用户名: 密码: 验证码:
稀土掺杂钨酸钆钠激光晶体生长与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钨酸钆钠(NaGd(WO4)2,简称:NGW)晶体是一种新型的激光基质材料,具有吸收峰宽、荧光寿命长、阈值低、增益大、效率高、热效应小等优点。该晶体可掺入较高浓度的稀土离子,因此增益介质可做成微片,这对实现半导体激光二极管(LD)泵浦的固体激光器的集成化、小型化将具有十分重要的意义。
     在NGW晶体中掺入Nd3+、Yb3+等稀土离子可实现1μm波段激光输出。而以Ho3+或Tm3+作为2μm波段激活离子,以Yb3+作为敏化离子,利用NGW晶体优异的物理化学性能,通过Ho3+ (Tm3+)与Yb3+间能量转移,可实现2μm激光输出,既降低了激光振荡阂值,又提高了输出效率,具有人眼安全、大气传输特性好等优点。
     1.采用中频感应加热提拉法,生长了NGW晶体。通过XRD分析,验证了晶体属于四方晶系、I41/a空间群,并计算了晶胞参数。测试了的TG-DTA曲线。由DTA曲线确定了晶体的熔点,通过TG曲线表明晶体在熔点以下的热稳定性很好,适合采用提拉法生长。测试了晶体的红外光谱和拉曼光谱,对振动模式进行了归属。
     2.采用中频感应加热提拉法,生长了Nd:NGW激光晶体。讨论了晶体的散射颗粒、生长条纹、包裹物、位错等缺陷的形貌,分析了其产生原因。比较了不同掺杂浓度的吸收光谱,随着Nd3+掺杂浓度的提高,吸收线宽无明显变化,但是吸收截面明显变大。不同掺杂Nd3+浓度样品的吸收谱形状基本一样,未出现畸变结构,说明能级间相对位置没有变化,单个离子的格位情况基本没有变化。
     吸收光谱表明,在400nm到900nm范围内存在一系列的吸收峰,在805nm、753nm、586nm附近的吸收峰较强、较宽,有利于LD泵浦。荧光光谱表明,晶体的最强的发射波长为1058.6nm,对应于4F3/2→4I11/2能级跃迁,另一个较弱的荧光发射波长为1334.2nm,对应于4F3/2→4I13/2能级跃迁,最弱的发射峰波长为896.5nm,对应于4F3/2→4I9/2能级跃迁。并计算了光谱参数。
     研究了晶体的激光性能,测试结果表明,LD泵浦的Nd:NGW激光器的激光波长在1060 nm附近,而且吸收带宽较宽,正好与泵浦源相匹配。
     3.采用中频感应加热提拉法,生长了Yb:NGW激光晶体。比较了不同掺杂浓度的吸收光谱,晶体中吸收截面随着掺杂浓度的增大而减小。分析得出,随着掺杂浓度的增大,掺杂离子间的距离逐渐减小,当小于1-2nm时,将发生离子间的交叉弛豫,导致基态离子对970nm光子的吸收减少。
     晶体吸收光谱在932nm、968nm附近有较强、较宽的吸收峰,有利于用LD泵浦。荧光光谱表明,晶体发射波长为1010nm,对应于2F5/2_2I7/2能级跃迁。并计算了光谱参数。
     4.采用中频感应加热提拉法,生长了Ho,Yb:NGW激光晶体。晶体吸收光谱yb3+在933nm和978nm处存在吸收峰,在978nm处吸收峰较强,半峰宽为13nm,适合采用LD泵浦,并对Ho3+、Yb3+吸收峰对应的激发态进行了归属。晶体的荧光光谱在1959nm、1998nm、2043nm有较强的发射峰,其中最强峰的发射波长为2043nm,是Ho3+的主要发射波长。发射截面积为σe=1.82×10-20cm2。
     晶体的上转换性能研究表明,在546nm、648nm附近出现了上转换绿光和红光的吸收峰,并研究了晶体的上转换机制,指出了相应的跃迁通道。
     5.采用中频感应加热提拉法,生长了Tm,Yb:NGW激光晶体。吸收光谱在965nm处有较强的吸收峰,表明这种掺杂方式有利于Yb3+对泵浦光的高效率吸收。荧光光谱表明,Yb3+发射主峰在1031nm附近,发射线宽(FWHM)达15nm,Tm3+的荧光发射波长在1679nm-1842nm范围内,发射主峰1772nm处的半高宽为72 nm左右。
     晶体的上转换性能研究表明,在476nm,650 nm处得到了上转换蓝光和红光,并研究了晶体的上转换机制,指出了相应的跃迁通道。
The NaGd(WO4)2 crystal, short for NGW, is a new laser host material, which has several merits, such as wide absorption peaks, longer fluorescent lifetime, lower threshold value, larger gain, higher efficiency, little thermal effect and so on. The NGW gain medium can be made microchip since high concentration doping can be achieved in this crystal, which has more significance for achieving integration, miniaturization and compact structure of solid lasers pumped by laser diode.
     The laser emission around 1μm can be achieved through doping some rare earth ions into NGW crystal, such as Nd3+, Yb3+ and so on. Meanwhile, NGW crystal has excellent physical and chemical properties. Ho3+ or Tm3+ serves as activation ions around 2μm, and Yb3+ serves as sensitization ion. The laser emission around 2μm can be achieved through energy transfer between Ho3+(Tm3+) and Yb3+ ions, which reduce laser threshold value and enhance laser output efficiency. It has several merits, such eye safe, well atmospheric transmission characteristic and so on.
     1. The NGW crystal was grown by the Czochralski method. The crystals belong to tetragonal system with I4I/a space group by XRD analysis, which has a structure of scheelite. The cell parameters of crystal were calculated. The TG-DTA results of crystal indicates that the thermal stability is excellent. It is suitable to be grown by Cz method. The melting points of crystal was obtained from TG-DTA curves. The infrared and raman spectra of crystal were measured, and vibration modes of crystal were assigned.
     2. The Nd:NGW crystal was grown by the Czochralski method. The morphology of some defects was dicussed, such as growth stripes and wraps and so on. The reasons of defect formation were analyzed. Absorption spectra lines of different doping concentration of Nd3+ion are the same without distortion structure, which indicates the relative position of energy levels and position situation of single ion have no changes.
     It can be seen from absorption spectra of Nd:NGW, there are several absorption peaks from 400nm to 900nm, and the absorption peaks at around 805nm,753nm,586nm are much stronger and wide, which is suitable for laser diode pumping. The strongest emission wavelength is 1058.6nm, owing to 4F3/2→4I11/2 energy transition. The second weaker emission wavelength is 1334.2nm, owing to 4F3/2→4I13/2 energy transition. The weakest emission wavelength is 896.5nm, owing to 4F3/2→4I9/2 energy transition. The spectral parameters of crystal were also calculated.
     The laser performance of Nd:NGW crystal were measured. It can be seen from testing results that laser output wavelength is about 1060 nm for Nd:NGW laser, which can be suitable for LD pumping.
     3. The Yb:NGW crystal was grown by the Czochralski method. As for Yb:NGW crystal, absorption cross section decreases with doping concentration of Yb3+ ion. The reason is that distance to doping concentration decrease gradually with doping concentration increasing. The cross relaxation will happen When ions distance is enough small, which lead to weak absorption to 970nm photons.
     From absorption spectra of Yb:NGW crystal, the absorption peaks at around 932nm, 968nm are much stronger and wide, which is suitable for laser diode pumping. The emission wavelength of Yb:NGW crystal is 1010nm, owing to 2F5/2→2I7/2 energy transition. The spectral parameters of crystal were also calculated.
     4. The Ho,Yb:NGW crystal was grown by the Czochralski method. In the absorption spectrum of Ho:Yb:NGW crystal, two absorption peaks occur at 933nm and 978nm, and strongest absorption peak exists at 978nm with FWHM of 13nm, which matches well the characteristic absorption of Yb3+ ions and suitable for absorbing pumping light. The activated state related to absorption peaks of Ho3+ and Yb3+ ions were assigned. There exist stronger emission peaks at 1959nm,1998nm and 2043nm, and the strongest emission is at 2043nm, which is main emission wavelength of Ho3+ ions. The emission cross section is 1.82×10-20cm2.
     The upconversion fluorescent spectra of Ho,Yb:NGW were measured. The upconversion absrption peaks at around 546nm and 648nm were observed. The mechanism of upconversion for crystal was studied, and the responding transition channel was given.
     5. The Tm,Yb:NGW crystal was grown by the Czochralski method. From absorption spectra of Tm,Yb:NGW crystal, the absorption peaks at around 965nm is much stronger. It is indicated that Tm,Yb:NGW crystal has higher absorption efficiency. In the Tm,Yb:NGW crystal, the main emission peak exist at 1031nm with linewidth of 15nm. The emission wavelength of Tm3+ ions is at the range of 1679nm—1842nm. The FWHM of main emission peak at 1772nm is about 72 nm.
     The upconversion fluorescent spectra of Tm,Yb:NGW were measured. There exist upconversion blue and red absrption peaks at around 476nm and 650 nm. The mechanism of upconversion for crystal was studied, and the responding transition channel was given.
引文
[1]黄德群.新型光学材料[M].北京:科学出版社,1985:53-59.
    [2]干福熹,邓佩珍.激光材料[M].上海:上海科学技术出版社.1994:91-95.
    [3]吕百达.固体激光器件[M].北京:北京邮电大学出版社,2001:38-43.
    [4]闵乃本.晶体生长的物理基础[M].上海:上海科学技术出版社,1982:15-17.
    [5]Johnson L J & Nassau N. Infrared fluorescence and stimulated emission of Nd3+ in CaWO4[J]. Pro. IRE.1961,49(10):1704-1709.
    [6]Aer T M. Diode laser pumping of solid-state lasers[J]. Laser Focus,1986,22(6):82-92.
    [7]Ozlovsk W J, Fan T Y & Byer R L. Diode-pumpedm CW Nd:glass laser[J]. Opt.Lett, 1986,11(4):788-791.
    [8]Ields A R, Birnbaum M & Fincher C L. Highly efficient Nd:YVO4 LD endpumped laser[J]. Appl.Phys.Lett,1987,51 (9):1885-1886.
    [9]Cheps R, Myers J. Schimitschek E J, et al. End-pumped Nd:La2Be2O5 laser performance[J]. Opt.Eng,1988,27(9):830-834.
    [10]Rignon A, Feugnet G, Huignard J P, et al. Compact Nd:YAG and Nd:YVO4 amplifiers end-pumped by a high-brightness stacked array[J]. IEEE J. Quantum Electron,1998,34(3):577-585.
    [11]Larkson W A, Hardman P J & Hanna D C. High-power diode bar end-pumped Nd:YLF laser at 1.053μm[J]. Opt. Lett,1998.23(17):1363-1365.
    [12]Retschmann H M, Heine F, Ostroumov VG,et al. High-power diode pumped CW Nd3+ lasers at wavelengths near 1.44μm[J]. Opt. Lett,1997,23(17):466-468.
    [13]Ong L L, Holedr L, Kennedy C J, et al. Digest of Meeting on Adranced Solid-State Lasers[J] (Optical Society of America, Washington, D, C),1990, paper MATPD.
    [14]何琛娟.陈晓波,N.Sawanobori等.Ho3+在氟氧化物玻璃陶瓷中的光谱性质[J].量子电子学报.2002,19(2):109-114.
    [15]杨健佼.掺稀土(Dy,Tb):KYb(WO4)2激光晶体生长与性能研究[D].长春:长春理工大学化学与环境科学学院,2010.
    [16]杨培志,邓佩珍,殷之文.掺Yb3+激光晶体的研究进展[J].人工晶体学报. V2000,29(2),196-208.
    [17]L. D. DeLoach, S. A. Payne, L. L. Chase,et al, Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications[J]. IEEE J. Quantum Electron.,1993(29):1179-1191.
    [18]G. Boulon. Yb3+ doped oxide crystals for diode-pumped solid state lasers:crystal growth, optical spectroscopy, new criteria of evaluation and combinatorial approach[J]. Opt. Mat,2003(22):85-87.
    [19]W. F. Krupke. Ytterbium solid-state lasers-the first decade[J]. IEEE J. on Selected Topics in Quantum Electron,2000(6):1287-1296.
    [20]叶洪波,邝能俊,朱长虹等.室温下Ho:YAG激光器输出3J的2.1μm激光[J].激光技术.1996,20(6):352-355.
    [21]陆燕玲,王俊,杨扬等.Tm:YAP激光晶体的生长[J].上海交通大学学报.2006,40(4):864-868.
    [22]Xiu-li Yan, Xing Wu, Jian-fei Zhou, et al. Growth of Tm:Ho:YVO4 laser single crystals by the floating zone method[J]. Crystal Growth,2000,212(5):204-210.
    [23]朱昭捷,涂朝阳,李坚富等.激光晶体Tm3+/Yb3+:GdAl3(BO3)4的生长和光谱性能研究[J].福州大学学报(自然科学版),2006,34(3):420-423.
    [24]陆燕玲,王俊,孙宝德.2μm波段激光晶体研究进展[J].无机材料学报,2005.20(3):513-521.
    [25]陈良.新型掺稀土KLu(WO4)2晶体生长与性能研究[D].长春:长春理工大学化学与环境科学学院.2010.
    [26]黄莉蕾,纪元新,陈晓竹等.Cr,Tm,Ho:YAG晶体的光谱及其激光特性[J].光电子激光.1998,9(3):214-216.
    [27]Zhang Xingbao, Wang Yuezhu. Yao Baoquan. et al. Research and progress on double doped Tm,Ho:YLF laser[J]. Laser & Optoelect ronics Progress,2004,41(10):29-33.
    [28]Remski R L, Gooen K H.Pulsed laser action in LiYF4:Er-Ho at 77K[J]. IEEE J. Quant Electron. 1969,19(5):281-282.
    [29]叶洪波,朱长虹.李正佳.2.1μm波长Cr.Tm.Ho:YAG激光器的进展[J].激光技术,1996,20(4):253-256.
    [30]Yang Peizhi, Deng Peizhen. Yin Zhiwen. et al. Research progress on Yb3+-doped crystal[J]. Journal of Synthetic Crystals,2000,29(2):196-204.
    [31]L.F.johnson. L.avanuitert, J.J.Rubin, R.A.Thomas. Transfer form Er3+ to Tm3+ and Ho3+ ions in crystal[J]. Phys.Rev,1964,133(8):494-498.
    [32]Antipenko B M. Glebov A S, Kseleva T I, et al.1.2μm Holmium:YAGlaser[J]. Sov. Tech. Phy. Lett, 1985,11(3):284-287.
    [33]Morr Is P J,Luth Y W, Weber H P. Laser operation and spectroscopy of Tm/Ho:GdVO4 [J]. Opt Commun,1994,111(7):493-496.
    [34]姚宝权,王骐,王月珠等.Tm, Ho:YLF微片激光器的实验研究[J].光学学报,2002,22(10):1216-1218.
    [35]Jing Li, Jiyang Wang, Hao Tan, et al.Growth and optical properties of Ho,Yb:YAl3(BO3)4 crystal[J]. Journal of Crystal Growth,2003,256(9):324-327.
    [36]Yuezhu Wang, Xinlu Zhang, Baoquan Yao, et al. Performance of a liquid-nit rogen-cooled CW Tm,Ho:YLF laser[J]. Chin. Opt. Lett,2003.15(5):281-282.
    [37]Zhang Xinlu, Wang Yuezhu, Yao Baoquan, et al. Performance of end-pumped Tm,Ho:YLF microchip laser[J]. Chin. J. Lasers,2004,31(1):9-12.
    [38]Zhang Xinlu, Wang Yuezu. Ju Youlun.Influence of energyt ransfer up-conversion on Tm,Ho:YLF laser threshold[J]. Acta Physica Sinica,2005,54(1):117-122.
    [39]Zhang Xinlu, Wang Yuezhu, Yao Baoquan, et al. Theoretical investigation of a laser diode-pumped quasi-three-level 2μm Tm, Ho:YLF laser[J]. Acta Opt ica S inica,2004,24(6):787-792.
    [40]姚宝权,董力强,王月珠等.激光二极管抽运(Tm, Ho):YLF微片激光器的实验研究[J].光学学报,2004.24(1):79-83.
    [41]何晓敏,张新陆.王月珠等.激光二极管泵浦室温Tm.Ho:YLF微片激光器的实验研究[J].激光与红外,2005,35(9):367-340.
    [42]张兴宝.姚宝权,王月珠等.准四能级双掺Tm/Ho钒酸钆激光器[J].激光技术,2006,30(2):119-122.
    [43]Johnson L F, Geusic J E, Van Uitert L G. The laser property of Tm:YAG crystal[J]. Appl. Phys. Lett., 1965,7(5):127-129.
    [44]Stoneman R.C, Esterowitz L. Efficient,broadly tunable, laser-pumped Tm:YAG and Tm:YSGGG cw lasers[J]. Opt Lett,1990,15(3):486-488.
    [45]PINTO J F, et al. Tm3+:YLF laser continuously tunable between 2.20 and 2.46μm[J]. Opt. Lett.1994.19(5):883-885.
    [46]BRAUD A. et, al. Spectroscopy and cw operation a 1.85μm Tm:KY3F10 laser[J]. Appl. Phys. B, 2001,72(5):909-912.
    [47]宋峰,苏静等.钨酸钇钠晶体中Tm3+的光谱特性[J].物理学报.2004,53(10):3591-3595.
    [48]郭伟杰,陈雨金等.Tm3+:NaLa(MoO4)2晶体的1.9μm准连续激光输出[J].中国稀土学报,2009,27(4):510-513.
    [49]张怀金,蒋民华.新型激光晶体材料研究进展[J].无机材料学报,2008,23(3):417-424.
    [50]Fan Jiandong, Zhang Huaijin, Wang Jiyang, et al. Growth, structure and thermal properties of Yb3+-doped NaGd(WO4)2 crystal[J]. J Phys. D:Appl Phys,2006,39(5):1034-1041.
    [51]朱忠丽,乔正言,林海等.NaGd(WO4)2晶体的生长与性能研究[J].稀有金属与材料工程,2007,36(11):2023-2026.
    [52]王鸿雁,游振宇等.稀土掺杂钨酸钆钠激光晶体的生长及性能研究[J].人工晶体学报.2008,37(6):1301-1309.
    [53]林海,张莹,李春等.掺钕钨酸钆钠晶体生长、结构及光谱特性[J].硅酸盐学报,2010,38(2):177-182.
    [54]张克从,张乐惠.晶体生长科学与技术[M].北京:科学出版社,1997:471-472.
    [55]刘晓阳.Yb:YAG激光晶体生长与激光性能研究[D].长春:长春理工大学材料科学与工程学院,2008
    [56]曹余惠.引上法晶体生长中的气体对流[J].人工晶体学报.1994.23(1):13-20.
    [57]A.L.Schawlow, C.H.Townes. Infrared and optical masers[J]. Phys.Rev.,1958,11(2):1940-1949.
    [58]刘景和.提拉法生长晶体开裂的理论分析[J].人工晶体,1984.13(4):281-287.
    [59]A.V.Fedin,T.T.Basiev,A.V.Rulev,et al.Perspective Nd:GGG laser with phase conjugation in active medium[J]. SPIE,2002,46(4):293-296.
    [60]D.C.Milier, J.W.Nielsen.The elimination of defects in Czochralski grown rare-earth gallium garnets[J]. Journal of crystal growth,1972,12(1):195-200.
    [61]刘景和,李建利,徐斌等.NaBi(WO4)2晶体生长与开裂研究[J].硅酸盐学报.2001,29(3):370-373.
    [62]张学建.掺镱钇铝石榴石激光材料[D].长春:长春理工大学材料科学与工程学院,2009.
    [63]Klopp P. Griebner U, Petrov V, et al. Growth, optical characterization, and laser operation of a stoichiometric crystal KYb(WO4)2[J]. Appl Phys B.2002.74(8):185-189.
    [64]杨南如.无机非金属材料测试方法[M].武汉:武汉工业大学出版社,1990:185-215.
    [65]A.R.Reinberg,L.A. Riseberg,R.M. Brown,et al. GaAs:Si LED pumped Yb-doped YAG Laser[J]. Appl.Phys.,Lett,1971,7(6):301-303.
    [66]张克从,张乐惠.晶体生长科学与技术[M].北京:科学出版社,1990:325-384.
    [67]G.S.Offlt. Intensities of Crystal Spectra of Rare-Ions[J]. Chem.Phys,1962,37(3):511-521.
    [68]D.A.斯科格,D.M.韦斯特.金钦汉译.《仪器分析原理》第二版[M].上海:上海科学技术出版社,458-469.
    [69]Giesen A, Hugel H, Voss A, et al. Scalable Concept for Diode-Pumed High-Power Solid State Lasers[J]. Appl.phys.B,1994, (58):365-370.
    [70]樊先平主编.无机非金属材料科学基础[M].杭州:浙江大学出版社,2004:30-31.
    [71]徐宝琨,阎卫平,刘明登.结晶学[M].长春:吉林大学出版社,1991:第六~九章.
    [72]仲维卓,华素坤.晶体生长形态学[M].北京:科学出版社,1999:400-420.
    [73]杨顺华,丁录华著.晶体位错理论基础[M].北京:科学出版社.1998:257-258.
    [74]闵乃本著.晶体生长的物理基础[M].上海:科学技术出版社,1982:37-59.
    [75]Xiu-li Yan,Xing Wu,et al. Growth of Tm:Ho:YVO4laser single crystals by the floating zone method[J]. Crystal Growth,2001,21(20):204-210.
    [76]Reinberg A R, Riseberg L A, Brown R M, et al. GaAs:Si LED Pumped Yb-doped YAG Laser Appl[J]. phys.Lett,1971,9(1):11-17.
    [77]张健.双折射光学晶体YV04生长过程中的数值模拟研究[D].长春:长春理工大学材料科学与工程学院,2001.
    [78]HANUZA J, MACZKA M, VANDERMASS J H. Vibrational properties of double tungstates of the MⅠMⅡ(WO4)2 family (MⅠ=Li,Na,K; MⅢ=Bi, Cr) [J]. J Solid State Chem,1995,11(2):177-188.
    [79]朱忠丽,林海,孙或等.Nd:NaR(WO4)2晶体光谱性能研究(R=Bi,Y)[J].稀有金属材料与工程,2006,35(3):399-402.
    [80]Alexander A.Kaminskii.Hans J.Eichler,Ken-ichi Ueda.Properties of Nd3+-doped and undoped tetragonal PbWO4, NaY(WO4)2, CaWO4, and undoped monoclinic ZnWO4 and CdWO4 as laser-active and stimulated Raman scattering-active crystals[J]. Applied Optics,1999,38(21):4533-4547.
    [81]兰建明,陈建中,郭飞云等.Yb:YVO4晶体的生长及光谱性能研究[J].人工晶体学报.2003,32 (1):44-49.
    [82]林海,张莹,李春等.Yb:NGW激光晶体生长及光谱性能[J].硅酸盐学报,2010,38(5):825-830.
    [83]张礼杰,雷鸣.李建立等.Yb3+:KY(WO4)2晶体生长与光谱性能[J].中国稀土学报,2005,23(6):700-703.
    [84]朱忠丽,万玉春,曾繁明等.Yb:NaY(WO4)2激光晶体的光谱性能[J].硅酸盐学报,2004,32(8):942-945.
    [85]SUMIDA D S, FAN T Y. Effect of Radiation Trapping on Fluorescence Lifetime and Emission Cross Section Measurement in Solid-state Laser Media[J]. Opt Lett,1994,19(17):1343-1345.
    [86]朱忠丽,林海,乔正言等.Ho3+,Yb3+双掺KGd(WO4)2激光晶体的光谱性能[J].中国稀土学报.2008.26(1):33-36.
    [87]朱忠丽,赵立才,林海等.Tm3+,Yb3+双掺KLa(WO4)2晶体的生长及光谱特性研究[J].中国稀土学报,2008,26(6):700-704.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700