用户名: 密码: 验证码:
高能短脉冲激光相干合成技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在高能超高密度物理等科研需求的牵引下,提高单路短脉冲的输出能量到几千焦耳并进行多路高能短脉冲激光相干合成,创造前所未有的极端物态条件成为科研人员追求的目标。受限于非线性效应、光学元件损伤、热透镜效应、压缩器光栅尺寸等因素,单路激光器输出功率存在极限,而将输出光束进行相干合成是获得高能超高功率密度焦斑的有效途径之一,世界上主要的高能短脉冲研究机构均提出了在大型固体激光装置上实现相干合成的目标。目前的高能短脉冲激光装置普遍基于啁啾脉冲放大(CPA)技术,要求终端压缩器的光栅口径达到米量级,但制作大口径光栅的技术难度大而且代价昂贵,最经济有效的方法是采用阵列光栅替代单块大口径光栅,由于阵列器件的使用,在进行多路脉冲激光相干合成前,首先需要满足单路脉冲激光的相干合成输出,这也是高能短脉冲激光装置相干合成的显著特点。
     目前国际上对高能短脉冲激光相干合成的研究主要集中在概念探索和设计阶段。本论文对高能短脉冲激光相干合成技术展开了全面的研究,系统地分析了基于CPA技术脉冲激光装置单路和多路相干合成中的问题,建立了对应的控制模型,并针对实际情况进行了数值计算,得到主要影响因素的误差范围和补偿方法。在此基础上制定了多路高能短脉冲激光装置相干合成技术路线,并在离线实验平台上验证了技术路线中的部分关键技术。论文在以下几个方面取得了对大型高能短脉冲激光相干合成具有建设意义的结果:
     1、根据脉冲激光相干合成理论,考虑普遍的相位情况,对多路脉冲激光相干合成聚焦进行了系统的研究。理论上以衍射光学为基础,以锁相控制为目的,对影响相干合成效果的因素进行了分解,定量分析了光束近场分布、光束排布、束腰半径、系统f数、光束间相位差、光束指向性误差、波前畸变、脉冲宽度和光谱色散误差等对相干合成焦斑时空特性的影响,给出了其中某些重要因素的误差指标,建立了对应的时间和空间相干合成控制模型,为多路短脉冲的相干合成设计提供了理论基础和参数依据。
     2、根据误差范围和相干合成时空控制模型,给出了多路高能短脉冲激光装置相干合成技术路线,并对其中的相位监测和高精度光束相位锁定等关键技术进行了实验验证。在大型固体脉冲激光装置中由于脉冲激光的重复频率很低,在准直和调节脉冲激光时,往往采用连续激光模拟脉冲激光在激光链路中的传输,因此在验证实验中采用了连续激光光源,结合随机并行梯度下降(SPGD)算法,在振动实验环境下的离线光学平台上实现了2路连续激光较好的相干合成效果,这种相位调整和监测机构对脉冲激光装置上实现相干合成具有一定的借鉴意义。
     3、高能短脉冲激光装置的压缩器使用了阵列光栅,导致单光束经过压缩器后变成两支或多支并行的子光束,受到外界振动的影响,子光束之间的相位关系呈随机变化,因此需要解决单路光中子光束之间的相干合成。结合脉冲激光相干合成理论和复杂光栅压缩器的相位特点,建立了阵列光学元件的光学模型。通过光线几何追迹和惠更斯-菲涅尔衍射理论,计算了阵列光栅压缩器和阵列抛面镜的远场焦斑空间分布;在分析合成脉冲的时间特性时,从Treacy构型压缩器出发得到了阵列双光栅对压缩器输出脉冲群延迟和展宽的表达式,以上方法可以较为简便地处理阵列化光学元件相干合成问题。
     4、为了更好地开展阵列光学元件相位锁定工程化研究,建立了一个光机电集成模型,用以分析不同支撑结构在外界振动激励下对远场焦斑的影响和经过闭环控制后对远场焦斑的改善。在最终设计加工的2×2阵列光学支撑镜架上,实现了位移传感器和压电驱动器的闭环锁相控制和远、近场高速CCD视频采集相机和压电驱动器的自动锁相,锁相后的轴向错位均方根误差为几个纳米,锁相时间大于1小时,符合阵列化结构相干合成的工程化要求。
     5、Von Karman干扰谱能较好地描述实际高能短脉冲装置中激光束的波前畸变水平,光束相位关系则反映了光束的相干性,作为高能短脉冲相干合成研究的补充,建立了基于Von Karman干扰谱和随机相位屏的集成模型,用于分析高能短脉冲激光在畸变波前和不同合成方式条件下的远场焦斑,该模型的计算结果与文献上的实验报道结果吻合较好,建立集成模型对多路高能激光空间合成焦斑的仿真和优化提供了极大的便利。
     考虑到高能短脉冲激光装置目前的研究现状,论文在进行相干合成聚焦研究时更多地考虑了2×2阵列单元,因为此类大型激光装置的基本编组单元为一个Quad(2×2)阵列结构,从基本单元出发能与实际情况结合得更为紧密并具有较好的可扩展性和应用价值。
With the scientific needs for the high-energy super-high density physics research, the coherent combination of multi-way short pulses with hundreds kilojoule output energy to obtain extreme physical state has become the goal of the researchers. The ultimate output power of single laser is limited by nolinear effect, facet fracture, thermal lens and compressor grating size. Meanwhile, coherent combination of multiple laser beams provides an effective approach for achieving high-energy super-high density focal spot, and the goal for coherent combination on the large-scale solid-state laser facility has been proposed by the main high-energy short-pulse research institute in the worldwide range. The size and threshold of the compression gratings determine the maximum output energy for all short-pulse laser systems using the chirped-pulse-amplification (CPA) technology. Production of gratings with big size is technically difficult and financially impractical, so most researchers consider that the most efficient and financial method is using phased array grating to increase the grating size. Because the arrayed grating is applied here, the single laser beam divided into two ways should be coherently combined firstly, which is the notable character of high-energy short-pulse laser facility.
     At present, the coherent combination research of high-energy short-pulse laser is focusing on concept exploring and preliminary design. The general researches on the issue are studied in this paper, the coherent combination based on the CPA technology is systematically analyzed and the corresponding physical model is setup. The numerical simulation results with practical considerations give the error ranges of chief influencing factors, which is the foundation for designing the coherent combination technology programme. The key technology of phase-locking is demonstrated in the laser coherent combination. As the results, the following progresses have been made:
     1. Systematic study about the coherent combined focusing of mulit-way high-energy short-pulse lasers is made by theoretical method. Based on diffractive optics, the influencing factors, including near-field amplitude distribution, beam layout, laser waist radius, f number, phase difference between beams, beam directivity, wavefront distortion, pulse spectrum width and dispersion, on the spatial and temporal coherence characteristics are analyzed both qualitatively and quantitatively, and the corresponding error tolerances and physical models are also given which is very helpful for designing multi-channel short-pulse coherent combination.
     2. The coherent combined technical route is described to produce ultra-high peak power density. Because of the low repetitive frequency of pulse laser, the pulse laser soure is instead by countinuous laser source when collimating and adjusting laser line. In the experimental demonstration, the key techniques of phase-locking between beams have been tested to achieve 2-way countinuous laser beams coherent combination using stochastic parallel gradient descent (SPGD) algorithm under the vibrating laboratory condition, which can be drawn lessons by engineering facility.
     3. The high-energy short-pulse laser compressor uses the array grating, which makes the single beam seperate into two-way beams. The phase between the beams stochastically changes by the external vibrating effect. Therefore, the coherent combination of single beam lines should be solved firstly. Combining the coherent combinatino theory and grating compressor phase character, the model for array optical elment is setup. The geometric tracing and the Huygens - Fresnel diffraction theory are used to handle the far-field spatial distribution of array grating compressor and array parabolic mirror. The array grating compressor is dispersion compensation component, and the analytical expressions of a pulse delay and pulse broadening are deviated from Treacy compressor configuration to describe the temporal characteristics of the combined waveform,
     4. In order to better carry out engineering studies on optical array phase-locking, an optical-electromechanical integrated model is established to analyze the far-field focal spot under vibration motivation of different supporting structures. The focal-spot shape is improved in the closed-loop feedback mode. Finally, the closed-loop system consisted of the displacement sensors and piezoelectric actuators and the automatic phase-locking by the far-field CCD camera and actuators are achieved on the optical supporting shelf. After phase locking, the root-mean-square error is limited within several nanometers and the stablization time is over one hour, which meets the engineering requirements for arrayed system.
     5. The Von Karman disturbing spectrum is preferably used to describe the wavefront distortion, and the coherence between beams is determined by phase relationship. For the supplement of coherent combination cases of large-size high-energy laser beams, the Von Karman disturbing spectrum and random phase screens are used to build an integrated model to simulate coherent combination, non-coherent combination and partial-coherent combination under the distorted wavefronts, and the simulations result in good agreement with the reported experimental results. The integrated model is very convenient for simulating and optimizing the multi-way short-pulse combined focal spot.
     Considering the current study of the high-energy short-pulse laser facility, the studies on combined focusing and tiling technique in this paper more focuses on 2×2 array unit. Because the Quad (2×2) structure is taken as basic grouping unit in such large-scale laser facility, starting from the basic unit can be more closely combined with the actual situation and has good scalability and application value.
引文
[1] D. Clery. Taking laser science to the extreme [J]. Science, 2010, 328:806-807.
    [2] R. L. Fork, B. I. Greene, C. V. Shanl. Generation of optic lasers shorter than 0.1 psec by colliding pulse mode locking [J]. Appl Phys Lett, 1981, 38(9):671-673.
    [3] J. A. Valdmanis, R. L. Fork, J. P. Gordon. Generation of optical pulse as short as 27 femtoseconds directly from a laser balancing self-phase modulati on group-velocity dispersion saturable absortion and saturable gain [J]. Opt. Let., 1985, 10:131-133.
    [4] G. F. Chen, A Finch, W. Sibbett, et al. Generation and measurement of 19 femotosecond light pulses [C]. Proc. of SPIE. 18th ICHSPP, 1988, 1032:432-436.
    [5] J. D. Kafka, M. L. Watts, and J. W. Pieterse. Infrared-pulse generation using a subpicosecond OPO [C]. In Ultrafast Phenomena IX, P. F. Barbara, 1994, 185–186.
    [6] D. E. Spence and C. L. Tang. Characterization and applications of high repetition rate, broadly tunable, femtosecond optical parametric oscillators [J]. IEEE J. Sel. Top. Quantum Electron. 1995, 1:31–43.
    [7] J. D. Kafka, M. L. Watts, J. W. Pieterse, and R. L. Herbst. Mid-infrared pulse generation using a subpicosecond OPO [J]. Appl. Phys. B 60, 1995, 449–452.
    [8] M. S. Pshenichnikov, W. P. de Boeij, and D. A. Wiersma. Generation of 13-fs, 5-MW pulses from a cavity-dumped Ti:sapphire laser [J]. Opt. Lett., 1994, 19(8): 572-574.
    [9] M. T. Asaki, C. Huang, D. Garvey, et al. Generation of 11fs pulses from a self-mode-locked Ti:sapphire laser [J]. Opt. Lett., 1993, 18(3): 203- 204.
    [10] A. Stingl, M. Lenzner, Ch. Spielmann, F. Krausz, and R. Szipocz. Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser [J]. Opt. Lett., 1995, 20(6):602-604.
    [11] A. Baltuska, Z. Wei, M. S. Pshenichnikov, and D. A. Wiersma. Optical pulse compression to 5fs at a 1MHz repetition rate [J]. Opt. Lett., 1997, 22(2):102-104.
    [12] D. Strickland, G. A. Mourou. Compression of amplified chirped optical pulses [J]. Optics Communications, 1985, 56:219-222.
    [13] G. A. Mourou. Ultra-intense and Ultra-fast laser development [C]. ICUIL, Oct 27-31, Shanghai-Tongli, 2008.
    [14] B. J. Legarrec, C. Hernandez-Gomez, T. Winstone, et al. HiPER laser architecutre principles [J]. Inertial Fusion Sciences and Applications 2010, 032020.
    [15] F. Amiranoff, F. Auge, H. Backe, et al. Proposal for a EUROPEAN extreme light infrastructure (ELI) [R], 2007.
    [16] T. Tajima. Scientific Advisory Committee: Report on the ELI Science [R], 2009.
    [17] M. D. Perry, B. W. Shore. Petawatt Laser Report [EB/OL]. http://library.llnl.gov/uhtbin/cgisirsi/0/0/0/60/55/X.
    [18] M. D. Perry. Crossing the petawatt threshold [EB/OL].http://www.llnl.gov/str/pdfs/12_96.1.pdf.
    [19] M. D. Perry, D. Pennington, B. C. Staurt, et al. Petawatt laser pulses [J]. Optics Letters, 1999, 24:160-162.
    [20] OMEGA EP system operationgs namual volume VII-system description [R], S-AD-M-005, 2006.
    [21] J. Qiao. Acrivation of the OMEGA EP high-energy, short-pulse laser system [R]. International conference on ultrahigh intensity lasers Shanghai-Tongli, 2007.
    [22] D. Clery. What’s next for ICF [J]. Science, 2009, 234:328-329.
    [23] D. Clery. Laser fusion energy poised to ignite [J]. Science, 2010, 328:808-809.
    [24] Y. Kitagawa, R. Kodama, K. Takahashi, et al. 30-TW laser-plasma interactions at ILE, Osaka [J]. Fusion Engineering and Design, 1999, 44:261-265.
    [25] Y. Kitagawa, H. Fujita, R. Kodama, et al. Perpulse-free petawatt laser for a fast ignitior [J]. IEEE J. Quantum Electronics, 2004, 40(3):281-293.
    [26] K. Mima. Fast ignition in Japan [EB/OL]. http://www.llnl.gov/str/pdfs/12_96.1.pdf.
    [27] K. Yamakawa, M. Aoyama, S. Matsuoka, et al. 100-TW sub-20-fs Ti:sapphire laser system operating at a 10-Hz repetition rate [J]. Optics Letters, 1998, 23:1468-1470.
    [28] M. Aoyama, K. Yamakawa, Y. Akahane, et al. 0.85-PW 33-fs Ti:sapphire laser [J]. Optics Letters, 2003, 28:1594-1596.
    [29] C. N. Danson, P. A. Brummitt, R. J. Clarke. Vulcan petawatt a high intensity interaction facility [J]. Fusion, 2004, 44:239-249.
    [30] J. P. Zou, D. Descamps, P. Audebert, et al. The LULI 100-TW Ti :sapphire/Nd :glass laser : a first step toward a high performance petawatt facility [C]. Proc SPIE, 1998, 2492:94-97.
    [31] N. Alanchot. Sub-100TW Pulses generation with optical intensities in excess of 1019W/cm2 [C]. Proc SPIE, 1995, 2633:310-315.
    [32]徐至展, Vigroux L, Saviot F,等.输出2TW/45fs的掺钛蓝宝石超短脉冲强激光系统[J].中国科学, 1997, 27:640-645.
    [33]魏志义,张杰,夏江帆,等.高效率太瓦级飞秒掺钛蓝宝石激光装置[J].中国科学(A),2000, 30:1046-1050.
    [34]黄小军,魏晓峰,彭翰生,等. 20TW超短脉冲激光装置的研制[J].强激光与粒子束, 2003, 15:1191-1194.
    [35]黄小军,彭翰生,魏晓峰,等. 100TW级超短超强钛宝石激光装置[J].强激光与粒子束, 2005, 17:1685-1688.
    [36] G. Xu, T. Wang, Z. Y. Li, Y. P. Dai, et al. 1kJ Petawatt laser system for SG-II-U Program [J]. APLS2008, Nagoya Japan, Jan 30-Feb l, 2008.
    [37] M. H. Key. Fast ignition [R]. LLNL-PRES-415135, July 26-Aug 1, 2009.
    [38] Large-scale diffraction optics and adaptive optics for space [EB/OL]. http://www.llnl.gov/tid/lof/documents/pdf/240570.pdf.
    [39] Winstone T B, Danson C N, Frankiewicz A Z, et al. Operational experience of petawatt gratings on Vulcan [EB/OL]. http://www.clf.rl.ac.uk/reports/2002-2003/pdf/68.pdf
    [40]徐向东,洪义麟,刘颖,等.超高强度激光脉冲压缩用衍射光栅[J].物理, 2005, 34:748-752.
    [41]赵博,齐向东.衍射光栅相位拼接的计算分析[J].光学技术,2000,26:385-391.
    [42] Demonstration of real-time phase-locked alignment of tiled gratings for chirped pulse amplified lasers. LLE Review Volume 100 [EB/OL]. http://www.lle.rochesteredu/pub/review/v100/100Demo02.pdf.
    [43] Y. L. Zuo, X. F. Wei, X. Wang, et al. Eliminating the longitudinal piston error between tiled gratings by angle tuning [J]. Optics Letters, 2007, 32:280-282.
    [44] N. Blanchot, G. Marre, J. Neauport, et al. Synthetic aperture compression scheme for multi-petawatt high energy laser [J]. Applied Optics, 2007, 45:6013-6021.
    [45] M. H. Key. Fast ignition discussion points [R]. UCRL-PRES, Sept. 16-18, 2008.
    [46] N. Alexander, F. Amiranoff, P. Aguer, et al. The European high power laser energy research facility [R]. Technical background and conceptual design, RAL-TR-2007-008, 2007.
    [47]刘泽金,周朴,王小林,等.激光相干合成的历史、现状与发展趋势[J].中国激光,2010,37(9):2221-2234.
    [48]周朴.光纤激光相干合成技术研究[D].长沙:国防科学技术大学研究生院, 2009.
    [49]谈洪,朱宗厚.气动激光技术[M].北京:国防工业出版社, 1978.
    [50]徐启阳,王新兵.高功率连续CO2激光器[M].北京:国防工业出版社, 2000.
    [51] C.J.Buczek, R.J.Freiberg. Hybrid injection locking of higher power CO2 lasers [J]. IEEE J. Quantum Electron, 1972, 8(7): 641~650.
    [52] D. G. Youmans. Phase locking of adjacent channel leaky waveguide CO2 lasers [J]. Appl. Phys. Lett., 1984, 44:365~367.
    [53] L. A. Newman, R. A. Hart, J. T. Kennedyet al. High power coupled CO2 waveguide laser array [J]. Appl. Phys. Lett., 1986, 48, 1701~1703.
    [54] V.V.Vasil’tsov, Y.V.Zelenov, Y.A.Kurushin, et al., Synchronization of high-power CO2 lasers [C]. Proc. of SPIE, 1993, 2109: 107.
    [55] V.V.Vasil’tsov, V.S.Golubev, Y.V.Zelenov, et al. Using diffraction optics for formation single-lobe far-field beam intensity distribution in waveguide CO2-lasers synchronized arrays [J]. Proc.of SPIE, 1993, 2109: 122~128.
    [56] I.V.Bahanov, A.F.Glova, E.A.Lebedev. Output characteristics of the MKL-10 multichannel CO2 laser [J]. Quantum Electron, 1993, 23: 184~185.
    [57] A.F.Glova, S.V.Drobyazko, V.V.Likhanskii. Multi-beam CO2 lasers and theirs applications [C]. CAOL, 2005, 43~46.
    [58] J.Katz, S.Margalit and A.Yariv. Diffraction coupled phase-locked semiconductor laser array [J]. Appl.Phys.Lett., 1983 42(7): 554~556.
    [59] J.R.Leger, G.J.Swanson, and M.Holz. Efficient side lobe supression of laser diode arrays [J]. Appl.Phys.Lett., 1987, 50(16):1044~1046.
    [60] M.Jansen, J.J.Yang, S.S.Ou, et al. Diffraction-limited operation from monolithically integrated diode laser array and self-imaging (Talbot) cavity [J]. Appl.Phys.Lett., 1989, 55(19): 1949~1951.
    [61] W. Wang, K. Nakagawa, S. Sayama.Coherent addition of injection-locked high-power AlGaAs diode lasers [J]. Opt.Lett., 1992, 17(22): 1593~1595. J.Buus, P.J.Williams, I.Goodridge, et al. Surface-emitting two-dimensional
    [62] coherent semiconductor laser array [J]. Appl.Phys.Lett., 1989, 55(4): 331~333.
    [63] K.H. No, R.J. Blackwell, Robert W. Herrick. Monolithic integration of an amplifier and a phase modulator fabricated in a GRINSCH-SQW structure by placing the junction below the quantum well [J]. IEEE Photo.Tech.Lett., 1993, 5(9): 990~993.
    [64] J. S. Osinski, D. Mehuys, D. F. Welch. Phased array of high-power, coherent, monolithic flared amplifier master oscillator power amplifiers [J]. Appl. Phys. Lett., 1995, 66 (5): 556~558.
    [65] J.Levy, and K.Roh. Coherent array of 900 semiconductor laser amplifiers [C]. Proc.SPIE. 1995, 2382: 58~69.
    [66]李晋闽.高平均功率全固态激光器发展现状、趋势与应用[J] .激光与光电子学进展, 2008, 45(7):16~29.
    [67]梅遂生.向100kW进军的固体激光器[J].激光与光电子学进展, 2005, 42(10): 2~8.
    [68] M.Oka, H.Masuda, Y.Kaneda, et al. Laser-diode-pumped phase-locked Nd: YAG Laser Arrays [J]. IEEE J. Quantum Electron, 1992, 28(4) :1142~1147.
    [69] Y. Kono, M.Takeoka, K.Uto, et al. A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity [J]. IEEE J. Quantum Electron, 2000, 36(5):607~614.
    [70]胡志平,宋如华,杨大让等.激光器相控阵列的光束合成[J].激光技术,1991, 8: 232~238.
    [71] C. P. Wang, Master and slave oscillator array system for very large multiline lasers [J]. Appl.Opt., 1978, 17(1):83~86.
    [72] G. Coffer, J. M. Bernard, R. A. Chodzko, et al. Experiments with active phase matching of parallel-amplified Multiline HF laser beams by a phase-lockedMach-Zehnder interferometer [J]. Appl.Opt., 1983, 22(1): 142~148.
    [73] J. M. Bernard, R.A. Chodzko, and J. G. Coffer. Master oscillator with power amplifiers: performance of a two-element cw HF phased laser array [J]. Appl.Opt., 1989, 28(21): 4543~4547.
    [74]任国光.高能激光武器的现状与发展趋势[J].激光与光电子学进展,2008, 45(9):62~69.
    [75] Electro-Optical integrated circuits (ICs) and components. [EB/OL] http://www.eospace.com.
    [76]杨若夫,杨平,沈锋.基于能动分块反射镜的两路光纤放大器相位探测及其相干合成实验研究[J].物理学报, 2009, 58(12):8297~8301
    [77]郑轶,王晓华,沈锋,李新阳.基于能动分块反射镜的七路激光阵列倾斜校正与相干合成实验研究[J].中国激光, 2011, 38(8): 0802009
    [78] Northrop Grumman Space Technology, El Segundo, CA. [EB/OL] http://www.irconnect.com/noc/press/pages/news_releases.html?d=161575.
    [79] K. L. Baker, D. Homoelle, E. Utterback, et al. Phasing rectangular apertures [J]. Optics Express, 2009, 17(22): 19551-19565.
    [80] K. L. Baker, E. A. Stappaerts, D. C. Homoelle, et al. Interferometric adaptive optics for high-power laser pointing and wavefront control and phasing [J]. J. Micro/Nanolith. MEMS MOEMS, 2009, 8(3):033040.
    [81] K. L. Baker, D. Homoelle, E. Utternback, et al. Interferometric adaptive optics testbed for laser pointing, wave-front control and phasing [J]. Optics Letters, 2009, 17(19):16696-16709.
    [82] K. L. Baker, E. A. Stappaerts. A single-shot pixellated phase-shifting interferometer utilizing a liquid-crystal spatial light modulator [J]. Optics Letters, 2006, 31(6):733-735.
    [83] K. L. Baker, E. A. Stappaerts, D. Gavel, et al. Breadboard testing of a phase-conjugate engine with an interferometric wave-front sensor and a microelectromechanical systems-based spatial light modulator [J]. Applied Optics, 2004, 43(30):5585-5593.
    [84] K. L. Baker, E. A. Stappaerts, D. Gavel, et al. High-speed horizontal-path atmospheric turbulence correction with a large-actuator-number microelectromechanical system spatial light modulator in an interferometric phase-conjugation engine [J]. Optics Letters, 2004, 29(15):1781-1873.
    [85] K. L. Baker. Interferometric wavefront sensors for high contrast imaging [J]. Optics Express, 2006, 14(23):10970-10975.
    [86] K. L. Baker, E. A. Stappaerts, S. C. Wilks, et al. Performance of a phase-conjugate engine implementing a finite-bit phase correction [J]. Optics Letters, 2004, 29(9):980-982.
    [87] D. Homoelle, K. L. Baker, P. K. Patel. Interferometric adaptive optics for high-power laser beam correction in fast ignition experiments [C]. IFSA 2010, 2010, 032007.
    [88] N. Muyanaga, H. Azechi, K. A. Tanaka, et al. 10-kJ PW laser for FIREX-I program [J]. J. Phys. IV France, 2006, 133:81-87.
    [89] N. Miyanaga, H. Azechi, T. Jitsuno, et al. Development of 10-kJ PW laser for FIREX-I program [C]. Inertial Fusion Sciences and Applications 2006, IF/P5-2.
    [90] M. H. Key. Inertial fusion energy by fast ignition [R]. UCRL-PRES-230927, May 17, 2007.
    [91] N. Muyanaga, H. Azechi, K. A. Tanaka, et al. FEREX petawatt laser development for fast ignition research at ILE, Osaka [C]. Inertial Fusion Sciences and Applications 2004, ThF1.1, 507-511.
    [92] T. J. Zhang, M. Yonemura, Y. Kato. An array-grating compressor for high power chirped-pulse-amplification lasers [J]. Optics Communications, 1998, 145:367-376.
    [93] T. J. Kessler, J. Bunkenberg, H. Huang, et al. Demonstration of coherent addition of multiple gratings for high-energy chirped-pulse-amplified lasers [J]. Optics Letters, 2004, 29:635-637.
    [94] J. Bunkenburg, T. Kessler, W. Skulski, et al. Phase-locked control of tiled-grating assemblies for chirped-pulse-amplified lasers using a Mach-Zehnder interferometer [J]. Optics Letters, 2006, 31:1561-1563.
    [95] W. Xiao, Q. H. Zhu, Y. L. Zuo, et al. Matched wavelength and incident angle for the diagnostic beam to achieve coherent grating tiling [J]. Chinese Optics Letters, 2008, 6(4):241-243.
    [96] Development and demonstration of large-aperture tiled-Grating compressors for the OMEGA EP petawatt-class laser system [R]. LLE review, 115, 113-119.
    [97] Demonstration of real-time, phase-locked alignment of tiled gratings for chirped-pulse amplified Lasers [R]. LLE review, 100, 242-251.
    [98] The Coherent Addition of Gratings for Pulse Compressionin High-Energy Laser Systems [R]. LLE review, 96, 207-211.
    [99] J.Qiao et al. Demonstration of large-aperture tiling-grating compressors for high-energy, petawatt-class, chirped-pulse amplification systems [J]. Optics Letters, 2008, 33(15):1684-1686.
    [100] Qiao et al. Large-aperture grating tiling by interferometry for petawatt chirped-pulse–amplification systems [J]. Optics Express, 2007, 15:9562-9574.
    [101] A Cotel et al. Phased-array grating compression for high-energy chirped pulse amplification lasers [J]. Optics Express, 2007, 15(5):2742-2752.
    [102] A. Cotel, C. Crotti, P. Audebert, et al. Tiled-grating compression of multiterawatt laser pulses [J]. Optics Letters, 2007, 32(12):1749-1751.
    [103] N. Blanchot, G. Marre, J. Neauport, et al. Synthetic aperture compression schemefor a multipetawatt high-energy laser [J]. Applied Optics, 2006, 45(23):6013-6021.
    [104] N. Blanchot, E. Bar, G. Behar, et al. Experimental demonstration of a synthetic aperture compression scheme for multi-Petawatt high-energy lasers [J]. Optics Express, 2010, 18(10):10088-10097.
    [105] Y. Izava, K. Mima, H. Azechi, et al. Laser fusion research with GEKKO-II and petawatt laser system at Osaka [EB/OL]. http://www-pub.iaeaorg/MTCD/Meetings/PDFplus/fusion-20-preprints/OV_3-2.pdf.
    [106] H. Habara, G. Xu, T. Jitsuno, et al. Pulse compression and beam focusing with segmented diffraction gratings in a high-power chirped-pulse amplification glass laser system [J]. Optics Letters, 2010, 35:1783-1785.
    [107]左言磊.采用拼接光栅的啁啾脉冲压缩器的研究[D].绵阳:中国工程物理研究院激光聚变研究中心, 2007.
    [108] B. Pierre. The Design and Construction of Large Optical Telescopes [M]. Springer, 2003, 131-133
    [109] D. R. Coulter, D. N. Jacobson. Technology for the next generation space telescope [C]. Proc of SPIE, 2000, 4013:784-794.
    [110] P. Spanoudakis, L. Zago, O. Chetelat, et al. Extremely high-resolution tip-tilt-piston mirror mechanism for the VLT-NAOS field selector [C]. Proc. of SPIE, 2000, 4007-48.
    [111] P. Antoine, M. Fruit. SiC Telescope demonstrator (mirrors & structures) opto-mechanical performances [C]. Proc. Design and Engineering of Optical Systems II, 1999, 3737:418-428.
    [112] PI corporation. Piezo nano positioning ispirations 2009 [M]. Product manual.
    [113] S. Backus, C. G. Durfee, M. M. Murnane, et al. High power ultrafst lasers [J]. Rev. Sci. Instrum., 1998, 69:1207-1223.
    [114]玻恩M,沃尔夫E.光学原理[M].北京:科学出版社, 1978.
    [115] C. Haefner, J. Heebner, J. Dawson, et al. Characterization of the advanced radiographic capability front end on NIF [C]. 2009 UFO/HFSW Conf. Proc., 2009.
    [116] J. Neauport, N. Blanchot, C. Rouyer, et al. Chromatism compensation of the PETAL multipetawatt high-energy laser [J]. Appl. Opt., 2007, 46:1568–1574.
    [117] D. Homoelle, J. K. Crane, M. Shverdin, et al. Phasing beams with different dispersions and application to the petawatt-class beamline at the National Ignition Facility [J]. Applied Optics, 2011, 50(4):554-561.
    [118] G. P. Agraway. Higher-order dispersion in Nonlinear Fiber Optics [M]. Springer-Verlag, 1995, 75–81.
    [119] R. Hartley, M. Kartz, W. Behrendt, et al. Wavefront correction for static and dynamic aberrations to within 1 second of the system shot in the NIF beamlet demonstration facility [R]. UCRL-JC-124858, 1996.
    [120] S. W. Bahk, E. Fess, B. E. Kruschwitz, et al. A high-resolution, adaptive beam-shaping system for high-power lasers [J]. Optics Express, 2010, 18(9):9151-9163.
    [121] J. W. Evans, B. Macintosh, L. Poyneer. Demonstrating sub-nm closed loop MEMS flattening [J]. Optics Express, 2006, 14(12):5558-5570.
    [122] K.L. Baker, D.A. Silva, L.A. Poyneer, et al. High-contrast imaging testbed [C]. Proc. of SPIE, 2008, 688801-1-688801-8.
    [123] S. D. Yang. Ultrafast Optics [M]. P13-1-P13-13.
    [124]徐钟济.蒙特卡罗[M].上海:上海科学技术出版社, 1985.
    [125]陈碧芳.超短激光脉冲测量技术的发展[EB/OL]. http://wenku.baidu.com/view/7bd41d87ec3a87c24028c4d9.html.
    [126]柴路,高峰,王清月.飞秒脉冲测量技术的新进展[J].光电子激光, 2002, 13(6):647.
    [127]胡东霞.高功率固体激光系统波前校正技术优化研究[D].绵阳:中国工程物理研究院激光聚变研究中心, 2003.
    [128] G. Chanan, M. Troy. Phasing the mirror segments of the Keck telescopes: the broadband phasing algorithm [J]. Applied Optics, 1998, 37(1):140-155.
    [129] N. Blanchot, G. Marre, J. Néauport, et al. Synthetic aperture compression scheme for a multipetawatt highenergy laser [J]. Appl. Opt., 2006, 45:6013–6021.
    [130] J. R. Ramos , J. J. Fuensalida. Phasing of segmented mirrors : new algorithm and numerical results for piston detection [C]. Proc of SPIE, 2000, 4003:270-278.
    [131] G. Chanan, M. Troy, C. Ohara. Phasing the Primary mirror segments of the keck telescopes : a comparison of different techniques [C]. Proc of SPIE, 2002, 4003:188-202.
    [132] Ling Liu. Analysis and experimental demonstration of conformal adaptive phase-locked fiber array for laser communications and beam projection applications [D]. Maryland: Institute for systems research and department of electrical and computer engineering, University of Marylad at College Park, 2008.
    [133] M. Hornung, R. Fodefeld, M. Siebold, et al. Alignment of a mulitgrating mosaic compressor in a PW-class CPA-laser [C]. Proc. of SPIE, 2005, 59622K-1-59622K-10.
    [134] G. Chanan. Phasing the mirror segments of the Keck telescopesⅡ: the narrow-band phasing algorithm [J]. Applied Optics, 2000, 39 (25):4706-4714.
    [135] L. V. Atta, M. Perez, R. Zacharias, et al. The wavefront control system for the national ignition facility [R]. LLNL-W-7405-Eng-8.
    [136] V. Milanovi?, D. T. McCormick, G. Matus. Gimbal-less Monolithic Silicon Actuators For Tip-Tilt-Piston Micromirror Applications [J]. IEEE J. of Select Topics in Quantum Electronics, 2004, 109(3):462– 471.
    [137] V. Milanovi?, G. Matus, D. T. McCormick. Tip-Tilt-Piston Actuators for High Fill-Factor Micromirror Arrays [M]. Hilton Head 2004 Solid State Sensor, Actuator andMicrosystems Workshop, 2004.
    [138]石鸿斌,程兆谷,许国良等.激光束经离轴抛物面镜聚焦后光斑特性的研究[J].中国激光, 2000,27(10):880-886.
    [139]罗曦,陈培锋,王英.离轴90°抛物面经焦斑特性分析[J].光学学报, 2009, 29(3): 682-687.
    [140] Zemax development corporation. Optical design program user’s guide [EB/OL]. www.zemax.com
    [141]李朝阳.千焦耳高能拍瓦激光装置脉冲压缩特性分析[D].绵阳:中国工程物理研究院, 2008.
    [142] A. Wirth. Cophasing Methods for segmented mirrors [C]. Proc of SPIE, 2000, 4003:250 -261.
    [143] G. Chanan. Phasing the mirror segments of the W. M. Keck telescope [C]. SPIE, 2199: 622-637.
    [144] G. Chanan, J. Nelson, T. Mast, et al. The W. M. KECK telescope phasing camera system [C]. Proc. of SPIE, 2198:1139-1150.
    [145] F. E. Romero, F. G. Agustin, A. C. Rodriguez. Phasing a segmented mirror using the subapertures method [C]. Proc. Of SPIE, 5776:546-552.
    [146] T. Harimoto. Far-field pattern analysis for an array grating compressor [J]. Jpn. J. Appl. Phys., 2004, 43(4A):1362=1365.
    [147] J. Pazder, S. Roberts, M. Smith, et al. The optical modeling tools for the Canadian very large optical telescope integrated model [EB/OL]. www.hia-iha.nrc-cnrc.gc.ca/VLOT
    [148] S. Roberts, J. Pazder, J. Fitzsimmons, et al. Integrated modeling of the Canadian very large optical telescope [EB/OL]. www.hia-iha.nrc-cnrc.gc.ca/VLOT.
    [149] M.D. Lieber. Development of the Ball integrated telescope model (ITM) [C]. Proc of SPIE., 4757-02.
    [150] Saeed moaveni.有限元分析-ANSYS理论与应用[M].北京:电子工业出版社,2003.
    [151]李皓明,周田朋,刘相新. ANSYS工程计算应用教程[M].北京:中国铁道出版社,2003.
    [152]韩杰才,张玉民,赫晓东.大尺寸轻型SiC光学反射镜研究进展[J].宇航学报,2001,22(11):124-132.
    [153]刘金琨.先进PID控制及其MATLAB仿真[M].北京:中国铁道出版社,2004.
    [154] B. Wang, Y. Wang, J. F. Zu, et al. Design and characteristics of piezoelectric actuator with single neuron adaptive PID controller for the grating tiling [C]. Proc of SPIE, 2007, 6423:64233E-1-64233E-6.
    [155] Y. Wang, Z. G. Liu, F. Bo, et al. Design and Control of an Ultraprecision Stage Used in Grating Tiling [J]. Chinese journal of mechanical engineering, 2007, 20:1-4.
    [156] M. A. Vorontsov, V. P. Sivokon. Stochastic parallel-gradient-descent technique for high-resolution wave-f ront phase-distortion correction [J]. J. Opt. Soc. Am. A, 1998, 15 (10):2745-2758.
    [157] M. A. Voront sov , G. W. Carhart , M. Cohen et al . . Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration [J]. J. Opt. Soc. Am. A, 2000,17(8):1440-1453.
    [158] T. Weyrauch , M. A. Voront sov , T. G. Bifano et al. Microscale adaptive optics: wavefront control wit h aμ-mirror array and a VLSI stochastic gradient descent controller [J]. Applied Optics, 2001, 40(24):4243-4253.
    [159] B. Lu, H. Ma. Coherent and incoherent combinations of off-axis Gaussian beams with rectangular symmetry [J]. Optics communications, 1999, 171:185-194.
    [160] Y. X. Ma, P. Zhou, X. L. Wang, et al. Coherent beam combination with single frequency dithering technique [J]. Optics letters, 2010, 35(9):1308-1310.
    [161] C. J. Li and B. D. Lu. Coherent and incoherent combinations of partially coherent beams beyond the paraxial approximation [J]. Optics & Laser technology, 2010, 42:419-427.
    [162] Distributed phase plates for super-gaussian focal-plane irradiance profiles [R]. LLE review, 63, 126-130.
    [163] V. Malka, J. Faure, S. Huller, et al. Enhanced spatiotemporal laser-beam smoothing in gas-jet plasma [J]. Physical review letters, 90(7):075002-1-075002-4.
    [164] I. Thomas, S. Dixit, M. Rushford. Preparation of random phase plates for laser beam smoothing [R]. UCRL-JC-118504, 1994.
    [165] J. Garnier, C. Gouedard, L. Videau, et al. Which optical smoothing for LMJ and NIF [C]. Proc of SPIE., 3047,260-271.
    [166] E. Tervonen, A. T. Friberg, J. Turunen. Gaussian Schell-model beams generated with synthetic acousto-optic holograms [J]. J. Opt. Soc. Am. A 1992, 9:796-803.
    [167] X. F. Xiao, V. David. Wave optics simulation approach for partial spatially coherent beams [J]. Opt Express , 2006 , 14(16): 6896-6992.
    [168] X. F. Xiao, V. David. Wave optics simulation of pseudo-partially coherent beam propagation through turbulence: application to laser communications [C]. Proc of SPIE. 2006 , 63040L.
    [169] X. F. Xiao, V. David. Wave optics simulation of partially coherent beams [C]. Proc of SPIE. 2005, 58920Q.
    [170] J. K. Lawson, D. A. Aikens, R. E. English, et al. Power spectral density specifications for high-power laser systems [R]. UCRL-JC-123105, 1996.
    [171] R. K. Tyson. Principle of adaptive optics [M]. Boston:academic press, 1991.
    [172] P. Zhou, Y. X. Ma, X. L. Wang, et al. Coherent beam combination of threetwo-tone fiber amplifiers using stochastic parallel gradient descent algorithm [J]. Opt. Lett., 2009, 34:2939-2943.
    [173] Z. J. Liu, P. Zhou, X. J. Xu, et al. Diode pumped solid state laser system based on partially coherent beam combination [C]. The 19th national laser conference, 2009.
    [174] Y. X. Ma, P. Zhou, X. L, Wang, et al. Coherent beam combination with single frequency dithering technique [J]. Optics Letters, 2010, 35(9):1308-1310.
    [175] J. H. Nuckolls, L. Wood, H. A. Thiessen, et al. Lasers and controlled thermonuclear fusion [J]. Nature, 1972, 239(5368):129-130.
    [176]胡仁宇.王淦昌老师—我国惯性约束聚变研究的开创者与奠基人——纪念王淦昌老师诞辰100周年[J].物理, 2007 , 36 (5) :346-349
    [177]林尊琪.为惯性约束聚变研究事业掌舵的人[C].北京:原子能出版社, 2006.
    [178]范滇元,张小民.激光核聚变与高功率激光:历史与进展-激光发明50周年专题[J].物理, 2010, 39(9):589-596.
    [179] S. Skupsky, K. Lee. Uniformity of energy deposition for laser driven fusion [J]. J. A ppl. Phys., 1983, 54(7):3662-3672.
    [180] J. Zhang. An overview of inertial confinement fusion [J]. Physics, 1999, 28(3):142-152.
    [181] M. Tabak ,J . Hammer ,M. E. Glinsky, et al . Ignition and high gain with ultrapowerful lasers [J]. Phys. Plasmas, 1994, 1(5):1626-1634.
    [182] R. Kodama, P. A. Norroys, K. Mima, et al. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition [J]. Nature, 2001, 412(6849):798-802.
    [183] R. Kodama, H. Shiraga, K. Shigemori, et al. Fast heating scalable to laser fusion ignition [J]. Nature, 2002, 418(6901):933-934.
    [184] Y. Sentoku, K. Mima, H. Ruhl, et al. Laser light and hot electron micro focusing using a conical target [J]. Phys. Pl asmas, 2004, 11(6):3083-3087.
    [185] M. H. Key. Review of fast ignition [R]. UCRL-PRES, August 25-27, 2008.
    [186] S. Atzeni. Inertial fusion fast ignitor: Igniting pulse parameter window vs the penetration depth of the heating particles and the density of the precompressed fuel [J]. Physics of Plasmas, 1999, 6(8):3316-3326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700