用户名: 密码: 验证码:
固体燃料冲压发动机工作过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,固体燃料冲压发动机备受世界各国关注,与其它发动机相比,固体燃料冲压发动机具有比冲高、结构简单等特点,在超声速导弹和增程炮弹方面具有广阔应用前景。本文以小口径固体燃料冲压发动机增程炮弹为应用背景,以计算流体动力学软件FLUENT为工具,结合理论分析、数值模拟和实验等手段,对固体燃料冲压发动机的燃烧和内流场特性及其影响因素进行了深入系统地研究,为固体燃料冲压发动机的研制奠定理论和实验基础。本文主要工作如下:
     一、利用二维轴对称N-S方程对唇口前缘钝化的小口径超声速弹用进气道内外复杂流场进行了数值模拟,湍流模型为RNGk-ε两方程模型,数值格式为一阶迎风格式。所得流场结构清晰,获得了在设计马赫数下不同外罩唇口前缘钝化半径对进气性能参数的影响。结果表明:在唇口前缘钝化半径合理(r/H=1.3%)的情况下,进气道的稳定工作范围变宽,总压恢复系数提高,唯一不利因素为进气道总阻力有所增大。然而,当唇口前缘钝化半径过大(r/H=2%)时,钝化唇口前缘处产生的低速区使附面层变得很厚,对进气道内流场结构造成严重影响,进气道的稳定工作范围迅速变窄。
     二、利用三维雷诺平均N—S方程,在不同攻角和来流马赫数条件下,对带侧向支柱的某小口径固体燃料冲压增程弹用混压式进气道的内外复杂流场进行了数值模拟,并完成了风洞实验,得到了不同状态下进气道的纹影图片、沿程静压分布及进气道出口总压变化规律。数值模拟所得流场结构与风洞实验纹影图一致,所测静压与总压数据和计算值吻合良好,从而验证了数值模拟的可靠性。结果表明,所设计的弹用超声速轴对称混压式进气道在设计状态(Ma=3)和非设计状态(Ma=2.5)均能有效工作,并且在α=0°~6°的范围内具有良好的攻角特性。进气道出口马赫数约为0.3~0.4,能够满足小口径固体燃料冲压发动机燃烧室对入口马赫数的要求。
     三、利用Rihani-Doraiswamy和Benson两种基团贡献法,估算出了单体MMA(C5H8O2)的定压比热、标准生成焓和熵值等热力学数据。根据推进剂分解原理,结合计算流体动力学软件FLUENT的用户自定义函数进行二次开发,并采用两步化学反应模型、RSM模型、涡耗散湍流燃烧模型和一阶迎风格式,建立了PMMA在固体燃料冲压发动机燃烧室内的燃烧模型。对不同来流空气质量流率、来流空气总温、药柱通道直径等工况,进行了PMMA在固体燃料冲压发动机内燃烧的数值模拟研究,得到了燃烧室内的流场结构、温度及组分分布。结果表明,随着轴向位置的增大,燃料局部退移速率先增大后减小。增大入口空气温度和质量流率均使平均退移速率近似按指数关系增大,燃烧室温度亦随之增大。增大入口药柱通道直径使得再附点后移,而平均退移速率则近似呈指数关系减小
     四、设计了固体燃料冲压发动机直连式实验发动机,采用镁/聚四氟乙烯为点火药,在国内首次完成了以PMMA为燃料的固体燃料冲压发动机直连式实验,采用电磁阀和数显时间继电器精确控制实验时间,发动机点火可靠,工作稳定。对不同药柱通道直径、来流空气质量流率和出口喷管等工况进行了实验研究。实验结果表明,当药柱通道直径(Dp=30mm)较小时,固体燃料冲压发动机燃烧室产生类似于固体火箭发动机内的侵蚀效应。燃烧室压强越低,燃料平均退移速率、补燃室温度均随之降低,然而这种影响在低压(补燃室压强和温度。点火药量和能量以及点火药燃烧的持续时间均是点火能否成功的控制因素。对于给定的点火药品种,在点火药药量一定的条件下,增大来流空气质量流率和降低来流总温对点火都是不利的。实现成功点火的可行方法是增大点火药药量。数值模拟值与实验结果较为吻合,平均燃料退移速率最大误差约为7.7%;补燃室压强最大误差约为15.3%;补燃室温度最大误差约为22%。
In recent years, solid fuel ramjet (SFRJ) has become a very attractive propulsion system for many researchers due to its high special impulse and simple structure compared to other air breathing engines, which has a wide application prospect on supersonic missile and extended-range projectile.The schematic design and performance analysis evaluation method, combustion and internal flow field characteristics and their relative conditions of Minor-diameter SFRJ extended-range projectile were studied detailedly and comprehensively by means of theoretical analysis, experimental investigation and numerical simulation, and the computational fluid dynamics software FLUENT was used as a tool. It has laid a foundation of theory and experiment for the SFRJ. In this paper, the work reads as follows:
     (1) The complex flow field of a minor-diameter supersonic mixed-compression ramjet inlet with blunted-lip cowl was numerically simulated by using the 2D-axisymmetric N-S equations, and the flow structures were clearly obtained. The two-equation RNG k-e turbulence model and the first order upwind scheme were used. The influence of different bluntness radius of cowl lips on the performance parameters of the inlet at design Mach number was studied. The results show that:the reasonable increase of bluntness radius of the cowl lip induces the stable operation range of inlet broadens, the total pressure recovery increases, and the only disadvantage was the increase of total drag of inlet. However, when the bluntness radius of cowl lip was too bigger(r/H=2%), the low speed area around the blunted-lip cowl makes the boundary layer become thicker. Consequently, the interior flow field of inlet was destroyed, and the stable operation range of inlet becomes narrower rapidly.
     (2) Under the condition of different angles of attack and inflow Mach numbers, the complex flow field of a mixed-compression inlet of minor-diameter SFRJ extended-range projectile with struts was numerically simulated by using the 3D Reynolds-averaged N-S equations, and also wind tunnel test has been achieved. The schlieren photographs of inlet and the distribution of static pressure along the inlet and the influence of different operations on total pressure at the exit of inlet were obtained. The results indicate that numerical flow structure and wind tunnel test schlieren photographs of inlet were identical. The experimental data, such as static pressure and total pressure, were in good agreement with the numerical results, and the reliabilities of the numerical simulation methods in this paper were verified.The results show that:under the the design(Ma=3) and off-design condition (Ma=2.5), the designed mixed-compression supersonic inlet both work effectively, and also has favorable angles of attack characteristic inα=0°~6°range. The Mach number of exit plane was about 0.3~0.4, which can satisfy the requirement of solid fuel ramjet combuston chamber on the Mach number of combustion chamber inlet.
     (3) Compared with Rihani-Doraiswamy and Benson group contribution method, the thermodynamics data of methyl methacrylate(C5H8O2) were estimated, such as special heat at constant pressure, standard enthalpy of formation and entropy. According to pyrolysis principle of propellant, based on secondary development technology by using the User Defined Functions, which was included in software FLUENT, the combustion model of (Polymethylmethacrylate) PMMA in SFRJ combustion chamber was established. Its combustion flow was described with two-step chemical reaction model, RSM turbulent model, Eddy Dissipation turbulent combustion model and first order upwind scheme, then the flow field structure, temperature and species distribution in SFRJ combustion chamber also were analyzed. Based on above, the flow field of SFRJ combustor chamber was numerically simulated, and the fuel was PMMA. It was analyzed the influence of the parameters, such as fuel port diameter, air total temperature, air mass flow rate etc.then. The flow field structure, temperature and species distribution in SFRJ combustion chamber also were obtained.The results show that:as the axial distance increases, the local regression rate increases at first then decreases gradually. In addition, the increase of inlet air temperature and mass flow rate both induces the mean regression rate of PMMA approximately exponential increase, and the combustion chamber temperature also increase.As the fuel port diameter increases, the reattactment point moves downstream, and the mean regression rate of PMMA approximately exponential decrease.
     (4) The SFRJ direct tube test motor was established. For the first time in domestic, the combustion behavior of PMMA in SFRJ was performed using a direct tube test facility, and the amorce was Mg/PTFE. In order to control the test time accurately, the electromagnetic value and digital display time relay were used.The experiments results prove that the ignition method was reliable, and the motor works stably. The effects of factors, such as air mass flow rate, air total temperature and fuel port diameter on regression rate and performance was investigated experimentally. The results show that:While the fuel port diameter was smaller (Dp=30mm), the SFRJ combustion chamber will produce phenomenon similar to erosion effect in solid rocket motor. As the combustion chamber pressure decreases, the fuel mean regression rate and aft -mixing combustion chamber temperature both decreases. However, at the condition of low pressure (0.8MPa), this effect was limited. In addition, the increase of fuel port diameter induces the total fuel combustion area increases. Although the fuel mean regression rate decreases, the total fuel mass flow rate still increases. Therefore, the aft-mixing combustion chamber pressure and temperature both enhances. For a given amorce, the mass and energy of amorce as well as combustion duration of amorce were governing factors of the success of ignition. When the amorce mass was a certain quality, increases the air mass flow rate and decreases the air total temperature both will have negative effect on the ignition process. In order to achieve ignition process successfully, increases the aomrce mass was the feasible method.The predicted results of the numerical model coincide well with the experimental data, the reliability of numerical model was verified. The error of mean regression rate was less than 7.7%, the error of pressure of aft-mixing combustion chamber was less than 15.3%, the error of temperature of aft-mixing combustion chamber was less than 22%.
引文
[1]崔平.现代炮弹增程技术综述[J].四川兵工学报,2006,27(3):17-19.
    [2]安斌丰,李彬,言克斌.固体燃料冲压增程炮弹发展现状及关键技术[J].四川兵工学报,2009,30(3):110-112.
    [3]陈军,朱福亚,周长省.固体燃料冲压发动机在小口径弹药上的应用[J].弹道学报,1999,11(2):85-88.
    [4]张永芝,李卓,李海龙.固体火箭冲压发动机进气道三维数值模拟[J].航空动力学报,2008,23(11):2107-2113.
    [5]谢旅荣,郭荣伟.定几何混压式轴对称超声速进气道气动特性数值仿真和实验验证[J].航空学报,2007,28(1):78—83.
    [6]Fry Ronald S. A Century of Ramjet Propulsion Technology Evolution[J]. Journal of Propulsion and Power,2004, (20)1:27-58.
    [7]Michael J.Nusca, Sukumar R.Chakravarthy, Uriel C.Goldberg. Computational Fluid Dynamics Capability for the Solid-Fuel Ramjet Projectile[J].Journal of Propulsion and Power,1990,(6)3:256-262.
    [8]Michael J Nusca. Steady Flow Combustion Model for Solid-Fuel Ramjet Projectiles[J]. Journal of Propulsion and Power,1990,(6)3:348-352.
    [9]Krishnan S, George Philmon. Solid Fuel Ramjet Combustor Design [J]. Progress in Aerospace Sciences,1998,34:219-256.
    [10]Mr. Peter Wimmerstrom, Mr.Yngve Nilsson and Dr.Nils-Erik Gunners. Initial study of a 40mm SFRJ projectile[C].14th International Symposium on Ballistics,1993.
    [11]R.G.Veraar and K.Andersson. Flight Test Results of The Swedish-Dutch Solid Fuel Ramjet Propelled Projectile[C].19th International Symposium on Ballistics,2001.
    [12]Ronald G. Veraar and Alfons E.H.J. Mayer. The Role of the TNO Free Jet Test Facility in Solid Fuel Ramjet Projectile Development[C]. AIAA 2005-3828.
    [13]J.-S.Hwang,etc. Ramjet Propulsion of a 40mm Projectile for Increased Performance [C].20th International Symposium on Ballistics,2002.
    [14]Buisson JJ.du., Redelinghuys Dr.C and Botha GF.Solid Fuel Ramjet(SFRJ) Propulsion for Kinetic Energy Penetrator Applications-Progress to Date[C].16th International Symposium on Ballistics,1996.
    [15]R. Oosthuizen, A. Stockenstrom and J. J. du Buisson.Solid Fuel Ramjet (SFRJ) Propulsion For Artillery Projectile Applications-Concept Development Overview[C]. 19th International Symposium on Ballistics,2002.
    [16]Orit Avital-Kaufaman, Shai Elbaz and Amir Gat. Development and Flight-Testing of a Solid Fuel Ramjet Vehicle[C].18th International Symposium on Air Breathing Engines, 2007.
    [17]Krishnan S, George Philmon and Sathyan S. Design and Control of Solid-Fuel Ramjet for Pseudovacuum Trajectories [J].Journal of Propulsion and Power,2000, (16)5:815-822.
    [18]陈军.固体燃料冲压发动机工作过程研究[D].南京:南京理工大学,1998.
    [19]孙振宗.固体燃料冲压发动机实验研究[R].北京动力机械研究所,GF-A0034213G,1998.
    [20]吉秋平.弹用固体燃料冲压发动机性能研究[D].南京:南京理工大学,2006.
    [21]陈小前.固体燃料冲压发动机的研究[D].长沙:国防科技大学,1998.
    [22]谭建国.固体燃料冲压增程炮弹理论与实验研究[D].长沙:国防科技大学,2000.
    [23]马骏.固体燃料冲压增程炮弹技术研究[D].长沙:国防科技大学,2004.
    [24]向敏.固体燃料冲压增程炮弹工作过程仿真及性能分析研究[D].长沙:国防科技大学,2006.
    [25]马洋.固体燃料冲压发动机涡流增强燃烧数值模拟与实验研究[D].长沙:国防科技大学,2006.
    [26]郭健.固体燃料冲压发动机工作过程理论与实验研究[D].长沙:国防科技大学,2007.
    [27]刘巍.固体燃料冲压发动机燃烧组织技术研究[D].长沙:国防科技大学,2010.
    [28]C.J.Mady, P.J.Hickey and D.W.Netzer. Combustion Behavior of Solid-Fuel Ramjets[J]. Journal of Spacecraft and Rockets,1978, (15)3:131-132
    [29]Lowe Stephen R. An Experimental Investigation of Combustion Modulation Techniques for a Solid Fuel Ramjet[R].ADA172322
    [30]Amnon Netzer and Alon Gany. Burning and Flameholding Characteristics of a Miniature Solid Fuel Ramjet Combustor[C].AIAA88-3044,1988.
    [31]Zvuloni Roni, Gany Alon and Levy Yeshavahou. Geometric Effects on the Combustion Solid Fuel Ramjets[J]. Journal of Propulsion and Power,1989, (5)1:32-37.
    [32]GSchulte, Pein.R. and Hogl.A. Temperature and Concentration Measurements in a Solid Fuel Ramjet Combustion Chamber[J]. Journal of Propulsion and Power,1987, (3)2:114-120.
    [33]Pein.R. and GSchulte. Swirl and Fuel Composition Effects on Boron Combustion in Solid-Fuel Ramjets[J].Journal of Propulsion and Power,1992, (8)3:609-614.
    [34]Raghunandan B.N., Ravichandran and Marathe A.G. Combustion Related to Solid-Fuel Ramjets[J].Journal of Propulsion and Power,1985, (1)6:502-504.
    [35]J. Gobbo Ferreira, J.A.Carvalho Jr. and Mauricio G.Silva. Experimental investigation of polyethylene combustion in a solid fuel ramjet[R]. AIAA96-2698,1996.
    [36]赵庆华,刘建全,王莉莉等.固体燃料的超声速燃烧研究进展[J].飞航导弹,2009(10):59-63.
    [37]Alon Gany. Accomplishments and Challenges in Solid Fuel Ramjets and Scramjets [J]. International Journal of Energetic Materials and Chemical Propulsion,2009,8(5): 421-446.
    [38]Witt M A.Investigation into the Feasibility of Using Solid Fuel Ramjets for High Supersonic/Low Hypersonic Tactical Missiles [R]. ADA214737,1989.
    [39]Angus M J. An Investigation into the Performance Characteristics of a Solid Fuel Scramjet Propulsion Device[R]. ADA246486,1991.
    [40]Adela Ben-Yakar, Benceniste Natan and Alon Gany. Investigation of a Solid Fuel Scramjet Combustor[J]. Journal of Propulsion and Power,1998,14(4):447-455.
    [41]Shimon S, Alon Gany. Testing Metallized Solid Fuel Scramjet Combustion[C]. XVIII International Symposium on Air Breathing Engines, September 2-7,2007, Beijing, China.
    [42]Vaught C.,etc. Investigation of Solid-Fuel, Dual-Mode Combustion Ramjets[J]. Journal of Propulsion and Power,1992,8(5):1004-1011.
    [43]Benveniste Natan and Alon Gany. Effects of Bypass Air on Boron Combustion in Solid Fuel Ramjets[J]. Journal of Propulsion and Power,1993,(9)1:155-157.
    [44]Benveniste Natan and David W.Netzer. Experimental investigation of the effect of bypass air on boron combustion in a solid fuel ramjet[J]. Journal of Propulsion and Power,1991,(7)2:427-437.
    [45]R.Pein and F.Vinnemeier. Swirl and Fuel Composition Effects on Boron Combustion in Solid-Fuel Ramjets[J]. Journal of Propulsion and Power,1992, (8)3:609-614.
    [46]Helmy A,m. Performance of Polycubanes in Solid Fuel Ramjet[C].AIAA93-2591, 1993.
    [47]Segal.C etc. Ignition Characteristics of a New High-Energy Density Fuel in High-Speed Flows [J]. Journal of Propulsion and Power,1997, (13)2:246-249.
    [48]Charles A.Stevenson and David W.Netzer. Modeling Solid-Fuel Ramjet Combustion [J]. Journal of Spacecraft and Rockets,1977, (14)12:62-766.
    [49]T.Milshtein and D.W.Netzer. Three-dimensional Primitive-variable model for solid fuel ramjet combustion[R].ADA138756.
    [50]Vos J.B. The Calculation of Chemically Reacting Turbulent Boundary Layers by Means of Finite Chemical Kinetics[C].AIAA86-1655,1986.
    [51]P.J.Coelho, C.Lemos, M.G.Carvalho and N.Duic. Modeling of a Solid Fuel Combustion Chamber of a Ramjet Using a Multi-block Domain Decomposition Technique[C]. AIAA1996-0847,1996.
    [52]Xu Zhenlong. Development of a Computer Code for a Solid Fuel Ramjet Combustor [D]. Carleton University,1991.
    [53]董岩,余为众,吕希诚.固体火箭冲压发动机二次燃烧室流场数值计算和实验研究[J].推进技术,1995(1):27-32.
    [54]M. B. Chistophe and W. K. Clark. An Investigation of Four-inlet Ducted Rocket Engine Flameholding Characteristics[C].AlAA97-2846,1997.
    [55]R.A.Stowe,etc. Modelling and Flow Visualization of Mixing in a Ducted Rocket Combustion[C].AIAA 98-3768,1998.
    [56]马智博,张振鹏,蔡选义.火箭冲压发动机反应流场数值模拟[J].推进技术,1998(5):25-29.
    [57]A. Ristori and E. Dufour. Numerical Simulation of Ducted Rocket Motor [C]. AIAA 2001-3193,2001.
    [58]胡建新,夏智勋,刘君等.非壅塞火箭冲压发动机补燃室两相流数值模拟[J].推进技术,2004(3):193-195,240.
    [59]高松龄.固体火箭冲压发动机补燃室性能研究[D].西安:西北工业大学,2005.
    [60]张磊.增程固体火箭冲压发动机补燃室燃烧特性研究[D].南京:南京理工大学,2009.
    [61]Jarymowycz T A, Yang V, Kuo K K.Numerical Study of Solid-Fuel Combustion Under Supersonic Crossflows[J].Journal of Propulsion and Power,1992,8(2):346-353.
    [62]Ben-Arosh R, Natan B, Spiegler E. Mixing of Supersonic Airflow with Fuel Added Along the Wall in a Sudden Expansion Chamber[C].AIAA 1997-3241,1997.
    [63]Ben-Arosh R, Natan B, Spiegler E. Theoretical Study of a Solid Fuel Scramjet Combustor[J].Acta Astronautica,1999,45(3):155-166.
    [64]孙波.高超声速Busemann进气道流场特性和设计方法研究[D].南京:南京航空航天大学,2007.
    [65]Scott A.Berry, Aaron H.Auslender and Authur D.Dilley. Hypersonic boundary-layer trip development for Hyper-X[C].AIAA2000-4012,2000.
    [66]Zha G C, Smith D, Schwabacher M. High Performance Supersonic Missile Inlet Design Using Automated Optimization[C]. AIAA96-4142-CP,1996.
    [67]陈雄.高速旋转固体火箭冲压发动机进气道工作过程特性研究[D].南京:南京理工大学,2005.
    [68]谢旅荣,郭荣伟.定几何混压式轴对称超声速进气道气动特性数值仿真和实验验证[J].航空学报,2007,28(1):78—83.
    [69]李理,刘巍,杨涛.冲压增程弹进气道设计方法与性能分析[J].航空动力学报,2008,30(6):4—5.
    [70]王筱蓉,姜根柱,周长省.冲压增程炮弹进气道型面气动优化研究[J].固体火箭技术,2009,32(1):28—60.
    [71]Hyoung Jin Lee, Bok Jik Lee, Sung and Don Kim, et al. Flow Characteristics of Small-Sized Supersonic Inlets[J].Journal of Propulsion and Power,2011, (27)2:306-318.
    [72]Martin J. Chiaverini and Kenneth K. Kuo.Fundamentals of Hybrid Rocket Combustion and Propulsion, Progress in Astronautics and Aeronautics,Vol.218[M].Washington, DC: AIAA,2007.
    [73]Chaiken, R. F., Andersen, W. H., Barsh, M. K., Mishuck, E., Moe, G, and Schultz, R. D., Kinetics of the Surface Degradation of Polymethylmethacrylate[J].Journal of Chemical Physics,1960,32(1):141-146.
    [74]Hansel,J.G, and McAlevy,R.F.Ⅲ. Energetics and Chemical Kinetics of Polystyrene Surface Degradation in Inert and Chemically Reactive Environments [J].AIAA Journal,1966,4(5):841-848.
    [75]McAlevy,R.F.Ⅲ.,Lee,S.Y. and Smith, W. H. Linear Pyrolysis of Polymethylmetyacryl--ate Durning Combustion[J].AIAA Journal,1968,6(6):1137-1142.
    [76]Cohen, N. S., Fleming, R.W., and Derr, R. L.. Role of Binders in Solid Propellant Combustion[J]. AIAA Journal,1974,12(2):212-218.
    [77]Martin J.Chiaverini et. Pyrolysis Behavior of Hybrid-Rocket Solid Fuels Under Rapid Heating Conditions [J]. Journal of Propulsion and Power,1999,15(6):888-895.
    [78]Arisawa, H., and Brill, T. B., Flash Pyrolysis of Hydroxyl-Terminated Polybutadiene (HTPB) Ⅰ:Analysis and Implications of the Gaseous Products [J]. Combustion and Flame.1996,106(1):131-143.
    [79]Arisawa, H., and Brill, T. B., Flash Pyrolysis of Hydroxyl-Terminated Polybutadiene (HTPB) Ⅱ:Implications of the Kinetics to Combustion of Organic Polymers[J]. Combustion and Flame.1996,106(1):144-154.
    [80]陈灏,胡春波,孙得川,杨玉新.固体燃料热分解特性分析[J].固体火箭技术.2008, (31)1: 69-71.
    [81]Metochianakis Michael E.An Investigation of the Combustion Behavior of Solid Fuel Ramjets[R].ADA098481.
    [82]Straus, Sidney and Madorsky, Samuel L. Pyroysis of Some Polyvinyl Polymers at Temperature up to 1200℃[J]. Journal of Research of the National Bureau of Standards. Section A. Physics and Chemistry,1962,66(5):401-406.
    [83]J.P.de Wilde. The Pyrolysis of Polymethylmethacrylate during Combustion in a Solid Fuel Combustion Chamber[R].Facculty of Aerospace Engineering, Delft University of Technology, Prins Maurits Laboratory TNO, Report LR-531/PML 1987-C142,1987.
    [84]Dijkstra F., Korting P.A.O.G., Berg R.P.Van Den. Ultrasonic Regression Rate Measurement in Solid Fuel Ramjet[C]. AIAA1990-1963,1990.
    [85]张劲民,王志强,袁华.超声波燃速测试技术在固体推进剂研制中的应用[J].火炸药学报,2006,29(3):9-12.
    [86]Ilan Hadar and Alon Gany. Fuel Regression Mechanism in a Solid Fuel Ramjet[J]. Propellants, Explosives, Pyrotechnics,1992,17(2):70-76.
    [87]Lowell D B, Netzer D W. An Investigation of the Internal Ballistics of Solid Fuel Ramjets[D]. Monterey, California:Naval Postgraduate School,1973.
    [88]United Technologies Chemical Systems. Solid Fuel Ramjet [M]. San Jose, CA,1980.
    [89]GSchulte. Fuel Regression and Flame Stabilization Studies of Solid-Fuel ramjet[J]. Journal of Propulsion and Power,1986, (2)4:301-304.
    [90]P.J.M.Elands, P.A.O.G.Korting and T.Wijchers. Comparsion of Combustion Experiments and Theory in Polyethylene Solid Fuel Ramjets[J]. Journal of Propulsion and Power,1990, (6)6:732-739.
    [91]P.A.P. GKorting, C.W.M.vander Geld and H.F.R.Schoyer. Combustion of PMMA in a Solid Fuel Ramjets[C].AIAA86-1401,1986.
    [92]Malhotra, S.L., Minh,Ly and Blanchard, L.P. Thermal Decomposition and Glass Transition Temperature of Polymethylmethacylate and Polyisobutylmethacrylate[J]., Journal of Macromolecular Science, Part A,1981,15(1):121-141.
    [93]Westbrook Charles K., Dryer Frederick L. Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames [J]. Combustion Science and Technology, 1981,27(1):31-43.
    [94]Gordon S, Mcbride B J.Computer program for calculation of complex chemical equilibrium compostions and applications[R].NASA-RP-1311-1,1994.
    [95]Antonniou Antonis, Akyuzlu Kazim M. A Physics Based Comprehensive Mathematical Model to Predict Motor Performance in Hybrid Rocket Propulsion Systems [C]. AIAA 2005-3541,2005.
    [96]J.P.de Wilde. Fuel Pyrolysis Effect on Hybrid Rocket and Solid Fuel Ramjet Combustor Performance[D], Delft University of Technology,1991.
    [97]王守范等.固体火箭发动机燃烧与流动[M].北京:北京工业学院出版社,1987.
    [98]余勇.超燃冲压发动机燃烧室工作过程理论和实验研究[D].长沙:国防科学技术大学,2004.
    [99]胡建新.含硼推进剂固体火箭冲压发动机补燃室工作过程研究[D].长沙:国防科学技术大学,2006.
    [100]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001.
    [101]陈懋章.粘性流体动力学基础[M].北京:高等教育出版社,2002.
    [102]张兆顺,崔桂香,许春晓.湍流大涡数值模拟的理论和应用[M].北京:清华大学出版社,2008.
    [103]Gessner F B, Emery A F. A length-scale Model for Developing Turbulence Flow in a Rectangular Ducts[J]. ASME Journal of Fluids Engineering,1977.99:347-356.
    [104]Gessner F B, Emery A F.The Numerical Prediction of Developing Turbulent Flow in Rectangular ducts[J]. ASME Journal of Fluids Engineering,1981.101:445-455.
    [105]Chen H C, Patel V C. Near Wall Turbulence Models for Complex Flows including Separation[J]. AIAA Journal,1988,26,641-648.
    [106]Rodi W. Experience with Two-layer Models Combing the k-ε Model with a One-equation Model Near the Wall[C]. AIAA 91-0216,1991.
    [107]Jones, W.P. and Launder, B. E., The Prediction of Laminarization With a Two-equation Model of Turbulence[J].International Journal of Heat and Mass Transfer, 1972, (15):574-580.
    [108]陶文铨.计算传热学的近代进展[M].北京:科学出版社,2001.
    [109]赵坚行.燃烧的数值模拟[M].北京:科学出版社,2002.
    [110]王志吉.固体火箭冲压发动机燃烧过程仿真与实验研究[D].长沙:国防科学技术大学,2002.
    [111]游进.弹用超声速进气道/补燃室流场及其一体化数值模拟研究[D].长沙:国防科学技术大学,2005.
    [112]刘兴洲等.飞航导弹动力装置(上)[M].北京:宇航出版社.1992.
    [113](美)F.K.利特尔等.内流空气动力学手册(第一册)[M].北京:国防工业出版社,1982.
    [114](美)约翰.霍普金斯大学应用物理实验所.冲压发动机技术(上)[M].北京:国 防工业出版社,1980.
    [115]夏强,武晓松,孙波.超声速轴对称进气道稳定工作范围研究[J].计算机仿真,2009,26(5):127-130.
    [116](美)M.J.左克罗,J.D.霍夫曼.气体动力学(上、下)[M].北京:国防工业出版社,1984.
    [117]Kantrowitz,A., and Donaldson,C. Preliminary Investigation of Supersonic Diffuser[R], NACA WRL-713,1945.
    [118]宁幌,黄熙君.超音速扩压器[M].北京:国防工业出版社,1964.
    [119]许绥文,支道义.超声速短进气道设计与研究[R].31所内部报告,1985.
    [120]Seddon J, Goldsmith E L. Intake Aerodynamics [M].London:Blackwell Science, 1999.
    [121]Willis J.H. and Randall B.Sc. D.G. The Theoretical Wave Drag of Open-Nose Axisymmetrical Forebodies with Varying Fineness Ratio, Area Ratio and Nose Angle [R], ARC-CP245,1956.
    [122]鲍福廷,黄熙君,张振鹏等.固体火箭冲压组合发动机[M].北京:中国宇航出版社,2006.
    [123]马汉尼JJ.超声速导弹进气道[M].北京:航天工业总公司推进技术编辑部,1994.
    [124]Takashima, N and Lewis, M.J. Navier-Stokes Computation of a Viscous Optimized Waverider[C], AIAA 92-0305,1992.
    [125]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [126]Dionisio F, Stockenstrom A. Aerodynamic Wind-Tunnel Test of a Ramjet Projectile [C].19th International Symposium of Ballistics,2001, Interlaken,Switzerland,529-536.
    [127]武晓松,陈军,王栋.固体火箭发动机原理[M].北京:兵器工业出版社,2011.
    [128]Blazowski, W.S., Cole,R.B. and Mcalevy, R.F.Ⅲ. Effective Heat of Gasification of Polymers under Combustion Conditions[C].AIAA 1972-34,1972.
    [129]J.P.de Wilde. de.The heat of gasification of polyethylene and polymethylmethacrylate [R], Delft University of Technology, Prins Maurits Laboratory TNO, Memorandum LR-M-593/PML 1988-C42,1988.
    [130]Rihani, D.N. and Doraiswamy, L.K. Estimation of Heat Capacity of Organic Compo--unds from Group Contributions[J].Industrial & Engineering Chemistry Fundamentals, 1965,(4)1:17-21.
    [131]Benson, S.W. Thermochemical Kinetics:Methods for the Estimation of Thermoc--hemical Data and Rate Parameters[M].John Wiley & Sons, NewYork,1976.
    [132]Poling B E, Prausnitz J M, O Connell J P.气液物性估算手册(第5版)[M].赵红玲,王凤坤,陈圣坤等译.北京:化学工业出版社,2006.
    [133]Chase M W. NIST-JANAF Thermochemical Tables (Fourth Edition Part I) [M]. Gaithersburg:National Institute of Standards and Technology,1998.
    [134]于守志等.飞航导弹动力装置实验技术[M].北京:宇航出版社.1990.
    [135]张炜,朱慧,方丁酉.固体贫氧推进剂研究[J].火炸药学报,2002,25(1):25-28.
    [136]Kuo,K.K, Summer-field, M固体推进剂燃烧基础(下)[M].宋兆武译.北京:宇航出版社,1988.
    [137]Yang J. T. and Wu C. Y. Y. Controlling Mechanisms of Ignition of Solid Fuel in a Sudden-Expansion Combustor[J]. Journal of Propulsion and Power,1995,11 (3):483-488.
    [138]A.M.Tahsini and M.Farshchi. Igniter Jet Dynamics in Solid Fuel Ramjets[J]. Acta Astronautica,2009, (64):166-175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700