用户名: 密码: 验证码:
钇稳定二氧化锆的抗硫中毒机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFCs)因具有燃料适应性广、能量转换效率高、零污染、全固态和模块化组装等优点已成为一种很有发展前景的能量转换装置,可用于发电、交通、航空和其他许多领域,被称为21世纪的绿色能源之一。然而燃料中含有的各种各样的含硫污染物,例如H2S等,能够在阳极表面发生反应使阳极产生硫中毒,从而使电池性能丧失,这是燃料电池存在的问题之一。如SOFCs的Ni-YSZ阳极表面常因出现硫中毒现象而失去活性,从而引起人们的关注。本文基于密度泛函理论(DFT)的第一性原理方法,采用VASP计算程序包,结合缀加平面波赝势法、过渡态搜索方法及第一性原理热力学方法,研究了YSZ(111)表面及其富氧表面YSZ+O(111)的抗硫中毒机制。主要进行了以下三方面的工作:
     1. H2S在YSZ(111)表面上的吸附
     利用基于DFT的第一性原理方法计算了H2S、SH和S原子在YSZ(111)表面上的吸附以及H2S的解离机制。结果表明,H2S和SH被弱束缚在YSZ表面上,而S原子与YSZ表面则有很强的相互作用,被束缚在表面氧原子上与之相结合形成oxido-sulfate(SO2-)物种。过渡态搜索方法分析H2S在YSZ(111)表面的解离表明H2S第一步解离生成SH+H是很容易的,而共吸附的H将阻碍SH的进一步解离。反之,从SH脱氢的反向势垒发现吸附S原子的氢化却是很容易的。由此可知, YSZ(111)表面的硫中毒将受到共吸附的氢的阻碍。
     2. H2S在YSZ+O(111)表面上的吸附
     在富氧的YSZ+O(111)表面上,H2S和SH均存在着分子吸附和解离吸附两种方式,H2S在YSZ+O(111)表面很容易解离,解离势垒仅有0.5eV,解离的S原子在表面上存在着SO分子和次硫酸根(SO22)两种稳定的吸附种类,这将阻碍燃料氧化的活性位使YSZ+O产生硫中毒。此外利用第一原理热力学方法研究硫中毒的YSZ+O(111)表面再生或去硫化过程得出,可以通过加入O2和H2O等氧化剂的方法,氧化进而除去吸附在表面的硫原子。
     3. SO2在YSZ(111)表面的吸附和氧化
     首先利用基于密度泛函理论的第一性原理方法研究了SO2与YSZ(111)表面以及富氧的YSZ+O(111)表面的相互作用,研究结果表明:在YSZ(111)表面上,SO2除了分子形式的物理吸附外,还与表面氧离子束缚形成SO32-物种;而在YSZ+O(111)面上,除了上述吸附外,还生成SO3分子和SO42-物种;所有形成的SOx物种(其中x=24)都很强地束缚在YSZ表面上,使表面中毒。最后利用第一原理热力学方法研究了外界环境,例如温度或SO2分压对SO2YSZ/YSZ+O体系的影响。结果表明,在相同的外界条件下,YSZ+O表面比YSZ表面更易于硫中毒。
     本文通过研究YSZ(111)表面的硫中毒过程以及再生机制,以期为进一步探究SOFCs工作条件下YSZ表面的抗硫中毒方法提供一定的理论参考。通过SO2和YSZ表面的相互作用分析,我们可以更深入地理解SOFCs阳极材料YSZ部分产生硫中毒的微观机制。
Due to their many advantages in terms of high efficiency, fuel adaptability, all-solid state, modularassembly and low pollution, the solid oxide ruel cells (SOFCs) as a prospective power generation systemhave attracted much attention.SOFCs have been proven useful in industrial, residential, and transportapplications in the past and present, and continue to be developed and improved upon to meet growingenergy demands. However, the YSZ-based anode (Ni/YSZ) for SOFCs is highly susceptible to deactivation(poisoning) by contaminants commonly encountered in readily available fuels, especially sulfur-containingcompounds, which is one of major problems of SOFCs. Using the first-principles method based on densityfunctional theory (DFT) and the Vienna Ab-initio Simulation Package (VASP) package with the projectoraugmented wave (PAW) potential and the Perdewe Burkee Ernzerhof (PBE) functional, in combinationwith the ab initio atomistic thermodynamics method, we study the mechanism for the sulfur tolerant of theYSZ exposure to H2S.
     1. The adsorption of H2S on YSZ (111) surface
     The adsorption and dissociation of H2S on the yttria-stabilized zirconia (YSZ)(111) surface arestudied using the first-principles methods. It is found that H2S and SH species are bound weakly on theYSZ (111) surface, while the S atom is strongly bound and stably anchored on the O atop of the YSZsurface with the formation of the SO2-fragment. The nudged elastic band (NEB) calculations show that theformation of SH+H from the first dissociation of H2S is very easy, while the presence of a co-adsorbed Hwould inhibit the further dissociation of SH. In contrast, the hydrogenation of the adsorbed sulfur is rathereasy. It is concluded that H could inhibit the formation of sulfur, thus the sulfur poisoning of the YSZsurface would be prevented by co-adsorbed hydrogen.
     2. The adsorption of H2S on YSZ+O (111) surface
     The strudies from the first-principles method based on DFT show that there exist both molecularadsorption and dissociative adsorption modes for the H2S and SH adsorbed on the YSZ+O (111) surface.For S adsorption, there exist two types of stable species, namely, the SO and the hyposulfite (SO22), whichwill block the active sites for fuel oxidation and result in the poisoning of the YSZ+O surface. The dissociation of H2S is very easy with low energy barriers (~0.5eV), and the dissociative S atoms may resultin the poisoning of the YSZ+O surface. In addition, using the ab initio atomistic thermodynamics method,the surface regeneration or de-sulfurization process of a sulfur-poisoned (i.e. sulfur covered) YSZ+O (111)surface is studied. It is concluded that by introducing oxidizing reagents (e.g. O2and H2O), the adsorbedatomic sulfur can be oxidized to SO2and removed from the YSZ+O surface
     3. Adsorption and oxidation of SO2on the YSZ surface
     The interaction of SO2with the YSZ (111) and the YSZ+O (111) surfaces is investigated using thefirst-principles method based on DFT. It is found that SO2is adsorbed either as a molecule or a SO2
     3species with new S–O bonds to a surface oxygen on the YSZ (111) surface. In addition, there exist otherspecies, e.g., SO3and SO24on the very active YSZ+O (111) surface. All the formed SOxspecies (with x=24) are strongly bound to the surfaces and are of a poisoning nature for the YSZ surfaces. Using the abinitio atomistic thermodynamics method, we present a detailed analysis on the stability of theSO2YSZ/YSZ+O system as a function of the ambient conditions, such as temperature and SO2partialpressure. For example, at the same ambient conditions, the YSZ+O surface is more susceptible to sulfurpoisoning than the YSZ surface
     The results from analyzing the sulfurization process of the YSZ (111) upon exposure to H2S and theregeneration mechanism of the sulfur-poisoned surface would be helpful for understanding and furtherexploring sulfur tolerance properties of the YSZ surface under SOFCs operating conditions and searchingfor sulfur tolerant anodes. Through detecting the oxidized species and analyzing of their mutualtransformation in the ambient conditions for SO2adsorption on the YSZ (111) surface, we reach betterunderstanding on the sulfur poisoning mechanism of the YSZ anode of SOFCs.
引文
[1] Srinivasan, S. Fuel cells: from fundamentals to applications[M]. US: Springer,2006.
    [2]衣宝廉.燃料电池现状与未来[J].电源技术,1998,22(5):216-221.
    [3]贺连星,温廷琏.流延法制备陶瓷资料电池电解质膜的研究进展[J].材料科学与工程,1997,15(3):15-18.
    [4]刘江,苏文辉.固体氧化物燃料电池的工艺探索及相关的性能研究[J].中国科学: A辑,1997,27(10):930-935.
    [5] Appleby, A. J. Fuel cell handbook[M]. US: Krieger,1988.
    [6] Mathias, M., Darling, R., Wood, D. L. Proton exchange membrane fuel cell [P]. US:7157178B2,2007.
    [7] Li, W., Waje, M., Chen, Z., et al. Platinum nanopaticles supported on stacked-cup carbon nanofibers aselectrocatalysts for proton exchange membrane fuel cell [J]. Carbon,2010,48(4):995-1003.
    [8] de Bruijn, F. A., Dam, V. A. T., Janssen, G. J. M. Review: Durability and Degradation Issues of PEMFuel Cell Components [J]. Fuel Cells,2008,8(1):3-22.
    [9] Warshay, M., Prokopius, P. R. The fuel cell in space: yesterday, today and tomorrow [J]. Journal ofPower Sources,1990,29(1–2):193-200.
    [10] Strasser, K. The design of alkaline fuel cells [J]. Journal of Power Sources,1990,29(1–2):149-166.
    [11] Baldauf, M., Preidel, W. Status of the development of a direct methanol fuel cell [J]. Journal of PowerSources,1999,84(2):161-166.
    [12] Prater, K. B. Polymer electrolyte fuel cells: a review of recent developments [J]. Journal of PowerSources,1994,51(1–2):129-144.
    [13] Prater, K. B. Solid polymer fuel cells for transport and stationary applications [J]. Journal of PowerSources,1996,61(1–2):105-109.
    [14] Borroni-Bird, C. E. Fuel cell commercialization issues for light-duty vehicle applications [J]. Journal ofPower Sources,1996,61(1–2):33-48.
    [15] Klaiber, T. Fuel cells for transport: can the promise be fulfilled? Technical requirements and demandsfrom customers [J]. Journal of Power Sources,1996,61(1–2):61-69.
    [16] Steele, B. C. H., Heinzel, A. Materials for fuel-cell technologies [J]. Nature,2001,414(6861):345-352.
    [17] Atkinson, A., Barnett, S., Gorte, R. J., et al. Advanced anodes for high-temperature fuel cells [J]. Nat.Mater.,2004,3(1):17-27.
    [18] McIntosh, S., Gorte, R. J. Direct Hydrocarbon Solid Oxide Fuel Cells [J]. Chem. Rev.,2004,104(10):4845-4866.
    [19] Murray, E. P., Tsai, T., Barnett, S. A. A direct-methane fuel cell with a ceria-based anode [J]. Nature,1999,400(6745):649-651.
    [20] Park, S., Vohs, J. M., Gorte, R. J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell [J]. Nature,2000,404(6775):265-267.
    [21] Ormerod, R. M. Solid oxide fuel cells [J]. Chem.Soc. Rev.,2003,32(1):17-28.
    [22] Yang, L., Wang, S., Blinn, K., et al. Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductorfor SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–δ[J]. Science,2009,326(5949):126-129.
    [23] Yang, L., Choi, Y., Qin, W., et al. Promotion of water-mediated carbon removal by nanostructuredbarium oxide/nickel interfaces in solid oxide fuel cells [J]. Nat Commun,2011,2:357.
    [24] Yi, Y., Rao, A. D., Brouwer, J., et al. Fuel flexibility study of an integrated25 kW SOFCreformer system [J]. Journal of Power Sources,2005,144(1):67-76.
    [25] Weissbart, J., Ruka, R. A Solid Electrolyte Fuel Cell [J]. Journal of The Electrochemical Society,1962,109(8):723-726.
    [26] Suzuki, T., Yamaguchi, T., Hamamoto, K., et al. A functional layer for direct use of hydrocarbon fuel inlow temperature solid-oxide fuel cells [J]. Energy&Environmental Science,2011,4(3):940-943.
    [27] Trembly, J. P., Marquez, A. I., Ohrn, T. R., et al. Effects of coal syngas and H2S on the performance ofsolid oxide fuel cells: Single-cell tests [J]. Journal of Power Sources,2006,158(1):263-273.
    [28] Williams, M. C., Strakey, J., Sudoval, W. U.S. DOE fossil energy fuel cells program [J]. Journal ofPower Sources,2006,159(2):1241-1247.
    [29] Baron, S., Brandon, N., Atkinson, A., et al. The impact of wood-derived gasification gases on Ni-CGOanodes in intermediate temperature solid oxide fuel cells [J]. Journal of Power Sources,2004,126(1–2):58-66.
    [30] Leone, P., Lanzini, A., Santarelli, M., et al. Methane-free biogas for direct feeding of solid oxide fuelcells [J]. Journal of Power Sources,2010,195(1):239-248.
    [31] Cheng, Z., Wang, J. H., Choi, Y. M., et al. From Ni-YSZ to sulfur-tolerant anode materials for SOFCs:electrochemical behavior, in situ characterization, modeling, and future perspectives [J]. Energy.Environ. Sci.,2011,4(11):4380-4409.
    [32] Dicks, A. L. Hydrogen generation from natural gas for the fuel cell systems of tomorrow [J]. Journal ofPower Sources,1996,61(1–2):113-124.
    [33] Cayan, F. N., Zhi, M., Pakalapati, S. R., et al. Effects of coal syngas impurities on anodes of solid oxidefuel cells [J]. Journal of Power Sources,2008,185(2):595-602.
    [34] Matsuzaki, Y., Yasuda, I. The poisoning effect of sulfur-containing impurity gas on a SOFC anode: PartI. Dependence on temperature, time, and impurity concentration [J]. Solid State Ionics,2000,132(3–4):261-269.
    [35] Sasaki, K., Susuki, K., Iyoshi, A., et al. H2S Poisoning of Solid Oxide Fuel Cells [J]. J. Electrochem.Soc.,2006,153(11): A2023-A2029.
    [36] Zha, S. W., Cheng, Z., Liu, M. L. Sulfur Poisoning and Regeneration of Ni-Based Anodes in SolidOxide Fuel Cells [J]. J. Electr. Soc.,2007,154(2): B201-B206.
    [37] Cheng, Z., Zha, S. W., Liu, M. L. Influence of cell voltage and current on sulfur poisoning behavior ofsolid oxide fuel cells [J]. Journal of Power Sources,2007,172(2):688-693.
    [38] Ishikura, A., Sakuno, S., Komiyama, N., et al. Influence of H2S Poisoning on Anode Layer of SOFC [J].ECS Trans.,2007,7(1):845-850.
    [39] Hansen, J. B. Correlating Sulfur Poisoning of SOFC Nickel Anodes by a Temkin Isotherm [J].Electrochem. Solid-State Lett.,2008,11(10): B178-B180.
    [40] Singhal, S. C. Advances in solid oxide fuel cell technology [J]. Solid State Ionics,2000,135(1–4):305-313.
    [41] Mogensen, M., Jensen, K. V., J rgensen, M. J., et al. Progress in understanding SOFC electrodes [J].Solid State Ionics,2002,150(1–2):123-129.
    [42]韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备[M].科学出版社,2004.
    [43] Minh, N. Q. Ceramic Fuel Cells [J]. J. Am. Ceram. Soc.,1993,76(3):563-588.
    [44]王明阳,宋风忠,张岩星等人. Pt—Ni合金团簇的结构与磁性的第一性原理研究[J].河南师范大学学报:自然科学版,2012,40(2):43-45.
    [45]黄贤良,赵海雷,吴卫江等人.固体氧化物燃料电池阳极材料的研究进展[J].硅酸盐学报,2006,33(11):1407-1413.
    [46]孟广耀,闽皖育,彭定坤.新型固体燃料电池一21世纪的绿色能源[J].中国科学院院刊,1998,5:344-347.
    [47] Wang, S., Jiang, Y., Zhang, Y., et al. Electrochemical performance of mixed ionic–electronicconducting oxides as anodes for solid oxide fuel cell [J]. Solid State Ionics,1999,120(1–4):75-84.
    [48] de Boer, B., Gonzalez, M., Bouwmeester, H. J. M., et al. The effect of the presence of fine YSZparticles on the performance of porous nickel electrodes [J]. Solid State Ionics,2000,127(3–4):269-276.
    [49]任铁梅.固体氧化物燃料电池及其材料[J].电池,1993,23(4):191-194.
    [50] Marin ek, M., Zupan, K., Ma ek, J. Preparation of Ni–YSZ composite materials for solid oxide fuelcell anodes by the gel-precipitation method [J]. Journal of Power Sources,2000,86(1–2):383-389.
    [51]阎景旺,董永来,于春英等人.中温固体氧化物燃料电池阳极基底及负载型电解质薄膜的研制[J].无机材料学报,2001,16(5):804-814.
    [52] Li, Y., Xie, Y., Gong, J., et al. Preparation of Ni/YSZ materials for SOFC anodes by buffer-solutionmethod [J]. Materials Science and Engineering: B,2001,86(2):119-122.
    [53] Aruna, S. T., Muthuraman, M., Patil, K. C. Synthesis and properties of Ni-YSZ cermet: anode materialfor solid oxide fuel cells [J]. Solid State Ionics,1998,111(1–2):45-51.
    [54] Larminie, J.(1996) Fuel cells come down to earth. Iee. Rev.42,106-109.
    [55] Moon, J. W., Lee, H. L., Kim, J. D., et al. Preparation of ZrO2-coated NiO powder usingsurface-induced coating [J]. Mater. Lett.,1999,38(3):214-220.
    [56]李英,唐子龙.缓冲溶液法制备SOFC用Ni/YSZ负极材料[J].材料科学与工艺,2001,9(1):91-94.
    [57] Kumar, M. D. S., Srinivasan, T. M., Ramasamy, P., et al. Synthesis of lanthanum aluminate by acitrate-combustion route [J]. Mater. Lett.,1995,25(3–4):171-174.
    [58] Ringuedé, A., Frade, J. R., Labrincha, J. A. Combustion synthesis of zirconia-based cermet powders [J].Ionics,2000,6(3-4):273-278.
    [59] Ringuedé, A., Bronine, D., Frade, J. R. Assessment of Ni/YSZ anodes prepared by combustionsynthesis [J]. Solid State Ionics,2002,146(3–4):219-224.
    [60] Ji, Y., Liu, J., He, T., et al. Single intermedium-temperature SOFC prepared by glycine–nitrate process[J]. J. Alloy. Compd.,2003,353(1–2):257-262.
    [61] Marin ek, M., Zupan, K., Maèek, J. Ni–YSZ cermet anodes prepared by citrate/nitrate combustionsynthesis [J]. Journal of Power Sources,2002,106(1–2):178-188.
    [62] Burmistrov, I., Bredikhin, S. Cathode overpotential investigation by means of “Built-in” potentialelectrode [J]. Ionics,2009,15(4):465-468.
    [63] Cheng, Z. Investigations into the interactions between sulfur and anodes for solid oxide fuel cells [J].2008.
    [64] Kurokawa, H., Sholklapper, T. Z., Jacobson, C. P., et al. Ceria Nanocoating for Sulfur TolerantNi-Based Anodes of Solid Oxide Fuel Cells [J]. Electrochem. Solid-State Lett.,2007,10(9):B135-B138.
    [65] Yun, J. W., Yoon, S. P., Park, S., et al. Analysis of the regenerative H2S poisoning mechanism in Ce0.8Sm0.2O2-coated Ni/YSZ anodes for intermediate temperature solid oxide fuel cells [J]. Int. J.Hydrogen. Energ,2011,36(1):787-796.
    [66] McEvoy, A. J., Smith, M. J. Regeneration of Anodes Exposed to Sulfur [J]. ECS Trans.,2007,7(1):373-380.
    [67] Marina, O. A., Coyle, C. A., Engelhard, M. H., et al. Mitigation of Sulfur Poisoning of Ni/ZirconiaSOFC Anodes by Antimony and Tin [J]. Journal of The Electrochemical Society,2011,158(4):B424-B429.
    [68] Kurokawa, H., Yang, L., Jacobson, C. P., et al. Y-doped SrTiO3based sulfur tolerant anode for solidoxide fuel cells [J]. Journal of Power Sources,2007,164(2):510-518.
    [69] Rasmussen, J. F. B., Hagen, A. The effect of H2S on the performance of Ni–YSZ anodes in solid oxidefuel cells [J]. Journal of Power Sources,2009,191(2):534-541.
    [70] Galea, N. M., Kadantsev, E. S., Ziegler, T. Studying Reduction in Solid Oxide Fuel Cell Activity withDensity Functional Theory Effects of Hydrogen Sulfide Adsorption on Nickel Anode Surface [J]. J.Phys. Chem. C,2007,111(39):14457-14468.
    [71] Monder, D. S., Karan, K. Ab Initio Adsorption Thermodynamics of H2S and H2on Ni(111): TheImportance of Thermal Corrections and Multiple Reaction Equilibria [J]. The Journal of PhysicalChemistry C,2010,114(51):22597-22602.
    [72] Wang, J. H., Liu, M. L. Computational study of sulfur–nickel interactions: A new S–Ni phase diagram[J]. Electrochem. Commun.,2007,9(9):2212-2217.
    [73] Choi, Y. M., Compson, C., Lin, M. C., et al. A mechanistic study of H2S decomposition on Ni-andCu-based anode surfaces in a solid oxide fuel cell [J]. Chem. Phys. Lett.,2006,421(1–3):179-183.
    [74] Cheng, Z., Abernathy, H., Liu, M. Raman Spectroscopy of Nickel Sulfide Ni3S2[J]. The Journal ofPhysical Chemistry C,2007,111(49):17997-18000.
    [75] Rosenqvist, T. A thermodynamic study of the iron, cobalt, and nickel sulfides [J]. J Iron Steel Inst,1954,176:37-57.
    [76] McCarty, J. G., Wise, H. Thermodynamics of sulfur chemisorption on metals. I. Alumina-supportednickel [J]. J. Chem. Phys.,1980,72(12):6332-6337.
    [77] Shishkin, M., Ziegler, T. The Oxidation of H2and CH4on an Oxygen-Enriched Yttria-StabilizedZirconia Surface: A Theoretical Study Based on Density Functional Theory [J]. J. Phys. Chem. C,2008,112(49):19662-19669.
    [78] Gorski, A., Yurkiv, V., Bessler, W. G., et al. Combined Theoretical and Experimental Studies of H2andCO Oxidation over YSZ Surface [J]. ECS Trans.,2011,35(1):727-737.
    [79] Breedon, M., Spencer, M. J. S., Miura, N. Adsorption of NO2on YSZ(111) and Oxygen-EnrichedYSZ(111) Surfaces [J]. The Journal of Physical Chemistry C,2013,117(24):12472-12482.
    [80] Yang, Z., Wang, Q., Wei, S., et al. The Effect of Environment on the Reaction of Water on theCeria(111) Surface: A DFT+U Study [J]. J. Phys. Chem. C,2010,114(35):14891-14899.
    [81] Rogal, J., Reuter, K., Scheffler, M. CO oxidation at Pd(100): A first-principles constrainedthermodynamics study [J]. Phys. Rev. B,2007,75(20):205433.
    [82] Gross, E. K., Dreizler, R. M. Density functional theory[M]. Springer,1995.
    [83] Hohenberg, P., Kohn, W. Inhomogeneous Electron Gas [J]. Phys. Rev.,1964,136(3B): B864-B871.
    [84] Kohn, W., Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Phys.Rev.,1965,140(4A): A1133-A1138.
    [85] Kresse, G., Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using aplane-wave basis set [J]. Phys. Rev. B,1996,54(16):11169-11186.
    [86] Kresse, G., Hafner, J. Ab initio molecular dynamics for liquid metals [J]. Phys. Rev. B,1993,47(1):558-561.
    [87]曾谨言.量子力学:上册[M].科学出版社,1981.
    [88]李正中.固体理论[M].高等教育出版社,1985.
    [89] Thomas, L. H. The calculation of atomic fields [R]. London: Cambridge Univ Press,1927.
    [90] Perdew, J. P., Chevary, J. A., Vosko, S. H., et al. Atoms, molecules, solids, and surfaces: Applications ofthe generalized gradient approximation for exchange and correlation [J]. Physical Review B,1992,46(11):6671-6687.
    [91] Perdew, J. P., Burke, K., Ernzerhof, M. Generalized Gradient Approximation Made Simple [J]. Phys.Rev. Lett.,1996,77(18):3865-3868.
    [92] Perdew, J. P., Chevary, J. A., Vosko, S. H., et al. Erratum: Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation [J]. PhysicalReview B,1993,48(7):4978-4978.
    [93] Perdew, J. P., Burke, K., Ernzerhof, M. Generalized Gradient Approximation Made Simple [J]. Phys.Rev. Lett.,1996,77(18):3865-3868.
    [94]谢希德,陆栋.固体能带理论[M].上海:复旦大学出版社,1998.
    [95] Hamann, D. R. Generalized norm-conserving pseudopotentials [J]. Physical Review B,1989,40(5):2980-2987.
    [96] Vanderbilt, D. Optimally smooth norm-conserving pseudopotentials [J]. Physical Review B,1985,32(12):8412-8415.
    [97] Shirley, E. L., Allan, D. C., Martin, R. M., et al. Extended norm-conserving pseudopotentials [J].Physical Review B,1989,40(6):3652-3660.
    [98] Rappe, A. M., Rabe, K. M., Kaxiras, E., et al. Optimized pseudopotentials [J]. Physical Review B,1990,41(2):1227-1230.
    [99] Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. PhysicalReview B,1990,41(11):7892-7895.
    [100] Laasonen, K., Pasquarello, A., Car, R., et al. Car-Parrinello molecular dynamics with Vanderbiltultrasoft pseudopotentials [J]. Physical Review B,1993,47(16):10142-10153.
    [101] Bl chl, P. E. Projector augmented-wave method [J]. Phys. Rev. B,1994,50(24):17953-17979.
    [102] Kresse, G., Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method [J].Phys. Rev. B,1999,59(3):1758-1775.
    [103] Kresse, G., Furthmuller, J. VASP the Guide [J]. Computational Physics, Faculty of Physics, Universit2atWien, Sensengasse,2001,8.
    [104] Monkhorst, H. J., Pack, J. D. Special points for Brillouin-zone integrations [J]. Phys. Rev. B,1976,13(12):5188-5192.
    [105] Fu, C. L., Ho, K. M. First-principles calculation of the equilibrium ground-state properties of transitionmetals: Applications to Nb and Mo [J]. Physical Review B,1983,28(10):5480-5486.
    [106] Grotheer, O., F hnle, M. Correction terms to the density-functional ground-state energy arising fromoccupation number broadening [J]. Physical Review B,1998,58(20):13459-13464.
    [107] Henkelman, G., Uberuaga, B. P., Jonsson, H. A climbing image nudged elastic band method for findingsaddle points and minimum energy paths [J]. J. Chem. Phys.,2000,113(22):9901-9904.
    [108] Henkelman, G., Jonsson, H. Improved tangent estimate in the nudged elastic band method for findingminimum energy paths and saddle points [J]. J. Chem. Phys.,2000,113(22):9978-9985.
    [109] Wang, X. G., Chaka, A., Scheffler, M. Effect of the Environment on α-Al2O3(0001) Surface Structures[J]. Phys. Rev. Lett.,2000,84(16):3650-3653.
    [110] Li, W. X., Stampfl, C., Scheffler, M. Insights into the function of silver as an oxidation catalyst by abinitio atomistic thermodynamics [J]. Phys. Rev. B,2003,68(16):165412.
    [111] Rogal, J., Reuter, K. Ab initio atomistic thermodynamics for surfaces: A primer [R]. Neuilly-sur-Seine,France: DTIC Document,2006.
    [112] Reuter, K., Scheffler, M. Composition, structure, and stability of RuO2(110) as a function of oxygenpressure [J]. Phys. Rev. B,2001,65(3):035406.
    [113] Linstrom, P. J., Mallard, W. NIST chemistry webbook[M]. National Institute of Standards andTechnology Gaithersburg MD,2001.
    [114] Kee, R. J., Zhu, H., Goodwin, D. G. Solid-oxide fuel cells with hydrocarbon fuels [J]. Proc. Combus.Inst.,2005,30(2):2379-2404.
    [115] Dresselhaus, M. S., Thomas, I. L. Alternative energy technologies [J]. Nature,2001,414(6861):332-337.
    [116] Williams, M. C., Strakey, J. P., Surdoval, W. A., et al. Solid oxide fuel cell technology development inthe U.S [J]. Solid State Ionics,2006,177(19–25):2039-2044.
    [117] Alstrup, I., Rostrup Nielsen, J. R., R en, S. High temperature hydrogen sulfide chemisorption on nickelcatalysts [J]. Appl. Catal.,1981,1(5):303-314.
    [118] Lüdecke, J., Ettema, A. R. H. F., Driver, S. M., et al. The structure of sulphur adsorption phases onNi(111) studied by X-ray standing wavefield absorption [J]. Surf. Sci.,1996,366(2):260-274.
    [119] Alfonso, D. R. First-principles studies of H2S adsorption and dissociation on metal surfaces [J]. Surf.Sci.,2008,602(16):2758-2768.
    [120] Rodriguez, J. A., Maiti, A. Adsorption and Decomposition of H2S on MgO(100), NiMgO(100), andZnO(0001) Surfaces: A First-Principles Density Functional Study [J]. J. Phys. Chem. B,2000,104(15):3630-3638.
    [121] Wu, Q., Yakshinskiy, B. V., Gouder, T., et al. H2S adsorption on polycrystalline UO2[J]. Catal. Today,2003,85(2–4):291-301.
    [122] Chen, H.-T., Choi, Y., Liu, M., et al. A First-Principles Analysis for Sulfur Tolerance of CeO2in SolidOxide Fuel Cells [J]. J. Phys. Chem. C,2007,111(29):11117-11122.
    [123] Ziolek, M., Kujawa, J., Saur, O., et al. Influence of hydrogen sulfide adsorption on the catalyticproperties of metal oxides [J]. J. Mol. Catal. A: Chem.,1995,97(1):49-55.
    [124] Shishkin, M., Ziegler, T. Oxidation of H2, CH4, and CO Molecules at the Interface between Nickel andYttria-Stabilized Zirconia: A Theoretical Study Based on DFT [J]. J. Phys. Chem. C,2009,113(52):21667-21678.
    [125] Kresse, G., Hafner, J. Ab initio molecular-dynamics simulation of theliquid-metal–amorphous-semiconductor transition in germanium [J]. Phys. Rev. B,1994,49(20):14251-14269.
    [126] Becke, A. D., Edgecombe, K. E. A simple measure of electron localization in atomic and molecularsystems [J]. J. Chem. Phys.,1990,92(9):5397-5403.
    [127] Silvi, B., Savin, A. Classification of chemical bonds based on topological analysis of electronlocalization functions [J]. Nature,1994,371(6499):683-686.
    [128] Henkelman, G., Arnaldsson, A., Jónsson, H. A fast and robust algorithm for Bader decomposition ofcharge density [J]. Comp. Mater. Sci.,2006,36(3):354-360.
    [129] Chen, L. Yttria-stabilized zirconia thermal barrier coatings—a review [J]. Surf. Rev. Lett.,2006,13(05):535-544.
    [130] Pramananda Perumal, T., Sridhar, V., Murthy, K. P. N., et al. Molecular dynamics simulations ofoxygen ion diffusion in yttria-stabilized zirconia [J]. Physica A: Statistical Mechanics and itsApplications,2002,309(1–2):35-44.
    [131] Miura, N., Elumalai, P., Plashnitsa, V., et al. Solid-State Electrochemical Gas Sensing [C]. E. Comini, G.Faglia, and G. Sberveglieri. in Solid State Gas Sensing. Springer US,2009:1-27.
    [132] Zhu, J., Van, O., Jan, G., et al. Reaction scheme of partial oxidation of methane to synthesis gas overyttrium-stabilized zirconia [J]. J. Catal.,2004,225(2):388-397.
    [133] Zhu, J. J., van, O., Jan, G., et al. Partial oxidation of methane by O2and N2O to syngas overyttrium-stabilized ZrO2[J]. Catal. Today,2006,112(1–4):82-85.
    [134] Xia, X., Oldman, R. J., Catlow, C. R. A. Oxygen adsorption and dissociation on yttria stabilizedzirconia surfaces [J]. J. Mater. Chem.,2012,22(17):8594-8612.
    [135] Chu, X., Lu, Z., Zhang, Y., et al. Can H2S poison the surface of yttria-stabilized zirconia?[J]. Int. J.Hydrogen. Energ,2013,38(21):8974-8979.
    [136] Sun, Q., Reuter, K., Scheffler, M. Effect of a humid environment on the surface structure of RuO2(110)[J]. Phys. Rev. B,2003,67(20):205424-205431.
    [137] Wang, J. H., Liu, M. L. Surface regeneration of sulfur-poisoned Ni surfaces under SOFC operationconditions predicted by first-principles-based thermodynamic calculations [J]. J. Power Source,2008,176(1):23-30.
    [138] Bartholomew, C. H., Agrawal, P. K., Katzer, J. R. Sulfur Poisoning of Metals [C]. H.P. D.D. Eley andB.W. Paul. in Adv. Catal. New York: Academic Press,1982:135-242.
    [139] Sargent, G. A., Freeman, G. B., Chao, J. L. R. Adsorption of CO on, and S poisoning of, a perfectNi(111) single crystal and a Ni(111) crystal with small angle boundaries [J]. Surf. Sci.,1980,100(2):342-352.
    [140] Jiang, D. E., Carter, E. A. First principles study of H2S adsorption and dissociation on Fe(110)[J]. Surf.Sci.,2005,583(1):60-68.
    [141] McAllister, B., Hu, P. A density functional theory study of sulfur poisoning [J]. J. Chem. Phys.,2005,122(8):084709-084706.
    [142] Eid, K. M., Ammar, H. Y. Adsorption of SO2on Li atoms deposited on MgO surface: DFT calculations[J]. Appl. Surf. Sci.,2011,257(14):6049-6058.
    [143] Romano, E. J., Schulz, K. H. A XPS investigation of SO2adsorption on ceria–zirconia mixed-metaloxides [J]. Appl. Surf. Sci.,2005,246(1–3):262-270.
    [144] Datta, A., Cavell R, G., Tower R, W., et al. Claus catalysis. I: Adsorption of SO2on the alumina catalyststudied by FTIR and EPR spectroscopy [J]. J. Phys. Chem.,1985,89(3):443-449.
    [145] Lo, J. M. H., Ziegler, T., Clark, P. D. SO2Adsorption and Transformations on γ-Al2O3Surfaces: ADensity Functional Theory Study [J]. J. Phys. Chem. C,2010,114(23):10444-10454.
    [146] Sayago, D. I., Serrano, P., B hme, O., et al. Adsorption and desorption of SO2on the TiO2(110)-(1×1)surface:A photoemission study [J]. Phys. Rev. B,2001,64(20):205402.
    [147] Luo, T., Vohs, J. M., Gorte, R. J. An Examination of Sulfur Poisoning on Pd/Ceria Catalysts [J]. J.Catal.,2002,210(2):397-404.
    [148] Luo, T., Gorte, R. J. Characterization of SO2-poisoned ceria-zirconia mixed oxides [J]. Appl. Catal. B:Envir.,2004,53(2):77-85.
    [149] Kivelson, D. The Determination of the Potential Constants of SO2from Centrifugal Distortion Effects[J]. J. Chem. Phys.,1954,22(5):904-908.
    [150] Stapper, G., Bernasconi, M., Nicoloso, N., et al. Ab initio study of structural and electronic properties ofyttria-stabilized cubic zirconia [J]. Physical Review B,1999,59(2):797-810.
    [151] Argyriou, D. N., Elcombe, M. M., Larson, A. C. A neutron scattering investigation of cubic stabilisedzirconia (CSZ)—I. The average structure of Y-CSZ [J]. J. Phys. Chem. Solids,1996,57(2):183-193.
    [152] Lu, Z., Muller, C., Yang, Z., et al. SOxon ceria from adsorbed SO2[J]. J. Chem. Phys.,2011,134(18):184703-184712.
    [153] Rodriguez, J. A., Jirsak, T., Gonzalez, L., et al. Reaction of SO2with pure and metal-doped MgO: Basicprinciples for the cleavage of S--O bonds [J]. J. Chem. Phys.,2001,115(23):10914-10926.
    [154] Rashkeev, S. N., Ginosar, D. M., Petkovic, L. M., et al. Catalytic activity of supported metal particlesfor sulfuric acid decomposition reaction [J]. Catal. Today,2009,139(4):291-298.
    [155] Rodriguez, J., Jirsak, T., Freitag, A., et al. Interaction of SO2with CeO2and Cu/CeO2catalysts:photoemission, XANES and TPD studies [J]. Catal. Lett.,1999,62(2-4):113-119.
    [156] Rodriguez, J. A., Liu, G., Jirsak, T., et al. Activation of Gold on Titania: Adsorption and Reaction ofSO2on Au/TiO2(110)[J]. J. Am. Chem. Soc.,2002,124(18):5242-5250.
    [157] Rodriguez, J. A., Perez, M., Evans, J., et al. Reaction of SO2with Au/CeO2(111): Importance of Ovacancies in the activation of gold [J]. J. Chem. Phys.,2005,122(24):241101-241104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700