPSC发酵生产酒精的工艺研究——自絮凝细胞颗粒粒径分布、细胞生长和产物酒精生成动力学,生物工程学报,1999,15(4):455~461
    [40] 管斌等,高强度酒精连续发酵,生物技术,1997,7(4):38~41
    [41] 管斌等,部分通氧对连续酒精发酵的影响,中国酿造,1999,(2):22~24
    [42] N. Y. Chen, et al., Low-pressure airlift fermenter for single cell protein production: Ⅱ. Continuous culture of pichia yeast, Biotech. and Bioeng., 1987, 29 (4) : 421-428
    [43] Mita Benerjcc, Production of alcohol from starch by direct fermentation, Biotechnol. Bioeng.,1988(32):831~834
    [44] 曾云等,有淀粉糖化酶活性的耐高温酿酒酵母的构建研究,生物工程学报,1992,8(4):363~370
    [45] 文铁桥等,耐温酵母与酿酒酵母的属间融合及融合株的高溫乙醇发酵,工业微生物,1998,28(1):13~17
    [46] 池振明,高浓度酒精发酵技术的研究进展,食品与发酵工业,1995,(4):80~84
    [47] 云战友等,全面认识谷物原料清液发酵生产酒精,食品与发酵工业,1998,24(1):67~69
    [48] 谢健等,自絮凝酵母颗粒连续发酵生产酒精的新工艺,微生物学报,1999,39(4):
    [49] 陈思芸,萧熙佩,酵母生物化学,山东:科学技术出版社,1990,83~87,109,112~115,314~222
    [50] Chun-Keng Hu, Feng-Wu Bai, Li-Jia An, Enhancing ethanol tolerance of a self-flocculating fusant of Schizosaceharomyces pombe and Saccharomyces cerevisiae by Mg~(2+) via reduction in plasma membrance permeability, Biotechnology Letters, 2003, 25, 1191~1194.
    [51] Hu CK (胡纯铿) , Bai FW (白凤武) , Enhancements in ethanol tolerance of a self-flocculating yeast by calcium ion through decrease in plasmalemma permeability, Chinese Journal of Biotech. (生物化工学报),2003,19(6):715~719
    [52] 胡纯铿等,Mg~(2+)和Ca~(2+)对自絮凝颗粒酵母耐酒精性能的影响及作用机制的比较研究.高校化学工程学报,2004,18(2):179~184
    [53] 张博润等,酵母菌絮凝机理研究进展及应用前景,微生物学通报,1996,23(5):307~311
    
    
    [54] 秦金来等,絮凝颗粒酵母均匀悬浮体系生长动力学的研究,生物工程学报,1995,11(2):139~144
    [55] 秦金来等,粟酒裂殖酵母絮凝颗粒均匀悬浮体系酒精生成动力学,化工学报,1995,46(1):20~26
    [56] 靳艳等,融合株SPSC发酵生产酒精的工艺研究,微生物学报,1996,36(2):115~120
    [57] 刘传斌等,自絮凝颗粒酵母酒精高浓度连续发酵的研究,微生物学报,2001,41(3):367~371
    [58] 王江龙,孜力汗,絮凝酵母SPSC01连续培养最适生长条件的研究,微生物学报,2004,44(1):93-95
    [59] 段俊英,改进固定化增殖细胞的稳定性及发酵乙醇性能的探讨,生物工程学报,1990,3(4):344~346
    [60] 鞠京丽等,固定化细胞载体的选择及发酵酒精特性,微生物学杂志,1998,18(3):40~43
    [61] Yu-Lai Jin, R. Alex Speers, Flocculation of Saccharomyces cerevisiae, Food Research International, 1998, 31 (6) , 421~440
    [62] Kay F. Deverell, Tom A. Clark, Induced flocculation of Pachysolen tannophilus using the tower fermentor, Biotech. and Bioeng., 1985,27(11): 1608-1611
    [63] Stephen T. Jones, et al., Ethanol fermentation in a continuous tower fermentor, Biotech. and Bioeng., 1984, 26 (7:742-747
    [64] 陈毓荃编,生物化学实验方法和技术,北京:科学出版社,2002,90~94
    [65] 张元兴,许学书编,生物反应器工程,上海:华东理工大学出版社,2001
    [66] 戚以政,汪叔雄编,生化反应动力学与反应器,北京:化学工业出版社,1996
    [67] FW Bai, LJ Chen, WA Anderson and M Moo-Young, Parameter Oscillations in Very High Gravity Medium Continuous Ethanol Fermentation and Their Attenuation on Multi-stage Packed Column Bioreactor System, Biotechnol & Bioeng (In press)
    [68] W Borzani, Variation of the ethanol yield during oscillatory concentrations changes in undisturbed continuous ethanol fermentation of sugar-cane blackstrap molssses, W J Microbial & Biotechnol, 2001, 17, 253~258.
    [69] 冯朴荪等,絮凝法固定粟酒裂殖酵母实现乙醇连续发酵过程的研究,生物工程学报,1989,5(1):70~73
    [70] 白凤武等,气升式生物反应器中培养液—絮凝酵母颗粒—空气三相系统气含率的研究,化工学报,1992,43(3):304~309
    [71] 王侠等,采用DDG加沼气工艺综合利用酒精糟液,酿酒科技,2000,4:74~76
    [72] 李雪雁等,酒精发酵副产物对酵母菌生长的影响,酿酒,2001,28(6):57~60
    [73] 施云芬,刘月华,酒精厂发酵废液循环利用的可行性分析,酿酒,2003,30(4):67~68
    [74] 李政一等,玉米酒精糟液高蛋白饲料化技术研究,环境科学学报[J] 2000,20(4):504~507
    [75] 方亚叶等,酒精废糟液的综合处理,酿酒,2003,20(1):74~77
    [76] B. Maiorrella, G. Blanch, and C. Wilk, By-product inhibition effects on ethanolic fermentation by Saccharomyces cerecisiae, Biotecbnol. Bioeng., 1983, 125:1~4
    [77] 李东侠,白凤武,应用与环境生物学报,1999,5(5):533~536
    [78] M. Malfeito Ferreira et al., Weak acid inhibition of fermentation by Zygosaccharomyces bailii and Saccharomyces cerevisiae, Interational Journal of Food Microbiology, 1997, 36:145~153
    [79] 沈才洪等,有机酸对酒精发酵的影响,酿酒科技,1993,5:9~11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700