用户名: 密码: 验证码:
液相分散状态在砂/水/金属多相体系腐蚀过程中作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤和混凝土中的金属腐蚀现象是近期我国自然环境腐蚀研究的主要对象。液相在土壤和混凝土腐蚀体系中呈高度分散状态,金属表面电解液为不连续分布状态。气相和固相对腐蚀行为影响也取决于液相形态既分散程度,而液相分散程度取决于含水量。腐蚀过程中的气/液和液/固界面区的溶解、扩散和转化过程都取决于体系含水量的变化。为此,本课题展开了液相分散程度和三相线界面区性质对高分散多相体系腐蚀行为影响及其作用机理的研究。主要研究了砂/水分散体系中含水量、砂颗粒度、水中含盐量以及金属材料对阴极行为和腐蚀行为的影响及其作用机理。
     本文结合使用极化曲线和电化学阻抗方法,研究了砂/水/钢铁多相体系中阴极极限扩散电流随含水量的变化及其作用机理,并研究了砂颗粒度、电极材料、盐种类和浓度对阴极该体系阴极行为和腐蚀行为影响。获得以下研究成果。
     (1)沙粒/水/钢体系中阴极过程的主要特征是随含水量的增加阴极极限扩散电流在相对饱和含水量为60%时出现极大值,极化电阻在60%处出现极小值。
     (2)建立了三相线界面区在砂/水/金属分散腐蚀体系中的作用的物理模型,根据这一模型解释了砂粒/水/钢铁体系中阴极行为和腐蚀行为含水量极大值现象。
     (3)砂粒颗粒度、盐的种类和浓度、钢铁种类都不同程度影响砂粒/水/钢铁体系中阴极行为和腐蚀行为,但不改变电极行为随含水量变化出现极大值现象,证实了液相分散程度在多相体系腐蚀行为中的重要作用。
Recently, metal corrosion in the soil and concrete system is the main object of our country environment corrosion research. Liquid in soil and concrete corrosion system assumes high dispersed state and electrolyte on metal surface distributes discontinuous. The influence of gas and solid on corrosion behavior depends on the state of liquid which is dispersed degree, while liquid dispersed degree depends on water content. The process of dissolution、diffusion and conversion between gas /fluid and fluid/solid interphase in corrosion process depends on the change of water content. Therefore, the thesis studies the influence of the liquid dispersed degree and the character of three-phase interphase area on corrosion of highly dispersed multiphase system and its mechanism. The thesis mainly studied the influence of water content, particles of sand,salt quantity in water and metallic material on cathode behavior and corrosion behavior as well as its mechanism.
     The thesis combines the polarization curves and electrochemical impedance to study the change of cathode limiting diffusion current along with water content and and its mechanism in sand /water /steel multiphase system, and also studies the influence of particles of sand,electrode material , salt species and density on cathode behavior and corrosion behavior. The research results are as follows:
     (1) The main feature of cathode process in sand/water/steel system show that cathode limiting diffusion current presents the maximum value and polarization resistance presents the minimum value when water content is RH60% with the increase in water content.
     (2) We creat the physical model of the influence of three phase interphase in sand /water/ metal corrosion system, and explain the phenomenon that cathode behavior and corrosion behavior present the maximum value with increase of water content in sand /water/ steel system according to the model.
     (3) Particles of sand, salt species and density and the types of steel affect to cathode behavior and corrosion behavior in sand /water/ steel system varying degrees, but all do not change the phenomenon that cathode presents the maximum value with the increase of water content. It proves the importance of liquid diapersed state in multiphase corrosion system.
引文
[1]曹楚南.中国材料的自然环境腐蚀.北京:化学工业出版社,2005.75~78.
    [2] C.C.Lee,F.Mansfeld,Corrosion Scienc,1999:41,439~443.
    [3]张学元,柯克,杜元龙,等.金属在薄液膜下电化学腐蚀电池的设计.中国腐蚀与防护学报,2001,21(2),117~119.
    [4]黄桂芳,吴翠兰,靳九成,等.防锈油的防护性能影响因素与油膜下金属腐蚀特征.中国腐蚀与防护学报,1999,19(3),179~183。
    [5] T.Tsuru, A.Nishikata, Wang Jia. Electrochemical Studies on Corrosion under Water Film. Materials Science and Engineering, 1995,161~174.
    [6]王佳,水流彻.使用KELVIN探头参比电极技术研究液层厚度对氧还原速度的影响.中国腐蚀与防护学报, 1995, 15(3),180~185.
    [7]王佳,水流彻.使用KELVIN探头参比电极技术进行薄液层下电化学测量.中国腐蚀与防护学报, 1995, 15(3),173~178.
    [8] Jia WANG, Yanhua WANG. Scanning Kelvin Probe Measurements Near Salt Particles on Zinc and Iron in Humidity. Corrosion, 2005,61(3),264~272.
    [9] Jibiao Zhang, Jia Wang, Yanhua Wang. Electrochemical investigations of micro-droplets formed on metals during the deliquescence of salt particles in atmosphere. Electrochemistry Communications. 2005,7,443~448.
    [10] ZHANG Ji-Biao, WANG Jia, WANG Yan-Hua. Phenomenon of Micro-droplets Formation on Metals during the Deliquescence of Salt Particles in Atmosphere.物理化学学报, 2005,21(9):993~996.
    [11] Jia WANG.Effects of water content and pore size on the corrosion process of steels in sand, Proc. 10th Asia Pacific Corrosion Control Conference, Oct. 27-31, Bali INDONESIA,1997.
    [12] Jia WANG. Corrosion behavior of steel in sand-A simulation study on the corrosion of reinforced steel in concrete. Proc.Corrosion & Prevention 97, Nov. 9-12, Brisbane, AUSTRALIA, 1997.
    [13]徐献芝,朱梅,杨基明.气体多孔电极反应微观机理及宏观现象的研究.中国工程科学,2005, 7(5):79~83.
    [14]朱梅,徐献芝,杨基明.考虑多孔电极内气液分布的数学模型,中国工程科学,2005, 7(8): 36~41.
    [15]石要武,任露泉,李建桥,等,土壤-金属界面水膜测量的浓差极化方法.农业工程学报,1997,13(1):25~29.
    [16]魏子栋.PAFC空气电极催化层相界面结构分析.物理化学学报,2001,17(10):892-897.
    [17]Thijssen J.The impact of future diesel fuel specifications and engineer missions standards on SOFC[R].Contract No.:DE-AM26-99FT40465,USA:US Department of Energy,National Energy Technology Laboratory,2004,187~192.
    [18]Mitterdorfer A.Identification of the oxygen reduction at cathodes of solid oxide fuel cells [D]. Swiss Federal Institute of Technology,Zu rich,1997,97~101.
    [19]Bjeberle A,The electrochemistry of solid oxide fuel cell anodes:experiments,modeling, and simulations[D].Swiss Federal Institute of Technology,Zu rich,2000.95~98
    [20]Weng Shilie,Weng Yiwu,Su Ming.Study of molten carbonate fuel cell on thermondynamic properties.Proceedings of the CSEE,2003,23(7):168~173.
    [21]Ioselevich A S,Kornyshev A A.Phenomenological theory of solidoxide fuel cell anode.Fuel Cells,2001,1(1):40~65.
    [22]Wang Mahai,Guo Hang,Ma Chongfang.Study of dynamic performance of a direct methanal fuel cell.Proceedings of CSEE,2005,25(6):161~165.
    [23]Virkar A V,Chen J,Tanner C W.The role of electrode microstructure on activation and concentration polarizations in solidoxide fuel cells.Solid State Ionics,2000,131(1-2):189~198.
    [24]YANG Hua,XIAO Yunhan,CAI Ruixian.Numerical simulating heat and mass transfer in a molten carbonate fuel cell. Proceedings of the CSEE,2001,21(7):22~26.
    [25]郭炳焜,李新海,杨松青,等.化学电源.长沙市:中南大学出版社,2003:414~417.
    [26]Gunther G.Interfacial aspects in the development of polymer electrolyte fuel cell. Solid State Ionics,1997:249-257.
    [27] Ann Mari Svensson , Kemal Nisancioglu Effect of non-uniform reaction rates at solid–oxide interfaces on the electrochemical impedance Solid State Ionics,2006, 177 :1955~1959.
    [28] P.R. Robergea, R.D. Klassena, P.W. Haberechtb. Atmospheric corrosivity modeling a review.Materials and Design,2002,23:321~330.
    [29] Hiroshi Fukunaga,Manabu Ihara,Keiji. The relationship between overpotential and the three phase boundary length. Solid State Ionics.1996,86~88: 1179~1185.
    [30] Ben Kenney. Kunal Karan. Engineering of microstructure and design of a planar porouscomposite SOFC cathode.A numerical analysis solid State Ionics,2007,(178): 297~306.
    [31]肖循,唐超群,夏正才.两种不同阴极材料的固体氧化物燃料电池.电源技术,2002,26(3):128~130.
    [32]孙大强,毛宗强.质子交换膜燃料电池膜电极组件研究.电源技术. 2003,27(2):92~95.
    [33]夏正才,唐超群.两种不同阳极SOFC的性能及阳极反应机制.电源技术,1999,23(6):167~176.
    [34]Murray E.P. ,T sal T. , Barne S. A. . Nature[J]. 1999, 400: 649~651.
    [35]徐献芝,朱梅,杨基明.考虑多孔电极内气液分布的数学模型.中国工程科学,2005,7(8):36~40.
    [36]Xu Hongfeng , Han Ming , Yi Baolian.Cathode mathematical model of proton exchange membrane fuel cell.Chinese Journal of Power Sources,1999,23(6):312~315.
    [37]简家文,杨邦朝,张益灿. Pt/YSZ电极结构形貌对传感器特性的影响.电子测量与仪器学报,2004,18(4):10~14.
    [38]陶映初,陶举洲.环境电化学.北京:化学工业出版社,2003:146~147.
    [39]詹自力,徐甲强,蒋登高.氧化铟气体传感器研究现状.传感器技术,2003,22(3):1~3.
    [40]赖慧豪.氧传感器对汽车排放的监控及检测.公路与汽运,2006,(3):10~12.
    [41]简家文,杨邦朝,张益康. Pt/ YSZ电极结构老化特性的复阻抗研究功能.无机材料学报,2004,35(2):200~205.
    [42]Michael C. Simmonds Thin sputtered platinum films on porous membranes as working electrodes in gas sensors.Electrochimica Acta, 1998,43(21-22):3285~3291.
    [43]Marion Wienecke. PTFE membrane electrodes with increased sensitivity for gas sensor applications, Synthetic Metals,2003,(138):165~171.
    [44]王康丽,严河清,白延利,等.氮氧化物电化学传感器.郑州轻工业学院学报,2004,19(4):85~87.
    [45]N.D. Tomashov, Corrosion, 1964,20 :7.
    [46]王佳,水流彻.使用Kelvin探头参比电极技术研究液层厚度对氧还原速度的影响.中国腐蚀与防护学报,1995,15(3):180~188.
    [47]Jia WANG.Effects of water content and pore size on the corrosion process of steels in sand. Proc.Corrosion and Prevention 97, Nov. 9~12, Brisbane, AUSTRALIA, 1997.
    [48]伍远辉,孙成,张淑泉,等.湿度对X70管线钢在青海盐湖盐渍土壤中腐蚀行为的影响.腐蚀科学与防护技术,2005,17(2):87~90.
    [49]李谋成、林海潮.湿度对钢铁材料在中性土壤中腐蚀行为的影响.腐蚀科学与防护技术. 2000,12(4):218~220.
    [50]屈庆,严川伟等NaCI在A3钢大气腐蚀中的作用.中国腐蚀与防护学报,2003,23(3):160~163.
    [51]李明齐,何晓英等16Mn钢在NaCl薄层液膜下腐蚀的电化学研究.吉林化工学院学报2003,20(2):64~67.
    [52]张学元,柯克,杜元龙.NaCl浓度对API P105钢在CO2溶液中的电化学腐蚀的影响.中国腐蚀与防护学报,2000,20(5):317~320.
    [53] Qing Qu ,Effects of NaCl and SO2 on the initial atmospheric corrosion of zinc. Corrosion Science, 44 (2002): 2789~2803.
    [54]魏宝明编,金属腐蚀理论及应用.北京:化学工业出版社,1984.197~198.
    [55] Gupta,S.K.and B.K.Gupta,Corrosion Science,1979,19:171~178
    [56]李谋成、林海潮、曹楚南等.碳钢在土壤中腐蚀的电化学阻抗谱特征.中国腐蚀与防护学报,2000,20(2):111~117.
    [57]伍远辉,孙成.湿度对X70管线钢在青海盐湖盐渍土壤中腐蚀行为的影响.腐蚀科学与防护技术,2005,17(2):87~90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700