用户名: 密码: 验证码:
沸石分子筛上低碳烷烃及一氧化碳活化与转化机理的固体核磁共振研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲烷、乙烷等低碳烷烃是自然界中储量非常丰富的清洁能源物质,随着煤炭、石油等化石燃料的不断消耗,它们将成为最具潜力的替代能源和化工原料。但是由于这些低碳饱和烷烃的化学惰性导致其直接转化利用通常需要在高温、高压、高能耗的条件下才能进行,这就势必增加了其转化利用所需要的成本。为了降低低碳烷烃转化利用的热力学限制,人们通常采用液体超强酸溶液作为催化剂,但是,所用液体酸会带来腐蚀设备、污染环境等问题,这就需要开发一些环境友好型的固体酸催化剂来取代液体酸。目前为止,以沸石分子筛为代表的固体酸催化剂虽然在以烯烃或醇为原料的石油化工生产中得到了广泛的应用。但是,它们在甲烷、乙烷等低碳烷烃的催化转化利用方面仍有很大的开发空间,有待我们进一步去挖掘和研究。
     本论文采用原位固体核磁共振技术结合色质联用分析方法跟踪了甲烷、乙烷等低碳烷烃及CO在分子筛催化剂上的活化与转化反应过程,并对其转化反应机理进行了阐明,以期为低碳烷烃和CO在多相催化体系中直接转化利用相关催化剂的设计提供一定的理论依据。本论文工作取得如下进展:
     (1)采用原位固体核磁共振技术跟踪了甲烷和CO在ZnZSM-5分子筛催化剂上的羰基化反应,发现在573~623K的温和条件下即可经过两条平行的反应途径直接发生羰基化反应生成产物乙酸。进一步利用13C同位素选择性标记反应物的实验方法证明,甲烷首先活化生成锌甲基中间体(Zn-CH3),然后被CO原位氧化得到的C02捕捉生成CH3CO-,再进一步和来自于分子筛B酸位或甲烷裂解生成的氢质子作用生成乙酸。而另一种反应物CO则首先被氧化成C02或碳酸盐物种(C032-),随后被来自于分子筛B酸位或甲烷裂解生成的氢质子逐步还原为甲氧基中间体(-OCH3),再和剩余的CO作用生成乙酰基(CH3CO-)中间体,进一步与来自反应生成水的羟基作用生成乙酸。另外,我们可以通过改变反应的氧化还原氛围来调节两种中间体的生成,进而选择性地调控两条反应途径。
     (2)用原位固体核磁共振技术跟踪了另一种低碳烷烃乙烷和CO在ZnZSM-5分子筛催化剂上的共转化反应过程,发现在523~623K的温和条件下乙烷和CO可以直接发生反应生成丙酸、乙酸以及苯和甲基化苯。13C同位素选择性标记反应物的实验结果表明,乙烷首先活化生成锌乙基(Zn-CH2CH3)中间物种,然后被CO原位氧化得到的C02捕捉生成CH3CH2COO-,再进一步和分子筛B酸位或乙烷裂解生成的氢质子反应生成丙酸。同时,乙烷活化生成的锌乙基中间体(Zn-CH2CH3)也可以裂解生成乙烯等烯烃,再进一步脱氢聚合环化生成苯或甲基化苯等芳烃化合物。另一种反应物CO则首先被氧化成C02和碳酸盐物种(C032-),随后再逐步被还原为甲氧基物种(-OCH3),进一步和剩余的CO作用生成CH3CO-中间体后再与羟基作用生成乙酸。
     (3)用原位固体核磁共振技术结合GC-MS分析方法研究了甲烷和苯在ZnZSM-5分子筛催化剂上氧化条件下的烷基化反应。结果表明,在以02或N2O作为氧化剂的氧化性氛围中及523~623K的低温条件下甲烷和苯发生烷基化反应选择性地生成了甲苯。采用13C同位素选择性跟踪反应物的实验方法研究发现,甲烷首先被活化成甲氧基(-OCH3)和锌甲基(Zn-CH3)两种中间物种。其中,甲氧基的甲基可以直接和苯发生亲电取代烷基化反应生成甲苯,而锌甲基的甲基则不能直接和苯发生亲电取代反应,但是锌甲基具有类似于金属有机物种的化学活性,可以被氧化为甲氧基物种而间接地与苯发生亲电取代反应生成甲苯。萃取产物的GC-MS分析结果表明,甲烷和苯分别提供了产物甲苯的甲基碳和苯环碳。另外,单独的甲烷或苯相同条件下均不能发生反应生成甲苯。
     (4)采用原位固体核磁共振技术结合GC-MS分析方法研究了CO和苯在ZnZSM-5分子筛催化剂上的共转化反应。首次发现,CO是作为一种烷基化试剂参与反应的,两者在523-623K的温和条件下即可发生苯的烷基化反应生成甲苯以及少量乙苯、二甲苯以及二苯基甲烷等取代芳烃化合物。采用13C同位素选择性标记反应物的实验方法跟踪两种反应物各自的转化过程,发现CO首先被氧化生成碳酸盐物种,随后逐步被分子筛B酸位的氢质子还原成甲酸盐物种,并进一步被还原为甲氧基物种。甲氧基物种的甲基作为一种亲电试剂,可以直接进攻苯环发生亲电取代烷基化反应生成甲苯。适量氢气的加入可以促进甲氧基中间体的生成,进而利于CO和苯的烷基化反应。对萃取产物的GC-MS研究表明,这些取代芳烃的侧链取代基(甲基、乙基、亚甲基)均来自于反应物CO,而芳环均来自于另一种反应物苯。而单独的CO或CO和H2的混合物在相同的实验条件下虽然能活化生成甲氧基中间体,但并不能发生芳构化反应生成甲苯等产物。而单独的苯在相同条件下并不发生任何反应。可见,只有CO和苯共存时才能发生苯的烷基化反应,分别提供甲苯等烷基化苯的侧链取代基碳和芳环碳。
Light alkanes such as methane and ethane are the principle components of natural gas. As clean chemical feedstock, they may be used more efficiently in the chemical industry as alternative of petroleum and coal to meet the increasing energy demands of modern society. However, catalytic activation and conversion of light alkanes requires rigorous conditions because of their chemical inertness. In order to reduce the thermodynamic limits, liquid super-acids are generally employed as efficient homogeneous catalysts, which however cause equipment corrosion and environmental pollution. Therefore, the development of environmental friendly catalysts such as zeolites is desirable for light alkane activation and conversion. Zeolites catalysts are widely used in the petroleum industry for olefin or alcohol conversion. However, the utilization for catalytic conversion of light alkanes with higher chemical inertness remains to be a great challenge.
     Herein, we studied the co-conversion of light alkanes and CO with other co-reactants over a Zn modified H-ZSM-5zeolite (denoted as ZnZSM-5) by in situ solid-state NMR spectroscopy combined with GC-MS analysis. The reaction mechanism was clarified and the results would be helpful for the rational design of heterogeneous catalysts used for the direct conversion of light alkanes and CO.
     (1) Carbonylation of methane with CO over ZnZSM-5zeolite catalysts was studied by in situ solid-state NMR spectroscopy. It was found for the first time that acetic acid could be generated directly under mild reaction conditions (573-623K) through two parallel reaction pathways. Namely, CO was activated into methoxy intermediates, which can further interact with residual CO to generate acetic acid (Koch-type mechanism), while methane was activated into zinc methyl intermediates that can be consequently transformed into methyl groups of acetic acid with CO2through a typical organometallic reaction. Importantly, the two pathways are selectively controllable by varying the redox conditions.
     (2) Co-conversion of ethane and CO over ZnZSM-5zeolite catalysts was investigated by using in situ solid-state NMR spectroscopy. Propionic acid, acetic acid and aromatics could be generated under mild reaction conditions (523~623K). The transformation was traced by alternatively C isotope labeled reactants. Ethane was first activated into zinc ethyl species at lower temperatures, then it could be trapped by CO2derived from oxidation of CO, forming propionic acid through a typical organometallic reaction. Meanwhile, zinc ethyl species was transformed into ethene, and further into aromatics such as benzene and methyl substituted aromatics via dehydrogenation and oligomerization reaction. CO could be activated into methoxy intermediates and further interacts with residual CO to generate acetic acid.
     (3) Alkylation of benzene with methane was studied under oxidization condition over ZnZSM-5zeolites by using in situ solid-state NMR spectroscopy and GC-MS analysis. The experimental results indicated that the alkylation reaction occurs with selective formation of toluene at temperatures of523~623K using O2or N2O as the oxidant. Using13C isotope labeled reactants, the conversions of methane and benzene were independently monitored, and their respective role in the reaction was determined. It was found by NMR spectroscopy that methane was first activated into methoxy species and zinc methyl intermediates. As an electrophilic agent, the methyl group of methoxy species could directly attack phenyl ring to produce toluene via electrophilic substitution reaction, while the zinc methyl species was not directly involved in the alkylation reaction. However, the similar nature of zinc methyl species (Zn-CH3) to organozinc compounds allowed the facile oxidization of zinc methyl species (Zn-CH3) into methoxy species, and further intereacted with benzene to yield toluene indirectly. As confirmed by GC-MS experiments, methane exclusively provided the methyl group of toluene product while benzene afforded the phenyl ring. Experimental results also indicated that neither methane nor benzene alone could generate toluene.
     (4) Alkylation of benzene with CO over ZnZSM-5zeolites was studied by using in situ solid-state NMR spectroscopy and GC-MS analysis. We give the first experimental evidence that alkylation of benzene with CO as the alkyl agent proceeds to give toluene accompanied by trace amounts of other substituted aromatics such as ethylbenzene, dimethylbenzene and diphenylmethane at temperatures of523-623K. Using13C isotope labeled experiments, the conversion of CO and benzene were independently monitored, and their respective role in the reaction was determined. It was found by NMR spectroscopy that carbon monoxide is firstly oxidized into carbonate species, then transformed into formate species through hydrogenation at elevated temperature, and further hydrogenated into methoxy species. As an electrophilic agent, the methyl group of methoxy species can directly attack benzene ring to produce toluene via electrophilic substitution reaction. And the toluene could further interact with another benzene molecular to yield diphenylmethane. The addition of trace H2molecular can promote hydrogenation of CO into methoxy species markedly and further favor the alkylation reaction. As confirmed by GC-MS experiments, CO exclusively provided the methyl group of toluene product or other side-chain groups of corresponding substituted aromatics while benzene afforded the phenyl ring. Experimental results also indicated that without the presence of benzene the reaction of CO with H2could not generate any aromatics under identical conditions.
引文
[1]Lazo, N.D., Murray, D.K., Kieke, M.L., et al. In situ 13C Solid-State NMR Study of the Cu/ZnO/Al2O3 Methanol Synthesis Catalyst [J]. J Am Chem Soc,1992,114(22):8552-8559.
    [2]Chinchen, G.C., Spencer, M.S., Waugh, K.C., et al. Promotion of Methanol Synthesis and the Water-Gas Shift Reactions by Adsorbed Oxygen on Supported Copper Catalysts [J]. J. Chem. Soc., Faraday Trans.,1987,83:2193-2212.
    [3]Fujita, S., Usui, M., Ito, H., et al. Mechanisms of Methanol Synthesis from Carbon Dioxide and from Carbon Monoxide at Atmospheric Pressure over Cu/ZnO [J]. J Catal,1995,157(2): 403-413.
    [4]Itoh, H., Hidalgo, C.V., Hattori, T., et al. Role of Acid Property of Various Zeolites in the Methanol Conversion to Hydrocarbons [J].J Catal,1984,85(2):521-526.
    [5]Hunter, R., Hutchings, GJ., Pick, W. Methanol Conversion to Hydrocarbons over the Zeolite Catalyst H-ZSM-5 in the Presence of Oxygen and Nitric Oxide:Further Evidence against a Radical Reaction Mechanism [J]. J Chem Soci-Chem Commun,1987,(18):1369-1371.
    [6]Hutchings, G.J., Lee, D.F., Lynch, M. Methanol Conversion to Hydrocarbons over Zeolite H-ZSM-5:Comments on the Formation of C4 Hydrocarbons at Low Reaction Temperatures [J]. Appl Catal A-gen,1993,106(1):115-123.
    [7]Ilias, S., Bhan, A. Tuning the Selectivity of Methanol-to-Hydrocarbons Conversion on H-ZSM-5 by Co-processing Olefin or Aromatic Compounds [J]. J Catal,2012,290:186-192.
    [8]Olsbye, U., Svelle, S., Bjorgen, M., et al. Conversion of Methanol to Hydrocarbons:How Zeolite Cavity and Pore Size Controls Product Selectivity [J]. Angew Chem Int Edit,2012, 51(24):5810-5831.
    [9]Ilias, S., Bhan, A. Mechanism of the Catalytic Conversion of Methanol to Hydrocarbons [J]. Acs Catal,2013,3(1):18-31.
    [10]Di, Z.X., Yang, C., Jiao, X.J., et al. A ZSM-5/MCM-48 Based Catalyst for Methanol to Gasoline Conversion [J]. Fuel,2013,104:878-881.
    [11]Zaidi, H.A., Pant, K.K. Catalytic Conversion of Methanol to Gasoline Range Hydrocarbons [J]. Catal Today,2004,96(3):155-160.
    [12]Antia, J.E., Govind, R. Conversion of Methanol to Gasoline-Range Hydrocarbons in a ZSM-5 Coated Monolithic Reactor [J]. Ind Eng Chem Res,1995,34(1):140-147.
    [13]Tau, L.M., Fort, A.W., Bao, S., et al. Methanol to Gasoline:13C Tracer Studies of the Conversion of Methanol-Higher Alcohol Mixtures over ZSM-5 [J]. Fuel Process Technol, 1990,26(3):209-219.
    [14]Jackson, J.E., Bertsch, F.M. Conversion of Methanol to Gasoline:a New Mechanism for Formation of the 1st Carbon Carbon Bond [J]. JAm Chem Soc,1990,112(25):9085-9092.
    [15]Yurchak, S., Voltz, S.E.,Warner, J.P. Process Aging Studies in the Conversion of Methanol to Gasoline in a Fixed-Bed Reactor [J]. Ind Eng Chem Process Des and Dev,1979,18(3): 527-534.
    [16]Liederman, D., Jacob, S.M., Voltz, S.E., et al. Process Variable Effects in Conversion of Methanol to Gasoline in a Fluid Bed Reactor [J]. Ind Eng Chem Process Des and Dev,1978, 17(3):340-346.
    [17]Chang, C.D., Kuo, J.C.W., Lang, W.H., et al. Process Studies on Conversion of Methanol to Gasoline [J]. Ind Eng Chem Process Des and Dev,1978,17(3):255-260.
    [18]Aramburo, L.R., de Smit, E., Arstad, B., et al. X-ray Imaging of Zeolite Particles at the Nanoscale:Influence of Steaming on the State of Aluminum and the Methanol-To-Olefin Reaction [J]. Angew Chem Int Edit,2012,51(15):3616-3619.
    [19]Song, W.G, Fu, H.,Haw, J.F. Supramolecular Origins of Product Selectivity for Methanol-to-Olefin Catalysis on HSAPO-34 [J]. JAm Chem Soc,2001,123(20):4749-4754.
    [20]Song, W.G, Haw, J.F., Nicholas, J.B., et al. Methylbenzenes are the Organic Reaction Centers for Methanol-to-Olefin Catalysis on HSAPO-34 [J]. J Am Chem Soc,2000,122(43): 10726-10727.
    [21]Chen, D., Rebo, H.P., Moljord, K., et al. Methanol Conversion to Light Olefins over SAPO-34. Sorption, Diffusion, and Catalytic Reactions [J]. Ind Eng Chem Res,1999,38(11): 4241-4249.
    [22]Chang, C.D., Chu, C.T.W., Socha, R.F. Methanol Conversion to Olefins over ZSM-5.1. Effect of Temperature and Zeolite SiO2/Al2O3 [J]. J Catal,1984,86(2):289-296.
    [23]Chang, C.D. Methanol Conversion to Light Olefins [J]. Catal Rev,1984,26(3-4):323-345.
    [24]Lopez-Sanchez, J.A., Conte, M., Landon, P., et al. Reactivity of Ga2O3 Clusters on Zeolite ZSM-5 for the Conversion of Methanol to Aromatics [J]. Catal Lett,2012,142(9): 1049-1056.
    [25]Conte, M., Lopez-Sanchez, J.A., He, Q., et al. Modified zeolite ZSM-5 for the Methanol to Aromatics Reaction [J]. Catal Sci Tech,2012,2(1):105-112.
    [26]Zeng, D.F., Yang, J., Wang, J.Q., et al. Solid-state NMR Studies of Methanol-to-Aromatics Reaction over Silver Exchanged HZSM-5 Zeolite [J]. Micropor Mesopor Mat,2007,98(1-3): 214-219.
    [27]Choudhary, V.R., Kinage, A.K. Methanol-to-Aromatics Conversion over H-Gallosilicate (MFI):Influence of Si/Ga Ratio, Degree of H+ Exchange, Pretreatment Conditions, and Poisoning of Strong Acid Sites [J]. Zeolites,1995,15(8):732-738.
    [28]Craxford, S.R. The Fischer-Tropsch synthesis of Hydrocarbons, and some Related Reactions. [J]. TFaraday Soc,1939,35(2):0946-0957.
    [29]Kummer, J.T., Emmett, P.H. Fischer-Tropsch Synthesis Mechanism Studies:the Addition of Radioactive Alcohols to the Synthesis Gas [J].JAm Chem Soc,1953,75(21):5177-5183.
    [30]Henriciolive, G., Olive, S. Fischer-Tropsch Synthesis:Molecular Weight Distribution of Primary Products and Reaction Mechanism [J]. Angew Chem Int Edit,1976,15(3):136-141.
    [31]Biloen, P., Sachtler, W.M.H. Mechanism of Hydrocarbon Synthesis over Fischer-Tropsch Catalysts [J].Adv Catal,1981,30:165-216.
    [32]Herrmann, W.A. Organo-Metallic Aspects of the Fischer-Tropsch Synthesis [J]. Angew Chem Int Edit,1982,21(2):117-130.
    [33]Iglesia, E. Design, Synthesis, and Use of Cobalt-based Fischer-Tropsch Synthesis Catalysts [J]. Appl Catal A-gen,1997,161(1-2):59-78.
    [34]Martinez, A., Lopez, C., Marquez, F., et al. Fischer-Tropsch Synthesis of Hydrocarbons over Mesoporous Co/SBA-15 catalysts:the Influence of Metal Loading, Cobalt Precursor, and Promoters [J]. J Catal,2003,220(2):486-499.
    [35]Khodakov, A.Y., Chu, W., Fongarland, P. Advances in the Development of Novel Cobalt Fischer-Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels [J]. Chem Rev,2007,107(5):1692-1744.
    [36]Chu, W., Wang, L.N., Chernavskii, P.A., et al. Glow-Discharge Plasma-Assisted Design of Cobalt Catalysts for Fischer-Tropsch Synthesis [J]. Angew Chem Int Edit,2008,47(27): 5052-5055.
    [37]Xiao, C.X., Cai, Z.P., Wang, T., et al. Aqueous-phase Fischer-Tropsch Synthesis with a Ruthenium Nanocluster Catalyst [J]. Angew Chem Int Edit,2008,47(4):746-749.
    [38]Lunsford, J.H. Catalytic Conversion of Methane to more Useful Chemicals and Fuels:a Challenge for the 21st Century [J]. Catal Today,2000,63(2-4):165-174.
    [39]Gesser, H.D., Hunter, N.R., Prakash, C.B. The Direct Conversion of Methane to Methanol by Controlled Oxidation [J]. Chem Rev,1985,85(4):235-244.
    [40]Wang, Y., Otsuka, K. Catalytic Oxidation of Methane to Methanol with H2-O2 Gas Mixture at Atmospheric Pressure [J]. J Catal,1995,155(2):256-267.
    [41]Shiota, Y., Yoshizawa, K. A Spin-orbit Coupling Study on the Spin Inversion Processes in the Direct Methane-to-Methanol Conversion by FeO+[J]. J Chem Phys,2003,118(13): 5872-5879.
    [42]McCormick, R.L., Al-Sahali, M.B., Alptekin, GO. Partial Oxidation of Methane, Methanol, Formaldehyde, and Carbon Monoxide over Silica:Global Reaction Kinetics [J]. Appl Catal A-gen,2002,226(1-2):129-138.
    [43]Zhang, Q.J., He, D.H., Li, J.L., et al. Comparatively High Yield Methanol Production from Gas Phase Partial Oxidation of Methane [J]. Appl Catal A-gen,2002,224(1-2):201-207.
    [44]Khokhar, M.D., Shukla, R.S., Jasra, R.V. Selective Oxidation of Methane by Molecular Oxygen Catalyzed by a Bridged Binuclear Ruthenium Complex at Moderate Pressures and Ambient Temperature [J]. J Mol Catal A-chem,2009,299(1-2):108-116.
    [45]Higgins, I.J., Best, D.J., Hammond, R.C. New Findings in Methane-Utilizing Bacteria Highlight Their Importance in the Biosphere and Their Commercial Potential [J]. Nature, 1980,286(5773):561-564.
    [46]Otsuka, K., Yamanaka, I.,Wang, Y. Reductive Activation of Oxygen for Partial Oxidation of Light Alkanes [J]. Nat Gas Conv V,1998,119:15-24.
    [47]Periana, R.A., Taube, D J., Gamble, S., et al. Platinum Catalysts for the High-Yield Oxidation of Methane to a Methanol Derivative [J]. Science,1998,280(5363):560-564.
    [48]Liu, H.F., Liu, R.S., Liew, K.Y., et al. Partial Oxidation of Methane by Nitrous Oxide over Molybdenum on Silica [J]. J Am Chem Soc,1984,106(15):4117-4121.
    [49]Hammond, C., Jenkins, R.L., Dimitratos, N., et al. Catalytic and Mechanistic Insights of the Low-Temperature Selective Oxidation of Methane over Cu-Promoted Fe-ZSM-5 [J]. Chem Eur J,2012,18(49):15735-15745.
    [50]Hammond, C., Forde, M.M., Ab Rahim, M.H., et al. Direct Catalytic Conversion of Methane to Methanol in an Aqueous Medium by using Copper-Promoted Fe-ZSM-5 [J]. Angew Chem Int Edit,2012,51(21):5129-5133.
    [51]Xu, J., Zheng, A.M., Wang, X.M., et al. Room Temperature Activation of Methane over Zn Modified H-ZSM-5 Zeolites:Insight from Solid-state NMR and Theoretical Calculations [J]. Chem Sci,2012,3:2932-2940.
    [52]Keller, G.E., Bhasin, M.M. Synthesis of Ethylene Via Oxidative Coupling of Methane.1. Determination of Active Catalysts [J]. J Catal,1982,73(1):9-49,
    [53]Pak, S., Qiu, P., Lunsford, J.H. Elementary Reactions in the Oxidative Coupling of Methane over Mn/Na2WO4/SiO2 and Mn/Na2WO4/MgO Catalysts [J]. J Catal,1998,179(1):222-230.
    [54]Krylov, O.V. Catalytic Reactions of Partial Methane Oxidation [J]. Catal Today,1993,18(3): 209-302.
    [55]Choudhary, T.V., Aksoylu, E., Goodman, D.W. Nonoxidative Activation of Methane [J]. Catal Rev,2003,45(1):151-203.
    [56]Mimoun, H., Robine, A., Bonnaudet, S., et al. Oxypyrolysis of Natural-Gas [J]. Appl Catal, 1990,58(2):269-280.
    [57]Li, L., Li, GD., Yan, C., et al. Efficient Sunlight-Driven Dehydrogenative Coupling of Methane to Ethane over a Zn+-Modified Zeolite [J]. Angew Chem Int Edit,2011,50(36): 8299-8303.
    [58]Wang, L.S., Tao, L.X., Xie, M.S., et al. Dehydrogenation and Aromatization of Methane under Nonoxidizing Conditions [J]. Catal Lett,1993,21(1-2):35-41.
    [59]Weckhuysen, B.M., Wang, D.J., Rosynek, M.P., et al. Conversion of Methane to Benzene over Transition Metal Ion ZSM-5 Zeolites-I. Catalytic Characterization [J]. J Catal,1998, 175(2):338-346.
    [60]Xu, Y.D., Lin, L.W. Recent Advances in Methane Dehydro-Aromatization over Transition Metal Ion-Modified Zeolite Catalysts under Non-oxidative Conditions [J]. Appl Catal A-gen, 1999,188(1-2):53-67.
    [61]Zeng, J.L., Xiong, Z.T., Zhang, H.B., et al. Nonoxidative Dehydrogenation and Aromatization of Methane over W/HZSM-5-based Catalysts [J]. Catal Lett,1998,53(1-2): 119-124.
    [62]Solymosi, F., Erdohelyi, A., Szoke, A. Dehydrogenation of Methane on Supported Molybdenum Oxides:Formation of Benzene from Methane [J]. Catal Lett,1995,32(1-2): 43-53.
    [63]Choudhary, V.R., Kinage, A.K., Choudhary, T.V. Low-temperature nonoxidative activation of methane over H-galloaluminosilicate (MFI) zeolite [J]. Science,1997,275(5304): 1286-1288.
    [64]Choudhary, V.R, Mondal, K.C., Mulla, S.A.R. Simultaneous Conversion of Methane and Methanol into Gasoline over Bifunctional Ga-, Zn-, In-, and/or Mo-Modified ZSM-5 Zeolites [J]. Angew Chem Int Edit,2005,44(28):4381-4385.
    [65]Anunziata, O.A., Eimer, GA., Pierella, L.B. Methane Transformation into Aromatic Hydrocarbons by Activation with LPG over Zn-ZSM-11 Zeolite [J]. Catal Lett,1999,58(4): 235-239.
    [66]Anunziata, O.A., Eimer, GA., Pierella, L.B. Catalytic Conversion of Natural Gas with Added Ethane and LPG over Zn-ZSM-11 [J].Appl Catal A-gen,2000,190(1-2):169-176.
    [67]Anunziata, O.A., Eimer, G.A., Pierella, L.B. Catalytic Activity of ZSM-11 Zeolites Modified with Metal Cations for the Ethane Conversion [J]. Catal Lett,2001,75(1-2):93-97.
    [68]Anunziata, O.A., Mercado, GV.G, Pierella, L.B. Catalytic Activation of Methane using n-Pentane as Co-reactant over Zn/H-ZSM-11 Zeolite [J]. Catal Lett,2003,87(3-4):167-171.
    [69]Pierella, L.B., Eimer, GA., Anunziata, O.A. Methane Transformation into Aromatic Hydrocarbons by Activation with Ethane over Zn-ZSM-11 Zeolite [J]. Nat Gas Conv V,1998, 119:235-240.
    [70]Pierella, L.B., Wang, L.S., Anunziata, O.A. Methane Direct Conversion to Aromatic Hydrocarbons at Low Reaction Temperature [J]. React Kinet Catal L,1997,60(1):101-106.
    [71]Liu, J.F., Liu, Y., Peng, L.F. Aromatization of Methane by using Propane as Co-reactant over Cobalt and Zinc-Impregnated HZSM-5 Catalysts [J]. J Mol Catal A-chem,2008,280(1-2): 7-15.
    [72]Zheng, H.T., Zhu, H.L., Lou, H., et al. Activation of Methane using Propane as Co-reactant over Cu-Zn/HZSM-5 Catalyst [J]. Chin J Catal,2005,26(1):49-54.
    [73]Zheng, H.T., Lou, H., Li, Y.H., et al. Non-oxidative Aromatization of Methane by using Propane as Co-reactant over Mo-Zn/HZSM-5 Catalyst [J]. Chem J Chinese U,2005,26(2): 285-289.
    [74]Xu, Y.D., Bao, X.H., Lin, L.W. Direct Conversion of Methane under Nonoxidative Conditions [J]. J Catal,2003,216(1-2):386-395.
    [75]Baba, T., Abe, Y. Metal Cation-Acidic Proton Bifunctional Catalyst for Methane Activation: Conversion of (CH4) 13 C in the presence of ethylene over metal cations-loaded H-ZSM-5 [J]. Appl Catal A-gen,2003,250(2):265-270.
    [76]Baba, T., Inazu, K. Heterolytic Dissociation of C-H Bond of Methane over Ag+-Exchanged Ceolites and Conversion of Methane into Higher Hydrocarbons in the Presence of Ethene or Benzene [J]. Chem Lett,2006,35(2):142-147.
    [77]Baba, T., Inazu, K. Key Catalysis of Metal Cation-Exchanged ZSM-5 Zeolites for Conversion of Methane in the Presence of Ethene [J]. AbstPap Am Chem Soc,2009,237-238.
    [78]Baba, T., Iwase, Y., Inazu, K., et al. Catalytic Properties of Silver-Exchanged Zeolites for Propene Production by Conversion of Methane in the Presence of Ethene [J]. Micropor Mesopor Mat,2007,101(1-2):142-147.
    [79]Baba, T., Sawada, H. Conversion of Methane into Higher Hydrocarbons in the Presence of Ethylene over H-ZSM-5 Loaded with Silver Cations [J]. Phys Chem Chem Phys,2002,4(15): 3919-3923.
    [80]Baba, T., Sawada, H., Takahashi, T., et al. Chemisorption Study of Hydrogen and Methane by 'H MAS NMR and Conversion of Methane in the Presence of Ethylene on Ag-Y Zeolite [J]. Appl Catal A-gen,2002,231(1-2):55-63.
    [81]Baba, T. Conversion of Methane over Ag+-Exchanged Zeolite in the Presence of Ethene [J]. Catal Surv from Asia,2005,9(3):147-154.
    [82]Zhang, H.Q., Kong, A.G., Ding, Y.J., et al. Low-Temperature Activation of Methane over Rare Earth Metals Promoted Zn/HZSM-5 Zeolite Catalysts in the Presence of Ethylene [J]. J Nat Gas Chem,2011,20(3):243-248.
    [83]He, S.J.X., Long, M.A., Attalla, M.I., et al. Methylation of Naphthalene by Methane over Substituted Aluminophosphate Molecular-Sieves [J]. Energ Fuel,1992,6(4):498-502.
    [84]He, S.J.X., Long, M.A., Attalla, M.I., et al. Methylation of Naphthalene by 13C-Methane over Copper-Exchanged Silicoaluminophosphate [J]. Energ Fuel,1994,8(1):286-287.
    [85]Long, M.A., He, S.J.X., Attalla, M.I., et al. Methylation of Organic-Model Compounds by Methane over Substituted Aluminophosphate Molecular-Sieves [J]. Nat Gas Conv,1994,81: 509-514.
    [86]Adebajo, M., Long, M.A., Howe, R.F. Methane Activation over Zeolite Catalysts:The Methylation of Benzene [J]. Res Chem Intermediat,2000,26(2):185-191.
    [87]Adebajo, M.O., Frost, R.L. Oxidative Benzene Methylation with Methane over MCM-41 and Zeolite Catalysts:Effect of Framework Aluminum, SiO2/Al2O3 Ratio, and Zeolite Pore Structure [J].Energ Fuel,2005,19(3):783-790.
    [88]Adebajo, M.O., Howe, R.F., Long, M.A. Methylation of Benzene with Methanol over Zeolite Catalysts in a Low Pressure Flow Reactor [J]. Catal Today,2000,63(2-4):471-478.
    [89]Adebajo, M.O., Long, M.A., Frost, R.L. Further Evidence for the Oxidative Methylation of Benzene with Methane over Zeolite Catalysts [J]. Catal Commun,2004,5(3):125-130.
    [90]Lukyanov, D.B., Vazhnova, T. Highly Selective and Stable Alkylation of Benzene with Ethane into Ethylbenzene over Bifunctional PtH-MFI Catalysts [J]. J Mol Catal A-chem, 2008,279(1):128-132.
    [91]Lukyanov, D.B., Vazhnova, T. A Kinetic Study of Benzene Alkylation with Ethane into Ethylbenzene over Bifunctional PtH-MFI Catalyst [J]. J Catal,2008,257(2):382-389.
    [92]Lukyanov, D.B., Vazhnova, T. Selective and Stable Benzene Alkylation with Methane into Toluene over PtH-MFI Bifunctional Catalyst [J]. J Mol Catal A-chem,2009,305(1-2):95-99.
    [93]Souma, Y., Sano, H. Carbonylation of Olefins, Alcohols, and Saturated-Hydrocarbons Using Cu(Co)n* and Ag(Co)2+ Catalysts in BF3-H2O [J]. B Chem Soc Jpn,1976,49(11):3296-3299.
    [94]Blasco, T., Boronat, M., Conception, P., et al. Carbonylation of Methanol on Metal-Acid Zeolites:Evidence for a Mechanism Involving a Multisite Active Center [J]. Angew Chem Int Edit,2007,46(21):3938-3941.
    [95]Hogeveen, H., Lukas, J., Roobeek, C.F. Trapping of Methyl Cation by Carbon Monoxide: Formation of Acetic Acid from Methane [J]. J Chem Soc D-Chem Commun,1969, (16): 920-921.
    [96]Lin, M., Sen, A. Direct Catalytic Conversion of Methane to Acetic Acid in an Aqueous Medium [J]. Nature,1994,368(6472):613-615.
    [97]Yuan, Q., Zhang, Q.H., Wang, Y. Direct Conversion of Methane to Methyl Acetate with Nitrous oxide and Carbon Monoxide over Heterogeneous Catalysts Containing both Rhodium and Iron Phosphate [J]. J Catal,2005,233(1):221-233.
    [98]Luzgin, M.V., Rogov, V.A., Kotsarenko, N.S., et al. Methane Carbonylation with CO on Sulfated Zirconia:Evidence from Solid-state NMR for the Selective Formation of Acetic Acid [J]. J Phys Chem C,2007,111(28):10624-10629.
    [99]Olah, G.A., Schlosbe. Rh Chemistry in Super Acids.I. Hydrogen Exchange and Polycondensation of Methane and Alkanes in FSO3H-SBF5 (Magic Acid) Solution Protonation of Alkanes and Intermediacy of CH5+ and Related Hydrocarbon Ions. High Chemical Reactivity of Paraffins in Ionic Solution Reactions [J]. J Am Chem Soc,1968, 90(10):2726-2730.
    [100]Olah, GA., Lukas, J. Stable Carbonium Ions.47. Alkylcarbonium Ion Formation from Alkanes "Via Hydride (Alkide) Ion Abstraction in Fluorosulfonic Acid-Antimony Pentafluoride-Sulfuryl Chlorofluoride Solution [J]. J Am Chem Soc,1967,89(18): 4739-4744.
    [101]Olah, G.A., Lukas, J. Stable Carbonium Ions.39. Formation of Alkylcarbonium Ions Via Hydride Ion Abstraction from Alkanes in Fluorosulfonic Acid-Antimony Pentafluoride Solution. Isolation of Some Crystalline Alkylcarbonium Ion Salts [J]. J Am Chem Soc,1967, 89(9):2227-2228.
    [102]Vasireddy, S., Ganguly, S., Sauer, J., et al. Direct Conversion of Methane to Higher Hydrocarbons using AlBr3-HBr Superacid Catalyst [J]. Chem Commun,2011,47(2): 785-787.
    [103]Nishiguchi, T., Nakata, K., Takaki, K., et al. Transition-Metal Catalyzed Acetic-Acid Synthesis from Methane and Co [J]. Chem Lett,1992, (7):1141-1142.
    [104]Asadullah, M., Kitamura, T., Fujiwara, Y. Mg/K2S2O8-Promoted Direct Carboxylation of Saturated Hydrocarbons with CO [J]. Appl Organomet Chem,1999,13(7):539-547.
    [105]Asadullah, M., Kitamura, T., Fujiwara, Y. Calcium-Catalyzed Selective and Quantitative Transformation of CH4 and CO into Acetic Acid [J]. Angew Chem Int Edit,2000,39(14): 2475-2478.
    [106]Asadullah, M., Kitamura, T., Fujiwara, Y. CaCl2-Catalyzed Functionalization of Saturated Hydrocarbons with CO to Carboxylic Acids and Esters [J]. J Catal,2000,195(1):180-186.
    [107]Asadullah, M., Taniguchi, Y, Kitamura, T., et al. Direct Carboxylation Reaction of Methane with CO by a Yb(OAc)(3)/Mn(OAc)(2)/NaClO/H2O Catalytic System under very Mild Conditions [J]. Appl Organomet Chem,1998,12(4):277-284.
    [108]Lin, M.R., Hogan, T.E., Sen, A. Catalytic Carbon-Carbon and Carbon-Hydrogen Bond Cleavage in Lower Alkanes. Low-Temperature Hydroxylations and Hydroxycarbonylations with Dioxygen as the Oxidant [J]. J Am Chem Soc,1996,118(19):4574-4580.
    [109]Nizova, GV, Suss-Fink, G., Stanislas, S., et al. Carboxylation of Methane with CO or CO2 in Aqueous Solution Catalysed by Vanadium Complexes [J]. Chem Commun,1998, (17): 1885-1886.
    [110]Periana, R.A., Taube, D.J., Evitt, E.R., et al. A Mercury-Catalyzed, High-Yield System for the Oxidation of Methane to Methanol [J]. Science,1993,259(5093):340-343.
    [111]Periana, R.A., Mironov, O., Taube, D., et al. Catalytic, Oxidative Condensation of CH4 to CH3COOH in one Step via CH Activation [J]. Science,2003,301(5634):814-818.
    [112]Periana, R.A., Bhalla, G, Tenn, W.J., et al. Perspectives on some Challenges and Approaches for Developing the Next Generation of Selective, Low Temperature, Oxidation Catalysts for Alkane Hydroxylation Based on the CH Activation Reaction [J]. J Mol Catal A-chem,2004,220(1):7-25.
    [113]Song, X.M., Sayari, A. Sulfated Zirconia-Based Strong Solid-Acid Catalysts:Recent Progress [J]. Catal Rev,1996,38(3):329-412.
    [114]Hino, M., Kobayashi, S., Arata, K. Solid Catalyst Treated with Anion.2. Reactions of Butane and Isobutane Catalyzed by Zirconium-Oxide Treated with Sulfate Ion Solid Superacid Catalyst [J]. J Am Chem Soc,1979,101(21):6439-6441.
    [115]Stepanov, A.G, Luzgin, M.V., Krasnoslobodtsev, A.V., et al. Alkane Carbonylation with Carbon Monoxide on Sulfated Zirconia:NMR Observation of Ketone and Carboxylic Acid formation from Isobutane and CO [J]. Angew Chem Int Edit,2000,39(20):3658-3660.
    [116]Luzgin, M.V., Stepanov, A.G, Shmachkova, V.P., et al. n-Pentane Conversion on Sulfated Zirconia in the Absence and Presence of Carbon Monoxide-Evidence for Monomolecular Mechanism of Isomerization from the 13C MAS NMR Study [J]. J Catal,2001,203(2): 273-280.
    [117]Luzgin, M.V., Stepanov, A.G., Shmachkova, V.P., et al. n-Pentane Carbonylation with CO on Sulfated Zirconia:an in situ Solid-state 13C NMR Study [J]. Mendeleev Commun,2001, (1): 23-25.
    [118]Luzgin, M.V., Thomas, K., van Gestel, J., et al. Propane Carbonylation on Sulfated Zirconia Catalyst as Studied by 13C MAS NMR and FTIR Spectroscopy [J]. J Catal,2004,223(2): 290-295.
    [119]Fraenkel, D. Methane Conversion over Sulfated Zirconia [J]. Catal Lett,1999,58(2-3): 123-125.
    [120]Rollmann, L.D., Valyocsik, E.W. Zeolite Molecular-Sieves [J]. Inorg Synth,1983,22:61-68.
    [121]Meier, W.M. Molecular-Sieves and Zeolite Catalysts [J]. Acta Crystallogr A,1984,40: C180-C180.
    [122]Rees, L.V.C. An Introduction to Zeolite Molecular-Sieves-Dyer,A [J]. Nature,1989, 340(6232):356-356.
    [123]Corma, A., Serra, J.M. Heterogeneous Combinatorial Catalysis Applied to Oil Refining, Petrochemistry and Fine Chemistry [J]. Catal Today,2005,107-08:3-11.
    [124]Kazansky, V.B., Subbotina, I.R., Rane, N., et al. On two Alternative Mechanisms of Ethane Activation over ZSM-5 Zeolite Modified by Zn2+and Ga1+Cations [J]. Phys Chem Chem Phys,2005,7(16):3088-3092.
    [125]Kolyagin, Y.G., Ordomsky, V.V., Khimyak, Y.Z., et al. Initial Stages of Propane Activation over Zn/MFI Catalyst Studied by in situ NMR and IR Spectroscopic Techniques [J]. J Catal, 2006,238(1):122-133.
    [126]Kolyagin, Y.G., Ivanova, I.I., Pirogov, Y.A. H-1 and C-13 MAS NMR Studies of Light Alkanes Activation over MFI Zeolite Modified by Zn Vapour [J]. Solid State Nucl Mag,2009, 35(2):104-112.
    [127]Hagen, A., Keipert, O.P., Roessner, F. Activation of Ethane on Modified ZSM-5 Zeolites Studied under Transient Conditions [J]. Stud Surf Sci Catal,1996,101:781-790.
    [128]Gabrienko, A.A., Arzumanov, S.S., Toktarev, A.V., et al. Hydrogen H-D Exchange and Activation of C1-C4 Alkanes on Ga-Modified Zeolite BEA Studied with 1H Magic Angle Spinning Nuclear Magnetic Resonance in Situ [J]. J Phys Chem C,2011,115(28): 13877-13886.
    [129]Stepanov, A.G., Arzumanov, S.S., Gabrienko, A.A., et al. Significant Influence of Zn on Activation of the C-H Bonds of Small Alkanes by Bronsted Acid Sites of Zeolite [J]. Chemphyschem,2008,9(17):2559-2563.
    [130]Hagen, A., Roessner, F. Ethane to Aromatic Hydrocarbons:Past, Present, Future[J]. Catal Rev,2000,42(4):403-437.
    [131]Biscardi, J.A., Iglesia, E. Structure and Function of Metal Cations in Light Alkane Reactions Catalyzed by Modified H-ZSM5 [J]. Catal Today,1996,31(3-4):207-231.
    [132]Biscardi, J.A., Meitzner, G.D., Iglesia, E. Structure and Density of Active Zn Species in Zn/H-ZSM5 Propane Aromatization Catalysts [J]. J Catal,1998,179(1):192-202.
    [133]Todorova, S., Su, B.L. Propane as Alkylating Agent for Benzene Alkylation on Bimetal Ga and Pt Modified H-ZSM-5 Catalysts:FTIR Study of Effect of Pre-treatment Conditions and the Benzene Adsorption [J]. J Mol Catal A-chem,2003,201(1-2):223-235.
    [134]Bigey, C., Su, B.L. Propane as Alkylating Agent for Alkylation of Benzene on HZSM-5 and Ga-modified HZSM-5 Zeolites [J]. J Mol Catal A-chem,2004,209(1-2):179-187.
    [135]Belgued, M., Pareja, P., Amariglio, A., et al. Conversion of Methane into Higher Hydrocarbons on Platinum [J]. Nature,1991,352(6338):789-790.
    [136]Smirnov, A.V., Mazin, E.V., Yuschenko, V.V., et al. Benzene Alkylation with Propane over Pt-Modified MFI Zeolites [J]. J Catal,2000,194(2):266-277.
    [137]Kato, S., Nakagawa, K., Ikenaga, N., et al. Alkylation of Benzene with Ethane over Platinum-Loaded Zeolite Catalyst [J]. Catal Lett,2001,73(2-4):175-180.
    [138]Huang, X.Q., Sun, X., Zhu, S.K., et al. Benzene Alkylation with Propane over Metal Modified HZSM-5 [J]. React Kinet Catal L,2007,91(2):385-390.
    [139]Huang, X.Q., Sun, X.D., Zhu, S.K., et al. Alkylation of Propane with Benzene over Pt-Modified Zeolites [J]. Chin J Catal,2007,28(3):201-204.
    [140]Kolyagin, Y.G., Ivanova, I.I., Ordomsky, V.V., et al. Methane Activation over Zn-Modified MFI Zeolite:NMR Evidence for Zn-Methyl Surface Species Formation [J]. J Phys Chem C, 2008,112(50):20065-20069.
    [141]Mole, T., Anderson, J.R., Creer, G The Reaction of Propane over H-ZMS-5 and Zn-ZSM-5 Zeolite Catalysts [J]. Appl Catal,1985,17(1):141-154.
    [142]Minachev, K.M., Bondarenko, T.N., Dergachev, A.A., et al. Transformations of C2-C4 Alkanes on Zeolites of the Pentasil Type Modified with Zinc.2. Dependence of the Catalytic Activity on the Framework Composition [J]. Bull Academ Sci Ussr Divis Chem Sci,1988, 37(12):2399-2405.
    [143]Arzumanov, S.S., Gabrienko, A.A., Freude, D., et al. In Situ High Temperature MAS NMR Study of the Mechanisms of Catalysis. Ethane Aromatization on Zn-modified Zeolite BEA [J]. Solid State Nucl Mag,2009,35(2):113-119.
    [144]Anunziata, O.A., Pierella, L.B. Studies on the Conversion of Isopentane over Shape-Selective Zeolites.1. H-Zsm-5 and H-Zsm-11 Zeolites [J]. React Kinet Catal L,1995, 55(2):365-372.
    [145]Yoshizawa, K., Shiota, Y. Conversion of Methane to Methanol at the Mononuclear and Dinuclear Copper sites of Particulate Methane Monooxygenase (pMMO):A DFT and QM/MM Study [J]. J Am Chem Soc,2006,128(30):9873-9881.
    [146]Beznis, N.V., Weckhuysen, B.M.,Bitter, J.H. Cu-ZSM-5 Zeolites for the Formation of Methanol from Methane and Oxygen:Probing the Active Sites and Spectator Species [J]. Catal Lett,2010,138(1-2):14-22.
    [147]Smeets, P.J., Hadt, R.G., Woertink, J.S., et al. Oxygen Precursor to the Reactive Intermediate in Methanol Synthesis by Cu-ZSM-5 [J]. J Am Chem Soc,2010,132(42):14736-14738.
    [148]Alayon, E.M.C., Nachtegaal, M., Ranocchiari, M., et al. Catalytic Conversion of Methane to Methanol Using Cu-Zeolites [J]. Chimia,2012,66(9):668-674.
    [149]Branco, J.B., Ferreira, A.C., do Rego, A.M.B., et al. Conversion of Methane over Bimetallic Copper and Nickel Actinide Oxides (Th, U) Using Nitrous Oxide As Oxidant [J]. Acs Catal, 2012,2(12):2482-2489.
    [150]Solymosi, F., Cserenyi, J., Szoke, A., et al. Aromatization of Methane over Supported and Unsupported Mo-Based Catalysts [J]. J Catal,1997,165(2):150-161.
    [151]Wang, D.J., Lunsford, J.H., Rosynek, M.P. Characterization of a Mo/ZSM-5 Catalyst for the Conversion of Methane to Benzene [J]. J Catal,1997,169(1):347-358.
    [152]Liu, S.T., Wang, L., Ohnishi, R., et al. Bifunctional Catalysis of Mo/HZSM-5 in the Dehydroaromatization of Methane to Benzene and Naphthalene XAFS/TG/DTA/MASS/FTIR Characterization and Supporting Effects [J]. J Catal,1999, 181(2):175-188.
    [153]Ma, D., Shu, Y.Y., Zhang, W.P., et al. In Situ 1H MAS NMR Spectroscopic Observation of Proton Species on a Mo-Modified HZSM-5 Zeolite Catalyst for the Dehydroaromatization of Methane [J]. Angew Chem Int Edit,2000,39(16):2928-2931.
    [154]Zheng, H., Ma, D., Bao, X.H., et al. Direct Observation of the Active Center for Methane Dehydroaromatization Using an Ultrahigh Field Mo-95 NMR Spectroscopy [J]. J Am Chem Soc,2008,130(12):3722-3723.
    [155]Yoshizawa, K., Shiota, Y., Yumura, T., et al. Direct Methane-Methanol and Benzene-Phenol Conversions on Fe-ZSM-5 Zeolite:Theoretical Predictions on the Reaction Pathways and Energetics [J]. JPhys Chem B,2000,104(4):734-740.
    [156]Michalkiewicz, B. Partial Oxidation of Methane to Formaldehyde and Methanol Using Molecular Oxygen over Fe-ZSM-5 [J]. Appl Catal A-gen,2004,277(1-2):147-153.
    [157]Fellah, M.F., Onal, I. Direct Methane Oxidation to Methanol by N2O on Fe- and Co-ZSM-5 Clusters with and without Water:A Density Functional Theory Study [J]. J Phys Chem C, 2010,114(7):3042-3051.
    [158]Bloch, F. Nuclear Induction [J]. Phys Rev,1946,70(7-8):460-474.
    [159]Bloch, F., Hansen, W.W., Packard, M. Nuclear Induction [J]. Phys Rev,1946,69(3-4): 127-127.
    [160]Purcell, E.M., Torrey, H.C.,Pound, R.V. Resonance Absorption by Nuclear Magnetic Moments in a Solid [J]. Phys Rev,1946,69(1-2):37-38.
    [161]冯宁东。光催化材料的固体核磁共振研究[D]。武汉:中国科学院武汉物理与数学研究所,2011。
    [162]Andrew, E.R., Bradbury, A.,Eades, R.G. Nuclear Magnetic Resonance Spectra from a Crystal Rotated at High Speed [J]. Nature,1958,182(4650):1659-1659.
    [163]Bennett, A.E., Rienstra, C.M., Auger, M., et al. Heteronuclear Decoupling in Rotating Solids [J].J Chem Phys,1995,103(16):6951-6958.
    [164]Bielecki, A., Kolbert, A.C.,Levitt, M.H. Frequency-Switched Pulse Sequences: Homonuclear Decoupling and Dilute Spin NMR in Solids [J]. Chem Phys Lett,1989, 155(4-5):341-346.
    [165]Goldburg, W.I., Lee, M. Nuclear Magnetic Resonance Line Narrowing by a Rotating Rf Field [J]. Phys Rev Lett,1963,11(6):255-258.
    [166]Lee, M., Goldburg, W.I. Nuclear-Magnetic-Resonance Line Narrowing by a Rotating Rf Field [J]. Phys Rev,1965,140(4A):1261-1271.
    [167]Vinogradov, E., Madhu, P.K.,Vega, S. High-Resolution Proton Solid-state NMR Spectroscopy by Phase-Modulated Lee-Goldburg Experiment [J]. Chem Phys Lett,1999, 314(5-6):443-450.
    [168]Waugh, J.S., Huber, L.M.,Haeberle.U Approach to High-Resolution NMR in Solids [J]. Phys Rev Lett,1968,20(5):180-182.
    [169]Hartmann, S.R.,Hahn, E.L. Nuclear Double Resonance in Rotating Frame [J]. Phys Rev, 1962,128(5):2042-2053.
    [170]高汉宾,张振芳。核磁共振原理与实验方法(第一版)[M]。武汉:武汉大学出版社,2008,621-623。
    [171]Lowe, I.J. Free Induction Decays of Rotating Solids [J]. Phys Rev Lett,1959,2(7):285-287.
    [172]Andrew, E.R., Bradbury, A., Eades, R.G Removal of Dipolar Broadening of Nuclear Magnetic Resonance Spectra of Solids by Specimen Rotation [J]. Nature,1959,183(4678): 1802-1803.
    [173]Wylie, B.J., Sperling, L.J., Frericks, H.L., et al. Chemical-Shift Anisotropy Measurements of Amide and Carbonyl Resonances in a Microcrystalline Protein with Slow Magic-Angle Spinning NMR Spectroscopy [J]. J Am Chem Soc,2007,129(17):5318-5319.
    [174]Herzfeld, J., Berger, A.E. Sideband Intensities in NMR-Spectra of Samples Spinning at the Magic Angle [J]. J Chem Phys,1980,73(12):6021-6030.
    [175]Dixon, W.T. Spinning-Sideband-Free and Spinning-Sideband-Only NMR-Spectra in Spinning Samples [J]. J Chem Phys,1982,77(4):1800-1809.
    [176]Scheler, G, Haubenreisser, U., Rosenberger, H. High-Resolution 1H NMR in Solids with Multiple-Pulse Sequences and Magic-Angle Sample Spinning at 270 MHz [J]. J Magn Reson, 1981,44(1):134-144.
    [177]Rhim, W.K., Elleman, D.D., Vaughan, R.W. Analysis of Multiple Pulse NMR in Solids [J]. J Chem Phys,1973,59(7):3740-3749.
    [178]Burum, D.P., Rhim, W.K. Analysis of Multiple Pulse NMR in Solids.3. [J]. J Chem Phys, 1979,71(2):944-956.
    [179]Ernst, M., Samoson, A., Meier, B.H. Low-Power Decoupling in Fast Magic-Angle Spinning NMR [J]. Chem Phys Lett,2001,348(3-4):293-302.
    [180]Ernst, M., Samoson, A., Meier, B.H. Low-power XiX Decoupling in MAS NMR Experiments [J]. J Magn Reson,2003,163(2):332-339.
    [181]Pines, A., Gibby, M.G, Waugh, J.S. Proton-Enhanced NMR of Dilute Spins in Solids [J]. J Chem Phys,1973,59(2):569-590.
    [182]Carpenter, T.A., Klinowski, J., Tennakoon, D.T.B., et al. Sealed Capsules for Convenient Acquisition of Variable-Temperature Controlled-Atmosphere Magic-Angle-Spinning NMR-Spectra of Solids [J]. J Magn Reson,1986,68(3):561-563.
    [183]Xu, T., Haw, J.F. The Development and Applications of CAVERN Methods for in Situ NMR Studies of Reactions on Solid Acids [J]. Top Catal,1997,4(1-2):109-118.
    [184]Haddix, G.W., Reimer, J.A.,Bell, A.T. A Nuclear-Magnetic-Resonance Probe for in Situ Studies of Adsorbed Species on Catalysts [J].J Catal,1987,106(1):111-115.
    [185]Bendada, A., Chinchen, G., Clayden, N., et al. Insitu NMR-Studies of a Cu/ZnO/Al2O3 Methanol Synthesis Catalyst [J]. Catal Today,1991,9(1-2):129-136.
    [186]Hunger, M., Horvath, T. A New Mas NMR Probe for in-Situ Investigations of Hydrocarbon Conversion on Solid Catalysts under Continuous-Flow Conditions [J]. J Chem Soci-Chem Commun,1995, (14):1423-1424.
    [187]Seiler, M., Schenk, U., Hunger, M. Conversion of Methanol to Hydrocarbons on Zeolite HZSM-5 Investigated by in Situ MAS NMR spectroscopy under Flow Conditions and on-line Gas Chromatography [J]. Catal Lett,1999,42(2-4): 139-145.
    [188]Hunger, M., Wang, W. Formation of Cyclic Compounds and Carbenium Ions by Conversion of Methanol on Weakly Dealuminated Zeolite H-ZSM-5 Investigated via a Novel in situ CF MAS NMR/UV-Vis Technique [J]. Chem Commun,2004, (5):584-585.
    [189]Goguen, P., Haw, J.F. An in Situ NMR Probe with Reagent Flow and Magic Angle Spinning [J]. J Catal,1996,161(2):870-872.
    [190]Isbester, P.K., Zalusky, A., Lewis, D.H., et al. NMR Probe for Heterogeneous Catalysis with Isolated Reagent Flow and Magic-Angle Spinning [J]. Catal Today,1999,49(4):363-375.
    [191]Hu, J.Z., Sears, J.A., Mehta, H.S., et al. A Large Sample Volume Magic Angle Spinning Nuclear Magnetic Resonance Probe for in Situ Investigations with Constant Flow of Reactants [J]. Phys Chem Chem Phys,2012,14(7):2137-2143.
    [192]Turcu, R.V.F., Hoyt, D.W., Rosso, K.M., et al. Rotor Design for High Pressure Magic Angle Spinning Nuclear Magnetic Resonance [J]. J Magn Reson,2013,226:64-69.
    [193]Haw, J.F., Goguen, P.W., Xu, T., et al. In situ NMR Investigations of Heterogeneous Catalysis with Samples Prepared under Standard Reaction Conditions [J]. Angew Chem Int Edit,1998,37(7):948-949.
    [194]Wang, X.M., Qi, G.D., Xu, J., et al. NMR-Spectroscopic Evidence of Intermediate-Dependent Pathways for Acetic Acid Formation from Methane and Carbon Monoxide over a ZnZSM-5 Zeolite Catalyst [J]. Angew Chem Int Edit,2012,51(16): 3850-3853.
    [195]Luzgin, M.V., Rogov, V.A., Arzumanov, S.S., et al. Methane Aromatization on Zn-Modified Zeolite in the Presence of a Co-reactant Higher Alkane:How does it Occur? [J]. Catal Today, 2009,144(3-4):265-272.
    [196]Zhang, L., Ren, Y.H., Yue, B., et al. Recent Development in in situ NMR Study on Heterogeneous Catalysis:Mechanisms of Light Alkane Functionalisation [J]. Chem Commun, 2012,48(18):2370-2384.
    [197]Jiang, Y.J., Hunger, M., Wang, W. On the Reactivity of Surface Methoxy Species in Acidic Zeolites [J]. JAm Chem Soc,2006,128(35):11679-11692.
    [198]Wang, W., Buchholz, A., Seiler, M., et al. Evidence for an Initiation of the Methanol-to-Olefin Process by Reactive Surface Methoxy Groups on Acidic Zeolite Catalysts [J]. JAm Chem Soc,2003,125(49):15260-15267.
    [199]Haw, J.F., Song, W.G., Marcus, D.M., et al. The Mechanism of Methanol to Hydrocarbon Catalysis [J]. Acc Chem Res,2003,36(5):317-326.
    [200]Hunger, M., Seiler, M., Buchholz, A. In situ MAS NMR Spectroscopic Investigation of the Conversion of Methanol to Olefins on Silicoaluminophosphates SAPO-34 and SAPO-18 under Continuous Flow Conditions [J]. Catal Lett,2001,74(1-2):61-68.
    [201]Ernst, H., Freude, D., Mildner, T., et al. Temperature Switched in-Situ 1H and 13 C MAS NMR-Studies of the Catalytic Conversion of Methanol on Zeolite ZSM-5 [J]. Stud Surf Sci Catal,1994,84:1717-1721.
    [202]Munson, E.J., Kheir, A.A., Lazo, N.D., et al. In situ Solid-State NMR-Study of Methanol-to-Gasoline Chemistry in Zeolite HZSM-5 [J]. J Phys Chem,1992,96(19): 7740-7746.
    [203]Stepanov, A.G., Arzumanov, S.S., Luzgin, M.V., et al. In situ Monitoring of n-Butene Conversion on H-ferrierite by 1H,2H, and 13C MAS NMR:Kinetics of a Double-Bond-Shift Reaction, Hydrogen Exchange, and the 13C-label Scrambling [J]. J Catal,2005,229(1): 243-251.
    [204]Stepanov, A.G, Luzgin, M.V., Arzumanov, S.S., et al. n-Butene Conversion on H-ferrierite Studied by 13C MAS NMR [J]. J Catal,2002,211(1):165-172.
    [205]Mori, H., Kono, H., Terano, M., et al. In situ CP MAS NMR Spectroscopy under Continuous-Flow Conditions to Monitor Real Time Dynamics during Propene Polymerization over a Supported Ziegler Catalyst [J]. Macromol Rapid Comm,1999,20(10): 536-540.
    [206]Ivanova, LI., Brunel, D., Nagy, J.B., et al. An in Situ 13C MAS NMR-Study of Benzene Isopropylation over H-ZSM-11:Cumene Formation and Side-Reactions [J]. J Mol Catal A-chem,1995,95(3):243-258.
    [207]Haw, J.F., Nicholas, J.B., Xu, T., et al. Physical Organic Chemistry of Solid Acids:Lessons from in Situ NMR and Theoretical Chemistry [J]. Acc Chem Res,1996,29(6):259-267.
    [208]Zardkoohi, M., Haw, J.F., Lunsford, J.H. Solid-State NMR Evidence for the Formation of Carbocations from Propene in Acidic Zeolite-Y [J]. J Am Chem Soc,1987,109(17): 5278-5280.
    [209]Ivanova, I.I., Kolyagin, Y.G Impact of in Situ MAS NMR Techniques to the Understanding of the Mechanisms of Zeolite Catalyzed Reactions [J]. Chem Soc Rev,2010,39(12): 5018-5050.
    [210]Shilov, A.E., Shul'pin, G.B. Activation of C-H Bonds by Metal Complexes [J]. Chem Rev, 1997,97(8):2879-2932.
    [211]Sen, A. Catalytic Functionalization of Carbon-Hydrogen and Carbon-Carbon Bonds in Protic Media [J]. Acc Chem Res,1998,31(9):550-557.
    [212]Crabtree, R.H. Aspects of Methane Chemistry [J]. Chem Rev,1995,95(4):987-1007.
    [213]Tamgachi, Y, Hayashida, T., Shibasaki, H., et al. Highly Efficient Vanadium-Catalyzed Transformation of CH, and CO to Acetic Acid [J]. Org Lett,1999,1 (4):557-559.
    [214]Kirillova, M.V., Kuznetsov, M.L., Reis, P.M., et al. Direct and Remarkably Efficient Conversion of Methane into Acetic Acid Catalyzed by Amavadine and Related Vanadium Complexes. A Synthetic and a Theoretical DFT Mechanistic Study [J]. J Am Chem Soc,2007, 129(34):10531-10545.
    [215]Cheung, P., Bhan, A., Sunley, G.J., et al. Selective Carbonylation of Dimethyl Ether to Methyl Acetate Catalyzed by Acidic Zeolites [J]. Angew Chem Int Edit,2006,45(10): 1617-1620.
    [216]Bagno, A., Bukala, J., Olah, G.A. Chemistry in Superacids.8. Superacid-Catalyzed Carbonylation of Methane, Methyl Halides, Methyl-Alcohol, and Dimethyl Ether to Methyl Acetate and Acetic-Acid [J]. J Org Chem,1990,55(14):4284-4289.
    [217]Seidel, A., Boddenberg, B. Introducing Zinc Cations into Zeolite Y via the Reduction of HY with Zinc Metal Vapour [J]. Chem Phys Lett,1996,249(1-2):117-122.
    [218]Munson, E.J., Murray, D.K., Haw, J.F. Shallow-Bed Cavern Design for In situ Solid-State NMR-Studies of Catalytic Reactions [J]. J Catal,1993,141(2):733-736.
    [210]Rocha, J., Klinowski, J. 27Al Solid-State NMR-Spectra of Ultrastable Zeolite-Y with Fast Magic-Angle Spinning and 1H-27Al Cross-Polarization [J]. J Chem Soci-Chem Commun, 1991,(16):1121-1122.
    [220]Luzgin, M.V., Rogov, V.A., Arzumanov, S.S., et al. Understanding Methane Aromatization on a Zn-modified High-Silica Zeolite [J]. Angew Chem Int Edit,2008,47(24):4559-4562.
    [221]Wang, W., Hunger, M. Reactivity of Surface Alkoxy Species on Acidic Zeolite Catalysts [J]. Acc Chem Res,2008,41(8):895-904.
    [222]Inoue, S. Reactions of Organozinc Coordination-Compouns.4. Reactions with Carbon-Dioxide in Realtion to Action of Carbonic-Anhydrase [J]. J Organomet Chem,1972, 39(1):11-16.
    [223]Wu, J.F., Wang, W.D., Xu, J., et al. Reactivity of C-1 Surface Species Formed in Methane Activation on Zn-Modified H-ZSM-5 Zeolite [J]. Chem Eur J,2010,16(47):14016-14025.
    [224]Kazansky, V.B., Serykh, A.I.,Pidko, E.A. DRIFT Study of Molecular and Dissociative Adsorption of Light Paraffins by HZSM-5 Zeolite Modified with Zinc Ions:Methane Adsorption [J]. J Catal,2004,225(2):369-373.
    [225]Kazansky, V.B., Borovkov, V.Y., Serikh, A.I., et al. Nature of the Sites of Dissociative Adsorption of Dihydrogen and Light Paraffins in ZnHZSM-5 Zeolite Prepared by Incipient Wetness Impregnation [J]. Catal Lett,2000,66(1-2):39-47.
    [226]Zerella, M., Mukhopadhyay, S., Bell, A.T. Synthesis of Mixed Acid Anhydrides from Methane and Carbon Dioxide in Acid Solvents [J]. Org Lett,2003,5(18):3193-3196.
    [227]Sun, Q., Liu, C.W., Pan, W., et al. In situ IR Studies on the Mechanism of Methanol Synthesis over an Ultrafine Cu/ZnO/Al2O3 Catalyst [J]. Appl Catal A-gen,1998,171(2): 301-308.
    [228]French, S.A., Sokol, A.A., Bromley, S.T., et al. From CO2 to Methanol by Hybrid QM/MM Embedding [J]. Angew Chem Int Edit,2001,40(23):4437-4440.
    [229]Tabatabaei, J., Sakakini, B.H., Waugh, K.C. On the Mechanism of Methanol Synthesis and the Water-Gas Shift Reaction on ZnO [J]. Catal Lett,2006,110(1-2):77-84.
    [230]Fujiwara, Y., Takaki, K., Watanabe, J., et al. Thermal Activation of Alkane C-H Bonds by Palladium Catalysts. Carbonylation of Alkanes with Carbon Monoxide [J]. Chem Lett,1989, 18(9):1687-1688.
    [231]Miyata, T., Nakata, K., Yamaoka, Y, et al. Carboxylation of Propane with Co to Butyric Acids by Pd(II)/Cu(Ⅱ) Based Catalysts [J]. Chem Lett,1993, (6):1005-1008.
    [232]Nakata, K., Yamaoka, Y, Miyata, T., et al. Palladium(II) and/or Copper(II)-Catalyzed Carboxylation of Small Alkanes Such as Methane and Ethane with Carbon-Monoxide [J]. J Organomet Chem,1994,473(1-2):329-334.
    [233]Nakata, K., Miyata, T., Taniguchi, Y, et al. Carboxylation of Gaseous Alkanes with Co Catalyzed by Pd-Cu-Based Catalysts-a Spectroscopic Study [J]. J Organomet Chem,1995, 489(1-2):71-75.
    [234]Asadullah, M., Kitamura, T., Fujiwara, Y Synthesis of Carboxylic Acids through the Formation of C-C Bond between Saturated Hydrocarbons and CO in the Presence of Mg/K2S2O8/TFA System [J]. Chem Lett,1999, (6):449-450.
    [235]Asadullah, M., Taniguchi, Y, Kitamura, T., et al. One-step Carboxylation Reaction of Saturated Hydrocarbons with CO by Co(OAc)(2) Catalyst under Mild Conditions [J]. Appl Catal A-gen,2000,194:443-452.
    [236]Asadullah, M., Taniguchi, Y, Kitamura, T., et al. Cobalt Catalyzed Carboxylation Reaction of Saturated Hydrocarbons with CO in the Presence of K2S2O8 and TFA under Mild Conditions [J]. Tetrahedron Lett,1999,40(50):8867-8871.
    [237]Kirillova, A.M., Haukka, M., Kirillova, M.V., et al. Single-pot Ethane Carboxylation Catalyzed by New Oxorhenium(V) Complexes with N,O Ligands [J]. Adv Synth Catal,2005, 347(10):1435-1446.
    [238]Kirillova, M.V., Kuznetsov, M.L., Da Silva, J.A.L., et al. Amavadin and other Vanadium Complexes as Remarkably Efficient Catalysts for One-pot Conversion of Ethane to Propionic and Acetic Acids [J]. Chem Eur J,2008,14(6):1828-1842,
    [239]Kirillova, M.V., da Silva, J.A.L., da Silva, J.J.R.F., et al. Direct and Efficient Transformation of Gaseous Alkanes into Carboxylic Acids Catalyzed by Vanadium Containing Heteropolyacids [J]. Appl Catal A-gen,2007,332(1):159-165.
    [240]Kirillova, M.V., Kirillov, A.M., Pombeiro, A.J.L. Mild, Single-Pot Hydrocarboxylation of Gaseous Alkanes to Carboxylic Acids in Metal-Free and Copper-Promoted Aqueous Systems [J]. Chem Eur J,2010,16(31):9485-9493.
    [241]Kirillova, M.V., Kirillov, A.M., Kuznetsov, M.L., et al. Alkanes to Carboxylic Acids in Aqueous Medium:Metal-Free and Metal-Promoted Highly Efficient and Mild Conversions [J]. Chem Commun,2009, (17):2353-2355.
    [242]Lapidus, A.L., Dergachev, A.A., Kostina, V.A., et al. Zinc-Containing Zeolite Catalysts for Ethane Aromatization Prepared by Solid-state Modification [J]. Russ Chem B,2003,52(5): 1094-1099.
    [243]Arivazhagan, G., Shanmugam, R., Elangovan, A. Molecular Interaction Study of the Diisopropyl Ether-Propionic Acid Mixture by Spectroscopic and Dielectric Studies [J]. Spectrochim Acta A,2011,81(1):172-177.
    [244]Vijayaraghavan, V.R., Raj, K.J.A. Ethylation of Benzene with Ethanol over Substituted Large Pore Aluminophosphate-Based Molecular Sieves [J]. J Mol Catal A-chem,2004, 207(1):41-50.
    [245]Rakoczy, J., Romotowski, T. Alkylation of Benzene with Methanol on Zeolites: Infrared-Spectroscopy Studies [J]. Zeolites,1993,13(4):256-260.
    [246]Corma, A., Martinez-Soria, V., Schnoeveld, E. Alkylation of Benzene with Short-Chain Olefins over MCM-22 Zeolite:Catalytic Behaviour and Kinetic Mechanism [J]. J Catal, 2000,192(1):163-173.
    [247]Chandawar, K.H., Kulkarni, S.B., Ratnasamy, P. Alkylation of Benzene with Ethanol over ZSM5 Zeolites [J]. Appl Catal,1982,4(3):287-295.
    [248]Bellussi, G, Pazzuconi, G., Perego, C., et al. Liquid-Phase Alkylation of Benzene with Light Olefins Catalyzed by Beta-Zeolites [J]. J Catal,1995,157(1):227-234.
    [249]Schmerli, L., Vesely, J.A. Alkylation of Aromatic-Hydrocarbons with Saturated-Hydrocarbon [J]. J Org Chem,1973,38(2):312-315.
    [250]Olah, G.A., Schilling, P., Staral, J.S., et al. Electrophilic Reactions at Single Bonds.14. Anhydrous Fluoroantimonic Acid-Catalyzed Alkylation of Benzene with Alkanes and Alkane-Alkene and Alkane-Alkylbenzene Mixtures [J]. J Am Chem Soc,1975,97(23): 6807-6810.
    [251]Ordomskiy, V.V., Rodionova, L.I., Ivanova, I.I., et al. Dehydroalkylation of Benzene with Ethane over Pt/H-MFI in the Presence of Hydrogen Scavengers [J]. Chemcatchem,2012, 4(5):681-686.
    [252]Kato, S., Nakagawa, K., Ikenaga, N., et al. Alkylation of Benzene with Ethane over Platinum-Loaded H-ZSM5 Catalyst [J]. Chem Lett,1999,28(3):207-208.
    [253]Abasov, S.I., Babayeva, F.A., Zarbaliyev, R.R., et al. Low-Temperature Catalytic Alkylation of Benzene by Propane [J]. Appl Catal A-gen,2003,251(2):267-274.
    [254]Ivanova, I.I., Blom, N., Derouane, E.G. I3C MAS NMR Mechanistic Study of Benzene Alkylation with Propane over Ga-modified H-ZSM-5 Catalyst [J]. J Mol Catal A-chem,1996, 109(2):157-168.
    [255]He, S.J.X., Long, M.A., Wilson, M.A., et al. Methylation of Benzene by 13C-Methane over Zeolitic Catalysts at 400-Degrees [J]. Energ Fuel,1995,9(4):616-619.
    [256]Kennedy, E.M., Lonyi, F., Ballinger, T.H., et al. Conversion of Benzene to Substituted Aromatic Products over Zeolite Catalysts at Elevated Pressures [J]. Energ Fuel,1994,8(4): 846-850.
    [257]Yamanaka, I., Soma, M., Otsuka, K. Oxidation of Methane to Methanol with Oxygen Catalyzed by Europium Trichloride at Room-Temperature [J]. J Chem Soci-Chem Commun, 1995, (21):2235-2236.
    [258]Tabata, K., Teng, Y., Yamaguchi, Y, et al. Experimental Verification of Theoretically Calculated Transition Barriers of the Reactions in a Gaseous Selective Oxidation of CH4-O2-N2O [J]. J Phys Chem A,2000,104(12):2648-2654.
    [259]Tabata, K., Teng, Y, Takemoto, T., et al. Activation of methane by oxygen and nitrogen oxides [J]. Catal Rev,2002,44(1):1-58.
    [260]Luzgin, M.V., Gabrienko, A.A., Rogov, V.A., et al. The "Alkyl" and "Carbenium" Pathways of Methane Activation on Ga-Modified Zeolite BEA:13C Solid-State NMR and GC-MS Study of Methane Aromatization in the Presence of Higher Alkane [J]. J Phys Chem C,2010, 114(49):21555-21561.
    [261]Gabrienko, A.A., Arzumanov, S.S., Freude, D., et al. Propane Aromatization on Zn-Modified Zeolite BEA Studied by Solid-State NMR in Situ [J]. J Phys Chem C,2010, 114(29):12681-12688.
    [262]Lubango, L.M., Scurrell, M.S. Light Alkanes Aromatization to BTX over Zn-ZSM-5 Catalysts:Enhancements in BTX Selectivity by Means of a Second Transition Metal Ion [J]. Appl Catal A-gen,2002,235(1-2):265-272.
    [263]Leanza, R., Rossetti, I., Mazzola, I., et al. Study of Fe-silicalite Catalyst for the N2O Oxidation of Benzene to Phenol[J]. Appl Catal A-gen,2001,205(1-2):93-99.
    [264]Panov, G.I., Uriarte, A.K., Rodkin, M.A., et al. Generation of Active Oxygen Species on Solid Surfaces. Opportunity for Novel Oxidation Technologies over Zeolites [J]. Catal Today, 1998,41(4):365-385.
    [265]Starokon, E.V., Parfenov, M.V., Pirutko, L.V., et al. Room-Temperature Oxidation of Methane by alpha-Oxygen and Extraction of Products from the FeZSM-5 Surface [J]. J Phys Chem C,2011,115(5):2155-2161.
    [266]Saepurahman, Visur, M., Olsbye, U., et al. In Situ FT-IR Mechanistic Investigations of the Zeolite Catalyzed Methylation of Benzene with Methanol:H-ZSM-5 versus H-beta [J]. Top Catal,2011,54(16-18):1293-1301.
    [267]Aboul-Gheit, A.K., Awadallah, A.E., Abdel-Hamid, S.M., et al. Direct Conversion of Natural Gas to Petrochemicals Using Monofunctional Mo/SiO2 and H-ZSM-5 Zeolite Catalysts and Bifunctional Mo/H-ZSM-5 Zeolite Catalyst [J]. Petrol Sci Technol,2012,30(9):893-903.
    [268]Ivanova, I.I., Corma, A. Surface Species Formed and Their Reactivity during the Alkylation of Toluene by Methanol and Dimethyl Ether on Zeolites as Determined by in Situ 13C MAS NMR [J]. JPhys Chem B,1997,101(4):547-551.
    [269]Forester, T.R., Howe, R.F. In situ FTK Studies of Methanol and Dimethyl Ether in ZSM-5 [J].JAm Chem Soc,1987,109(17):5076-5082.
    [270]Bejblova, M., Zilkova, N.,Cejka, J. Transformations of Aromatic Hydrocarbons over Zeolites [J]. Res Chem Intermediat,2008,34(5-7):439-454.
    [271]Royer, S., Duprez, D. Catalytic Oxidation of Carbon Monoxide over Transition Metal Oxides [J]. Chemcatchem,2011,3(1):24-65.
    [272]Luzgin, M.V., Stepanov, A.G., Sassi, A., et al. Formation of Carboxylic acids from Small Alkanes in Zeolite H-ZSM-5 [J]. Chem Eur J,2000,6(13):2368-2376.
    [273]Stepanov, A.G., Luzgin, M.V., Romannikov, V.N., et al. NMR Observation of the Koch Reaction in Zeolite H-ZSM-5 under Mild Conditions [J]. J Am Chem Soc,1995,117(12): 3615-3616.
    [274]Clingenpeel, T.H., Biaglow, A.I. Carbonylation of Benzene in a Zeolite Catalyst [J]. J Am Chem Soc,1997,119(21):5077-5078.
    [275]Clingenpeel, T.H., Wessel, T.E., Biaglow, A.I.13C NMR Study of the Carbonylation of Benzene with CO in Sulfated Zirconia [J]. J Am Chem Soc,1997,119(23):5469-5470.
    [276]Takeuchi, A., Katzer, J.R. Mechanism of Methanol Formation [J]. JPhys Chem,1981,85(8): 937-939.
    [277]Ostrovskii, V.E. Mechanisms of Methanol Synthesis from Hydrogen and Carbon Oxides at Cu-Zn-Containing Catalysts in the Context of some Fundamental Problems of Heterogeneous catalysis [J]. Catal Today,2002,77(3):141-160.
    [278]Tihay, F., Pourroy, G, Richard-Plouet, M., et al. Effect of Fiscber-Tropsch Synthesis on the Microstructure of Fe-Co-based Metal/Spinel Composite Materials [J]. Appl Catal A-gen, 2001,206(1):29-42.
    [279]Henriciolive, G, Olive, S. Catalytic Alkylation of Benzene with CO and H2: Homogeneously Catalyzed Fischer-Tropsch Synthesis [J]. Angew Chem Int Edit,1979,18(1): 77-78.
    [280]Benner, L.S., Lai, Y.H., Vollhardt, K.P.C. On the Purported Fischer-Tropsch Alkylation of Benzene:Reaction of Benzene with Aluminum Trichloride Revisited [J]. J Am Chem Soc, 1981,103(12):3609-3611.
    [281]Luzgin, M.V., Kazantsev, M.S., Wang, W., et al. Reactivity of Methoxy Species toward CO on Keggin 12-H3PW12O40:A Study with Solid State NMR [J]. J Phys Chem C,2009,113(45): 19639-19644.
    [282]Al-Hazmi, M.H., Apblett, A.W. Benzylation of Benzene over Sulfated Zirconia Supported in MCM-41 Using a Single Source Precursor [J]. Catal Sci Tech,2011,1(4):621-630.
    [283]Mantri, K., Komura, K., Kubota, Y., et al. Friedel-Crafts alkylation of Aromatics with Benzyl Alcohols Catalyzed by Rare Earth Metal Triflates Supported on MCM-41 Mesoporous Silica [J]. J Mol Catal A-chem,2005,236(1-2):168-175.
    [284]Choudhary, V.R., Jana, S.K. Benzylation of Benzene and Substituted, Benzenes by Benzyl Chloride over InCl3, GaCl3, FeCl3 and ZnCl2 Supported on Clays and Si-MCM-41 [J]. J Mol Catal A-chem,2002,180(1-2):267-276.
    [285]Wang, W., Seiler, M., Hunger, M. Role of Surface Methoxy Species in the Conversion of Methanol to Dimethyl Ether on Acidic Zeolites Investigated by in situ Stopped-Flow MAS NMR Spectroscopy [J]. J Phys Chem B,2001,105(50):12553-12558.
    [286]Huang, J., Jiang, Y.J., Marthala, V.R.R., et al. In situ 1H MAS NMR Investigations of the H/D Exchange of Alkylaromatic Hydrocarbons on Zeolites H-Y, La,Na-Y, and H-ZSM-5 [J]. Micropor Mesopor Mat,2007,99(1-2):86-90.
    [287]Hafele, M., Reitzmann, A., Roppelt, D., et al. Hydroxylation of Benzene with Nitrous Oxide on H-Ga-ZSM5 Zeolite [J]. Appl Catal A-gen,1997,150(1):153-164.
    [288]Hamada, R., Shibata, Y., Nishiyama, S., et al. One-step Gas-Phase Catalytic Oxidation of Benzene to Phenol with Molecular Oxygen over Cu-supported ZSM-5 Zeolites [J]. Phys Chem Chem Phys,2003,5(5):956-965.
    [289]Jia, J.F., Pillai, K.S., Sachtler, W.M.H. One-step Oxidation of Benzene to Phenol with Nitrous Oxide over Fe/MFI Catalysts [J]. J Gatal,2004,221(1):119-126
    [290]Castagnola, N.B., Kropf, A.J., Marshall, C.L. Studies of Cu-ZSM-5 by X-ray Absorption Spectroscopy and Its Application for the Oxidation of Benzene to Phenol by Air [J]. Appl Catal A-gen,2005,290(1-2):110-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700