用户名: 密码: 验证码:
冲压发动机补燃室旋转条件下的燃烧特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用CFD软件Fluent、采用RNGκ-ε数学模型对旋转条件下的固体火箭冲压发动机补燃室中流场的燃烧特性进行研究。由于旋转模型对补燃室真实运动情况的模拟应用还处于探索阶段,另外旋转下的冲压发动机实验技术也处于探索阶段,所以本文首先对三种不同的旋转模型进行了验证和选择,最终选择模型3作为本文计算旋转条件下冲压发动机补燃室二次燃烧效应的理论分析模型,在此基础上进行研究,得到如下研究结论:
     (1)模拟补燃室旋转条件下的流场特性,与非旋转条件下的补燃室流场特性相比:流场整体运动变化趋势与非旋转时的基本一致,局部存在差异;补燃室中存在三个明显的旋涡使得补燃室中的流动非常的复杂,并且在旋转条件下这三个旋涡的强度明显加强;补燃室中旋转条件下与非旋转条件下的压强分布均匀,速度变化平缓,说明旋转未对补燃室流场的宏观结构产生大的影响。同时对比研究还可以发现补燃室旋转条件下的化学燃烧反应比非旋转条件下的化学燃烧反应滞后,但反应过程中所需时间减少。
     (2)计算了600rpm、2400rpm、4200rpm三种转速情况下补燃室中的流场,分析了不同转速下各流场的参数变化规律,研究结果表明:转速越大,化学燃烧反应越滞后,但燃料完全燃尽位置基本一致,燃烧过程中所需补燃室长度减短;转速增加,壁面温度变化减缓;转速增加对燃烧效率的影响微小,可忽略不计。
     (3)模拟了旋转条件下补燃室中气固两相流场,研究了600rpm和4200rpm两种转速下补燃室中流场的结构变化情况。研究结果表明:转速增加,固体颗粒开始产生化学燃烧反应的位置逐渐靠前,但反应的中心位置却逐渐靠后;在补燃室近轴区域出现无颗粒区,这对补燃室中流场的参数分布影响非常明显,这显然是由固体粒子密度大和旋转效应造成的离心力使固体粒子沿径向运动造成的。
This paper research on the combustion characteristic of flow field in secondary combustion chamber of solid ducted rocket under rotating condition, it simulated by using FLUENT calculate software and adopt RNGκ-εmathematic model. Because the application of rotating model for secondary combustion chamber activate is still under groping stage, and the experimental technology of ramjet under rotating condition is at the exploratory stage, it should be verified and then choose one of the model from three different models as the theoretical analysis model of this article, which calculate and analysis the theoretical analysis model of rotating ramjet effect on post-combustion chamber. Based on this model, the conclusion as follows:
     (1)Simulate the flow field characteristic of secondary combustion chamber under rotating condition and compared with the characteristic of flow field of secondary combustion chamber without rotating condition, the result shows that:changes in the overall trend of movement of flow field of the rotating condition is basically consistent with non-rotating condition,only a little place is different; there are three distinct vortex in secondary combustion chamber, the flow field in secondary combustion chamber is very complex; and those three rotating vortex are significantly strengthened under rotating conditions; distribution of pressure is uniform, those show that rotating don't have big impact on the macro-structure of the flow field in secondary combustion chamber, and the change of velocity which is in secondary combustion chamber under the rotation or not is gentle. Through comparison we can find that Chemical combustion reaction is lager than the reaction of non-rotating condition, but the time in the stage of Chemical combustion reaction is deducted.
     (2)Calculate flow field which is in secondary combustion chamber at different rotating speed of 600rpm,2400rpm and 4200rpm, and analysis all the parameters under rotating conditions. The result shows that:combustion reaction is delaied when the rotating speed increase, but the fuel fully combusted position is nearly uniform. The length of secondary combustion chamber required becomes short during combustion process; When speed increasing, the change of wall temperature becomes slow, and the increase of rotating speed which can be neglected has little affect for the combustion efficiency.
     (3)Simulate two phase of gas-solid flow field which inside secondary combustion chamber under rotating condition; when at different speed of 600rpm and 4200rpm, research movement condition of the flow field which inside secondary combustion chamber. The result shows that:When increasing speed, the position of solid particles which started happen chemical combustion reaction have progressively higher, but the position of reaction focus is lager; there is no particles in the near-axis region zone under rotating condition, it obviously affect the distributing regularity of the parameter, and it caused by the influence of the density of solid particles and the rotation effect caused by centrifugal force which made the solid particles go along the radial movement.
引文
[1]朱福亚.火箭弹构造与作用[M].第1版.北京:国防工业出版社,2005
    [2]张炜,朱慧,方丁酋,张为华.冲压发动机发展现状及其关键技术[J].固体火箭技术.1998(3):24-30
    [3]胡志刚.固体火箭冲压发动机补燃室内燃烧过程的数值研究[D].南京理工大学硕士论文.2008
    [4]董师颜,孙思诚,张兆良,徐万赋.固体火箭发动机原理[M].第2版.北京:北京理工大学出版社,1996
    [5]P F Melia. Flow and Ablation Patterns in Titan IV SRM Aft Closures[J].AIAA Journal.1995,9(5):28-78
    [6]邵爱民.大型固体发动机旋转试车头部热防护工程分析[J].固体火箭技术.1998,21(3):7-12
    [7]陈亮.旋转固体火箭发动机内流场数值研究[D].哈尔滨工程大学工学硕士学位论文.2007,10-16
    [8]张为华,曹泰岳,万章吉.旋转发动机研究中的几个重要技术问题[J].推进技术.1996,17(3):26-31
    [9]赵春宇.冲压发动机补燃室工作过程数值仿真研究[D].南京理工大学硕士学位论文.2006
    [10]鲍福廷,黄熙君,张振鹏等.固体火箭冲压组合发动机[M].第1版.北京:中国宇航出版社,2006
    [11]孙长宏.旋转固体火箭发动机内气固两相流场数值模拟[D].哈尔滨工程大学工学硕士学位论文.2005
    [12]张家仙.冲压增程炮弹绕流流场数值模拟研究[D].南京理工大学硕士学位论文.2005
    [13]成楚之.防空导弹应用固冲发动机的两个重要研究方向[J].推进技术,1987(16)
    [14]李存杰,龙玉珍.整体式冲压发动机的几项关键技术[J].飞航导弹.1992(3)
    [15]周军译.亚/超燃冲压发动机研制动向[J].飞航导弹,1997(3)
    [16]Bastress E K. Interior ballistics of spinning solicd propellant rocker[J].Spacecraft Rockets.1965,(3):12-25
    [17]Manda.L J.Spin effects on rocket nozzle performance [J]. Spacecraft Rockets.1965,(3):36-45
    [18]Nontan D J.An analytical and experimental investigation of swirling flow in nozzle[J].AIAA.1968,(10):102-110
    [19]Roger Dunlap.An Investigation of the Swirling Flow in a spinning End-Burning Rocket[J]. Journal.1969,7(12):2293-2299
    [20]A P Vanka, F D Stull, R R Craig. Mixing, Chemical Reaction and Flowfield Development in Ducted Rockets[J]. AIAA.1985:1271
    [21]Stull F D, Craig R R, Streby G D, Vanka S P. Investigation of a dual inlet side dump combustor using liquid fuel injection[J]. Journal of Propulsion and Power. 1985(1):83-89
    [22]Chen L, Tao C C. Study of Side-Inlet Dump Combustor of Solid Ducted Rocket with Reacting How[J]. AIAA.1984:1378
    [23]D L Cherng, V Yang, K K Kuo. Numerical Study of Turbulent Reacting Flows in Solid-Propellant Ducted Rocket Combustors[J]. Journal of Propulsion.1989(5)
    [24]高波,叶定友,侯晓.旋转条件下固体火箭发动机燃烧室气固两相湍流流动数值模拟[J].固体火箭技术.1999,3(22):6-10
    [25]胡春波,韩新波等.固体火箭冲压发动机补燃室冷态流场实验研究[J].推进技术.2004(2):111-117
    [26]高岭松.固体火箭冲压发动机补燃室性能研究[D].西北工业大学硕士毕业论文.2005
    [27]闫萍,钱志博,张进军,扬杰.旋转燃烧室内燃气湍流流动的数值分析[J].海军工程大学学报2007,4(19):4-10
    [28]王志吉.固体火箭冲压发动机燃烧过程仿真与实验研究[D].国防科学技术大学硕士毕业论文.2002:2-5
    [29]赵学瑞,廖其奠.粘性流体力学[M].第2版.北京:机械工业出版社,1993
    [30]陶文铨.数值传热学[M].第7版.西安:西安交通大学出版社,2006
    [31]张兆顺,崔桂香,许春晓.湍流理论与模拟[M].第1版.北京:清华大学出版社,2005
    [32]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社,2004
    [33]FLUENT帮助.2003
    [34]武晓松,陈军,王栋.杨余旺.固体火箭发动机工作过程数值仿真[M].第1版.北京:高等教育出版社,2006
    [35]陈景仁.湍流模型及有限分析法[M].上海:上海交通大学出版社,1989
    [36]陈矛章.粘性流体动力学理论及紊流工程计算[M].北京:北京航空学院出版社,1986
    [37]严传俊,范玮.燃烧学[M].西北工业大学出版社,2005
    [38]Patankar S V and Spalding D B. A calculation procedure for heat,mass and momentum transfer in three-demensonal parabolic flows [J]. Heat Mass Transfer. 1972,15:1787-1806
    [39]范维澄,万跃鹏.流动及燃烧的模型与计算[M].合肥:中国科学技术大学出版社,1992
    [40]郑楚光,周向阳.湍流反应流的PDF模拟[M].第1版.武昌:华中理工大学出版社,1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700