用户名: 密码: 验证码:
软黏土地基电渗固结试验和理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的重力排水固结方法在处理低渗透性黏土时费时长久,有时甚至难以达到预期目的。性质更差的吹填淤泥和疏浚淤泥给地基处理方法带来新的挑战。在众多地基处理新方法中,电渗排水固结是较有前途的一种,因为其排水速率与土颗粒大小无关。然而,固结机理的不完善、设计计算方法的欠缺、能量消耗过高等原因制约了电渗的工程应用,因此有必要开展软黏土电渗固结的进一步研究。
     首先,开展三种不同条件下的电渗固结室内试验研究,以完善电渗固结机理。通过室内一维电渗固结试验研究分析了电压和土体含盐量对电渗固结的影响;提高电压能够加速电渗排水,但会导致排出单位体积水所消耗的能量增加;土体含盐量对电渗有很大影响,在适宜含盐量的软黏土地基中进行电渗能够以最低的能量消耗取得最好的处理效果。通过室内二维电渗固结试验研究分析了电势梯度相等时电极间距对电渗固结的影响,揭示了电渗过程中和电渗后黏土性质在电极之间的平面分布;减小电极间距可明显提高电渗固结效果,但是会导致电化学反应量的增大;在电渗固结过程中,黏土逐渐从饱和状态变化到非饱和状态,土体裂缝不断增多。室内轴对称电渗固结试验研究显示电极间的电势分布是通电时间和径向距离的函数。而且通过三种不同条件的电渗固结试验结果的对比分析发现电极形式对电渗固结影响的关键在于损失在电极和土体接触面上的电压与两极之间电压的比值。
     然后,开展二维电渗电场强度计算的理论研究。基于土体均匀各向同性假设和忽略电极截面尺寸影响,推导出电极长方形布置下的电场强度计算式,并根据参数分析结果对水平向电场分解和简化。水平电场在异性电极连线方向上的分量可简化为均匀的,电场强度可用相邻两对电极所围区域中心处的电场强度表示;同性电极连线方向上的水平电场分量包括有效部分和无效部分,无效部分在相邻两对电极间的平面范围为两个以同性电极间距为底边以一半同性电极间距为高的等腰三角形。
     接着,进行电渗固结理论的解析研究。利用等应变假设和实测的电势分布,从电流和水流耦合出发,建立轴对称电渗固结理论,推导出地基中径向平均孔压和按应力定义的径向平均固结度的解答,并提供电极梅花形布置向轴对称的环形布置的转换方法。参数分析表明:电极轴对称布置时施加的电压越高径向孔压消散得越快;电渗渗透系数与水力传导系数的比值在一定范围内电渗固结快速又经济。
     最后,以降低电渗能耗为目的进行软黏土地基电渗固结设计方法研究。在归纳总结软黏土电渗固结各影响因素后,提出软黏土地基电渗固结设计方法,相比已有方法增加了地基电渗适宜性评价和电渗系统参数优化,工程实例表明该方法能有效提高电渗效果和效率。
     本文的工作有助于电渗固结在软黏土地基处理中的应用和研究。
It takes a long time and even is difficult to improve low conductivity clay with conventional gravitational drainage methods based on mechanics such as vacuum preloading and preloading. Challenge is increasing while soft foundation was formed more and more by hydraulic filling recently. Compared with natural clay, dredger fill or dredged sediment has larger compressibility and smaller undrained shear strength. In the advances of ground improvement technologies electro-osmotic consolidation is much promising because its drainage rate is independent of clay particle size. However, the application of this method was limited by consolidation mechanism, design and calculating, energy demand and others. Research program was implemented to study electro-osmotic consolidation of soft clay.
     Electro-osmotic experiments program in the three different electrodes arraies was conducted in the laboratory firstly. The effect of supply voltage and soil salinity to electro-osmosis was studied through one-dimensional laboratory tests. Larger voltage leads faster drainage and lower energy efficiency. Clay salinity had a significant effect on the electro-osmotic consolidation. Consolidation in the feasible salty ground could gain the best result by the lowest energy consumption. Two-dimensional laboratory tests were conducted to reveal the effect of electrodes spacing to consolidation and the variation of clay properties in the space and time during dealing. Halving the spacing while keeping voltage gradient constant could enhance consolidation evidently. Saturated stage of clay was transformed gradually to unsaturated stage by electro-osmosis. The wettest part after testing might be between anode and cathode. Voltage profiles between annular electrodes were measured in the axisymmetric experiments and were proved to be dependent of dealing time and radial distance. The difference caused by electrodes shapes to consolidation was obtained after comparing tests under three different conditions. Voltage drop in the contact of soil and electrode varied with electrode shape and each shape had its strong point.
     Then the caiculation of electric field among electro-osmotic electrodes was studied. The calculated formula of electric field intensity among electrodes arrayed rectangular was proposed based on the assumption of homogeneous isotropic soil and ignoring the sectional dimensions of electrodes. Horizontal electric field intensity was decomposed and simplified considering the effect of adjacent electrodes. The intensity in the direction parallel to the beeline through anode and corresponding cathode could be assumed to even and the value equaled to the intensity in the centre of rectangle while the one perpendicular to it included effective part and ineffective part which was two isosceles triangles with the base being the distance between electrodes of the same polarity and the height being half its base.
     Then the consolidation theory of electro-osmosis was analyted. According to the voltage profile measured in the axisymmetric experiments, axisymmetric electro-osmotic consolidation theory was established base on the equal strain assumption and related theories which already existed. The analytic solutions for average excess pore pressure and radial average degree of consolidation in terms of stress were provided and so did the method of conversion from hexagonal array of electrodes to axisymmetric array. This theory could incorporate the coupling action of electro-osmosis and loading and the effect of soil-electrode contact. The results of parametric analysis showed that better consolidation effect can be gained by higher supply voltage and there was a range of appropriate ratio of electro-osmosis permeability coefficient to hydraulic permeability coefficient for axisymmetric electro-osmotic consolidation.
     The design method of electro-osmotic consolidation of soft clay foundation was suggested at last. An ameliorated design method of electro-osmotic consolidation of soft clay foundation was proposed after investigating the collected data and summarizing the influence factors of electro-osmotic consolidation finally. The difference between the method and existed ones was that the electro-osmotic treatment acceptability of sites was evaluated before calculating and electro-osmotic system parameters could be optimized during selecting. Evaluation and optimization can be finished easily using the tables offered. A classical case history was illustrated to confirm that this design method lead electro-osmotic consolidation to be more effective and more efficient.
     The present work would be useful to promote the application and research of electro-osmotic consolidation of soft clay foundation.
引文
Abiera H O, Miura N, Bergado D T, Nomura T. Effects of using electroconductive PVD in the consolidation of reconstituted Ariake clay. Geotechnical Engineering Journal,1999,30(2):67-83.
    Alshawabkeh A N, Acar Y B. Electrokinetic remediation Ⅱ:Theoretical Model[J]. Journal of Geotechnical Engineering, ASCE,1996,122(3):186-196.
    Alshawabkeh A N, Gale R J, Ozsu-Acar E, Bricka R M. Optimization of 2-D electrode configuration for electrokinetic remediation. Journal of Soil Contamination,1999,8(6):617-638.
    Alshawabkeh A N, Sheahan T C, Wu X. Coupling of electrochemical and mechanics processes in soils under DC fields. Mechanics of Material,2004,36(5-6):453-465.
    Barker J E, Rogers C D F, Boardman D I, Peterson J. Electrokinetic stabilisation:an overview and case study. Proceedings of the ICE-Ground Improvement,2004,8(2):47-58.
    Beddiar K, Teddy Fen-Chong, Dupas A, Berthaud Y, Dangla P. Role of pH in electro-osmosis:experimental study on NaCl-water saturated kaolinite. Transport in Porous Media,2005,61:93-107.
    Bergado D T, Balasubramaniam A S, Patawaran M A B, Kwunpreuk W. Electroosmotic consolidation of soft bangkok clay using copper and carbon electrodes with PVD. ASTM Geotechnical Testing Journal,2003, 26(3):277-288.
    Bjerrum L, Mourn J, Eide O. Application of electro-Osmosis to a foundation problem in a Norwegian quick clay. Geotechnique,1967,17(3):214-235.
    Bumotte F, Lefebvre G, Grondin G. A case record of electroosmotic consolidation of soft clay with improved soil-electrode contact. Canadian Geotechnical Journal,2004,41(6):1038-1053.
    Butterfield R, Johnston I W. The influence of electro-osmosis on metallic piles in clay. Geotechnique,1980, 30(1):17-38.
    Carrillo N. Simple two and three dimensional cases in the theory of consolidation of soils. Journal of Mathematical Physics,1942,21(1):1-5.
    Casagrande L. Electro-osmosis in soils. Geotechnique,1949,1(3):159-177.
    Casagrande L. Stabilization of soils by means of electroosmotic state-of-art. Journal of Boston Society of Civil Engineering, ASCE,1983,69(3):255-302.
    Chew S H, Karunaratne G P, Kuma V M, Lim L H, Toh M L, Hee A M. A field trial for soft clay consolidation using electric vertical drains. Geotextiles and Geomembranes,2004,22(1-2):17-35.
    Chen G, Mujumdar A S. Application of electrical fields in dewatering and drying. Developments in Chemical Engineering and Mineral Processing,2002,10(3-4):429-441.
    Chien S C, Ou C Y, Wang M K. Injection of saline solutions to improve the electro-osmotic pressure and consolidation of foundation soil. Applied Clay Science,2009,44(3-4):218-224.
    Curvers D, Maes K C, Saveyn H, De Baets B, Miller S, Van der Meeren P. Modelling the electro-osmotically enhancend pressure dewatering of activated sludge. Chemical Engineering Science,2007,62:2267-2276.
    Donnan F G. The theory of membrane equilibria. Chemical reviews,1924,1(1):73-90.
    El Naggar M H, Routledge S A. Effect of electro-osmotic treatment on piles. Proceedings of the ICE-Ground Improvement,2004,8(1):17-31.
    Esrig M I. Pore pressure, consolidation and electrokinetics. Journal of the Soil Mechanics and Foundation Division, ASCE,1968a,94(4):899-921.
    Esrig M I. Correspondence(For:"Application of electro-osmosis to a foundation problem in a norwegian quick clay"). Geotechnique,1968b,18(2):276-278.
    Esrig EM I, Gemeinhardt J P. Electrokinetic stabilization of an illitic clay. Journal of the Soil Mechanics and Foundation Division, ASCE,1967,93(3):109-128.
    Feldkamp J R, Belhomme G M. Large-strain electrokinetic consolidation:theory and experiment in one dimension. Geotechnique,1990,40(4):557-568.
    Fetzer C A. Electro-osmotic stabilization of west Branch dam. Journal of the Soil Mechanics and Foundation Division, ASCE,1967,93(4):85-106.
    Friedman S P. Soil properties influencing apparent electrical conductivity:a review. Computer and Electronics in Agriculture,2005,46(1-3):45-70.
    Fourie A B, Johns D G, Jones C J F P. Dewatering of mine tailings using electrokinetic geosynthetics. Canadian Geotechnical Journal,2007,44(2):160-172.
    Fourie A B, Jones C J F P. Improved estimates of power consumption during dewatering of mine tailings using electrokinetic geosynthetics (EKGs). Geotextiles and Geomembrances,2010,28(2):181-190.
    Fukue M, Minato T, Horibe H, Taya N. The micro-structure of clay by resistivity measurements. Engineering Geology,1999,54(1-2):43-53.
    Gazbar S, Abadie J M, Colin F. Combined action of electroosmosis drainage and mechanical compression on sludge dewatering. Water Science Technology,1995,30(8):169-175.
    Glendinning S, Lamont-Black J, Jones C J F P, Hall J. Treatment of lagooned sewage sludge in situ using electrokinetic geosynthetics. Geosynthetics International,2008,15(3):192-204.
    Glendinning S, Lamont-Black J, Jones C J F P. Treatment of sewage sludge using electrokinetic geosynthetics. Journal of Hazardous Materials,2007,139(3):491-499.
    Glendinning S, Jones C J F P, Pugh R C. Reinforced soil using cohesive fill and electrokinetic geosynthetics. International Journal of GeoMechanics, ASCE,2005,5(2):138-146.
    Gray D H. Electrochemical hardening of clay soil. Geotechnique,1970,20(1):81-93.
    Gray D H, Mitchell J K. Fundamental aspects of electro-osmosis in soils. Journal of the Soil Mechanics and Foundation Division, ASCE,1967,93(6):209-236.
    Gray D H, Mitchell J K. Fundamental aspects of electro-osmosis in soils:Closure discussion. Journal of the Soil Mechanics and Foundations Division, ASCE,1969,95(3):875-879.
    Gray D H, Somogyi F. Electro-osmotic dewatering with polarity reversals. Journal of the Geotechnical Engineering Division, ASCE,1977,103(1):51-54.
    Hamed J T, Bhadra A. Influence of current density and pH on electrokinetics. Journal of Hazardous Materials, 1997,55(1-3):279-294.
    Hamir R. Some aspects and applications of electrically conductive geosynthetic materials. Ph.D thesis. University of Newcastle upon Tyne, UK,1997.
    Indraratna B. Chu J. Ground improvement-Case History. London:Elsevier,2005.
    Iwata M, Jami M S, Satoa M. Analysis of constant-current electro-osmotic dewatering of various solid-liquid systems by considering the creep deformation. Separation and Purification Technology,2007,58(2): 274-281.
    Iwata M, Sato M, Nagase H. Analysis of constant-current electro-osmotic dewatering. Kagaku kogaku ronbunshu,2004,30(5):626-632.
    Jami M S, Iwata M. A new method for the theoretical analysis of electroforced sedimentation using terzaghi-voigt combined model. Separation Science and Technology,2008,43:979-995.
    Jayasekera S, Hall S. Modification of the properties of salt affected soils using electrochemical treatments. Geotechnical and geological engineering,2007,25:1-10.
    Jones C J F P. Briefing:Electrokinctic gcosynthctics:getting the most out of mud. Proceedings of the ICE-Civil Engineering,2004,157(3):103.
    Jones C J F P, Fakher A,Hamir R, Nettleton I M. Geosynthetic material with improved reinforcement capabilities. Proceedings of the International Symposium on Earth Reinforcement,1996,2:865-883.
    Kalumba D, Glendinning S, Rogers C D F, Tyrer M, Boardman D I. Dewatering of tunneling slurry waste using electrokinetic geosynthetics. Journal of Environmental Engineering, ASCE,2009,135(11): 1227-1236.
    Karunaratne G P, Jong H K, Chew S H. New electrically conductive geosynthetics for soft clay consolidation. Proceeding of the 3rd Asian Regional Conference on Geosynthetics,2004,277-284.
    Keller G V, Frischknecht F C. Electrical methods in geophysical prospecting. Pergamom Press, Oxford, New York,1966.
    Laursen S. Laboratory investigation of electroosmosis in bentonites and natural clays. Canadian Geotechnical Journal,1997,34(5):664-671.
    Lefebvre G, Burnotte F. Improvements of electroosmotic consolidation of soft clays by minimizing power loss at electrodes. Canadian Geotechnical Journal,2002,39(2):399-408.
    Lemaire T, Moyne C, Stemmelen D. Modelling of electro-osmosis in clayey materials including pH effects. Physics and Chemistry of the Earth,2007,32:441-452.
    Lewis R W, Humpheson C. Numerical analysis of electro-osmotic flow in soils. Journal of the Soil Mechanics and Foundation Division, ASCE,1973,99(8):603-616.
    Lo K Y, Ho K S. The effects of electroosmotic field treatment on the soil properties of a soft sensitive clay. Canadian Geotechnical Journal,1991,28(6):763-770.
    Lo K Y, Ho K S, Inculet I I. Field test of electroosmotic strengthening of soft sensitive clays. Canadian Geotechnical Journal,1991a,28(1):74-83.
    Lo K Y, Inculet I I, Ho K S. Electroosmotic strengthening of soft sensitive clays. Canadian Geotechnical Journal,1991b,28(1):62-73.
    Lo K Y, Micic S, Shang J Q. Electrokinetic strengthening of a soft marine sediment. International Journal of Offshore and Polar Engineering,2000,10(2):367-384.
    Lockhart N C, Stickland R E. Dewatering coal washery tailings ponds by electroosmosis. Powder Technology, 1984,40(1-3):215-221.
    Lockhart N C. Electroosmotic dewatering of clays.1. Influence of voltage. Colloids and Surfaces,1983a,6(3): 229-238.
    Lockhart N C. Electroosmotic dewatering of clays. Ⅱ. Influence of salt, acid and flocculants. Colloids and Surfaces,1983b,6(3):239-251.
    Lockhart N C. Electroosmotic dewatering of clays, Ⅲ. Influence of clay type, exchangeable cations, and electrode materials. Colloids and Surfaces,1983c,6(3):253-269.
    Lockhart N C. Electro-osmotic dewatering of fine tailings from mineral processing. International Journal of Mineral Processing,1983d,10(2):131-140.
    Lockhart N C. Sedimentation and electro-osmotic dewatering of coal-washery slimes. Fuel,1981,60(10): 919-923.
    Lockhart N C, Hart G H. Electro-osmotic dewatering of fine suspensions:the efficacy of current interruptions. Drying Technology,1988,6(3):415-423.
    Micic S, Shang J Q, Lo K Y, Lee Y N, Lee S W. Electrokinetic strengthening of a marine sediment using intermittent current. Canadian Geotechnical Journal,2001a,38(2):287-302.
    Micic S, Shang J Q, Lo K Y. Electrokinetic strengthening of marine clay adjacent to offshore foundations. Proceedings of the 11th International Offshore and Polar Engineering Conference, Stavanger, Norway, 2001b:694-701.
    Micic S, Shang J Q, Lo K Y. Electro-cementation of a marine clay induced by electrokinetics. Proceedings of the 12" International Offshore and Polar Engineering Conference, Kitakyushu, Japan,2002a:569-576.
    Micic S, Shang J Q, Lo K Y. Bearing capacity enhancement of skirted foundation element by electrokinetics. Proceedings of the 12th International Offshore and Polar Engineering Conference, Kitakyushu, Japan, 2002b:685-692.
    Micic S, Shang J Q, Lo K Y. Electrokinetic strengthening of soil surrounding offshore skirted foundations. Proceedings of the 13th International Offshore and Polar Engineering Conference, Honolulu, Hawaii,USA, 2003a:665-672.
    Micic S, Shang J Q, Lo K Y. Improvement of the load-carrying capacity of offshore skirted foundations by electrokinetics. Canadian Geotechnical Journal,2003b,40(5):949-963.
    Milligan V. First application of electro-osmosis to improve friction capacity—three decades later. Proceedings of the 13th International Conference on Soil Mechanism and Foundation Engineering,1994,5:1-5.
    Mitchell J K. Conductive phenomena:from theory to geotechnical practice. Geotechnique,1991,41(3): 299-340.
    Mitchell J K. Fundamentals of soil behavior. New York:John Wiley & Sons, Inc,1997.
    Morris D V, Hillis S F, Caldwellg J A. Improvement of sensitive silty clay by electroosmosis. Canadian Geotechnical Journal,1985,25(1):17-24.
    Mohamedelhassan E, Shang J Q. Effects of electrode materials and current intermittence in electro-osmosis. Proceedings of the ICE-Ground Improvement,2001,5(1):3-11.
    Mohamedelhassan E, Shang J Q. Feasibility assessment of electro-osmotic consolidation on marine sediment. Proceedings of the ICE-Ground Improvement,2002,6(4):145-152.
    Mohamedelhassan E, Shang J Q, Ismail M A, Randolph M F. Electrochemical stabilisation for offshore model caissons. Proceedings of the ICE-Ground Improvement,2008,161(3):131-141.
    Nettlton I M, Jones C J F P, Clarke B G, Hamir R. Electrokinetic geosynthetic and their application. Proceedings of the 16th International Conference on Geosynthetic, Atlanta, USA,1998,2:871-876.
    Nicholls R L, Herbst R L. Consolidation under electrical-pressure gradient. Journal of the Mechanics and Foundations Division, ASCE,1967,93(5):39-151.
    Onsager L. Reciprocal relations in irreversible processes. Physical Review,1931,37(4):405-429.
    Ou C Y, Chien S C, Wang Y G, On the enhancement of electroosmotic soil improvement by the injection of saline solutions. Applied Clay Science,2009a,44(1-2):130-136.
    Ou C Y, Chien S C, Chang H H. Soil improvement using electroosmosis with the injection of chemical solutions:field tests. Canadian Geotechnical Journal,2009,46(6):727-733.
    Pornpong A, Ulrich G. Electrokinetic stengthening of soft clay using the anode depolarization method. Bulletin Engineering Geology and the Environment,2005,64:237-245.
    Pugh R C. The application of electrokinetic geosynthetic material to uses in the construction Industry. Ph.D thesis, University of Newcastle upon Tyne, UK,2002.
    Raats M H M, van Diemen A J G, Laven J, Stein H N. Full scale electrokinetic dewatering of waste sludge. Colloids and Surfaces A:Physicochem. Eng. Aspects,2002,210(2-3):231-241.
    Rabie H R, Mujumdar A S, Weber M E. Interrupted electroosmotic dewatering of clay suspensions. Separations Technology,1994,4(1):38-46.
    Rasmussen W O, Budhu M. Electrode placement for subsurface electric field generation. Journal of Environmental Engineering, ASCE,1996,122(8):764-768.
    Reddy K R, Urbanek A, Khodadoust A P. Electroosmotic dewatering of dredged sediments:Bench-scale investigation. Journal of Environmental Management,2006,78:200-208.
    Rittirong A, Shang J Q. Numerical analysis for electro-osmotic consolidation in two-dimensional electric field. Proceedings of the 18th International Offshore and Polar Engineering Conference, Vancouver, BC, Canada, 2008,566-579.
    Rittirong A, Shang J Q, Mohamedelhassan E, Ismail M A, Randolph M F. Effects of electrode configuration on electrokinetic stabilization for caisson anchors in calcareous sand. Journal of Geotechnical and Geoenvironmental engineering, ASCE,2008,134(3):352-365.
    Saveyn H, Pauwels G, Timmeiman R, Van der Meeren P. Effect of polyelectrolyte conditioning on the enhanced dewatering of activated sludge by application of an electric field during the expression phase. Water Research,2005,39(13):3012-3020.
    Schmidt C A B, Borbosa M C, Almeida M. A laboratory feasibility study on electrokinetic injection of nutrients on an organic,tropical,clayey soil. Journal of Hazards Material,2007,143(3):655-661.
    Shang J Q. Zeta potential and electroosmosis permeability of clay soils. Canadian Geotechnical Journal, 1997a,34(4):627-631.
    Shang J Q. Electrokinetic dewatering of clay slurries as engineering soil covers. Canadian Geotechnical Journal,1997b,34(1):78-86.
    Shang J Q. Electroosmosis-enhanced preloading consolidation via vertical drains. Canadian Geotechnical Journal,1998,35(3):491-499.
    Shang J Q, Lo K Y. Electrokinetic dewatering of a phosphate clay. Journal of Hazardous Materials,1997, 55(1-3):117-133.
    Shang J Q, Mohamedelhassan E. Electrokinetic dewatering of eneabba west mine tailings:a laboratory experimental study. Geotechnical Special Publication, ASCE,2001:346-357.
    Shields D H, Rowe P W. Radial drainage oedometer for laminated clays. Journal of the Soil Mechanics and Foundation Division, ASCE,1965,91(1):15-24.
    Soderman L G and Milligan V. Capacity of friction piles in varved clay increased by electro-osmosis. Proceedings of the 5th International Conference on Soil Mechanics and Foundation Engineering, Paris,2: 143-148.
    Spiegler K S. Transport processes in ionic membranes. Transactions, Faraday Society,1958,54:1408-1428.
    Sprute R H, Kelsh D J. Limited field tests in electrokinetic densification of mill tailings. Report of Investigations 8034, USBM,1975.
    Stanczyk M H, Feld I L. Electro-dewatering tests of Florida phosphate rock slime. Report of Investigations 6451, USBM,1964.
    Su J Q, Wang Z. The two-dimensional consolidation theory of electro-osmosis. Geotechnique,2003,53(8): 759-763.
    Tjandra D, Wulandari P S. Improving marine clays with electrokinetics method. Civil Engineering Dimension,2007,9(1):98-102.
    Tuan P A, Jurate V, Mika S. Electro-dewatering of sludge under pressure and non-pressure conditions. Environmental Technology,2008,29(10):1075-1084.
    Vijh A K. The significance of current observation during combined field and pressure electroosmotic dewatering of clays. Drying Technology,1999a,17(3):555-563.
    Vijh A K. Salient experimental observation on the electroosmotic dewatering (EOD) of clays and sludges and their interpretation. Drying Technology,1999b,17(3):575-584.
    Wan T Y, Mitchell J K. Electro-osmotic consolidation of soils. Journal of the Geotechnical Engineering Division, ASCE,1976,102(5):473-491.
    Wittle J K, Zanko L M, Doering F, Harrison J. Enhanced stabilization of dikes and levees using direct current technology. GeoCongress 2008:Geosustainability and Geohazard Mitigation, Proceedings of session of GeoCongress 2008, ASCE,200:686-693.
    Yin J, Feldkamp J R, Chung K Y, Finno R J. Electro-osmotic pore pressures in soil due to an alternating electrical field. Transport in Porous Media,1995,18:37-63.
    Yoshida H, Kitajyo K, Nakayama M. Electroosmotic dewatering under A.C. electric field with periodic reversals of electrode polarity. Drying Technology,1999,17(3):539-554.
    Yoshida H, Shinkawa T, Yukawa H. Comparison between electroosmotic dewatering efficiencies under
    conditions of constant electric current and constant voltage. Journal of Chemical Engineering of Japan, 1980,13(5):414-417.
    Zhou J X, Liu Z, She P, Ding F X. Water removal from sludge in a horizontal electric field. Drying Technology,2001,19(3-4):627-638.
    Zhuang Y F, Wang Z. Interface electric resistance of electroosmotic consolidation. Journal of Geotechnical and Geoenvironmental engineering, ASCE,2007,133(12):1617-1624.
    柴寿喜,王晓燕,仲晓梅,郭英,王沛,李芳.含盐量对石灰固化滨海盐渍土稠度和击实性能的影响.岩土力学,2008,29(11):3066-3070.
    陈纪光.电渗水压松土法.有色金属(冶炼部分),1957,2:15-16.
    陈雄峰,荆一凤,吕鑑,霍守亮,程静.电渗法对太湖环保疏浚底泥脱水干化研究.环境科学研究,2006,19(5):54-58.
    陈幼雄.对宝钢工程深层电渗井点降水的分析.第四届全国土力学与基础工程学术会议论文集,1982.
    陈云敏,叶肖伟,张民强,柯瀚,张泉芳.多场耦合作用下重金属离子在粘土中的迁移性状试验研究.岩士工程学报,2005,27(12):1371-1375.
    陈仲候,王兴泰,杜世汉.工程与环境物探教程.北京:地质出版社,1996.
    程丽华,初元璋,韩静涛.地下与半地下建筑电渗脉冲防潮技术初探.中国建筑防水,2006,3:16-18.
    储旭,陈波,周建芃,陆取.真空电渗降水及动力挤密脱水加固淤泥技术.水利水电科技进展,2008,28(5):78-79.
    房营光,徐敏,朱忠伟.碱渣土的真空-电渗联合排水固结特性试验研究.华南理工大学学报(自然科学版),2006,34(11):70-75.
    高志义,张美燕,张健.真空预压联合电渗法室内模型试验研究.中国港湾建设,2000,(5):58-61.
    高有斌,曾国海,徐步兴,叶凝雯.双控动力固结法加固软粘土地基的应用研究.防灾减灾工程学报,2009,29(6):632-637.
    龚晓南主编.土力学.北京:中国建筑工业出版社,2002.
    郭典塔,吕文龙,石汉生,房营光.广州南沙软基处理方法分析及改进探讨.广东土木与建筑,2007,(9):26-28.
    韩选江.大型围海造地吹填土地基处理技术原理及应用.北京:中国建筑工业出版社,2009.
    何汉灏.电渗喷射井点降水在铁水包坑施工中的应用.建筑施工,1980,3:21-24.
    何汉灏.电渗喷射井点降水在深基础工程中的应用.建筑施工,1982,3:36-45.
    洪何清,胡黎明,Glendinning S,吴伟令.外荷载作用下的软粘土电渗试验.清华大学学报(自然科学版),2009,49(6):808-812.
    侯学渊,钱达仁,杨林德.软土工程施工新技术.合肥:安徽科学技术出版社,1999.
    胡春宏,吉祖稳,黄永健,陈东.我国江河湖库清淤疏浚实践与分析.泥沙研究,1998,4:47-55.
    胡勇前.高等级公路电渗法软基处理试验研究.城市道路与防洪,2004,(4):127-129.
    胡俞晨.电动土工合成材料加固软土地基试验研究.武汉:武汉大学硕士学位论文,2005.
    胡俞晨,王钊,庄艳峰.电动土工合成材料加固软土地基实验研究.岩土工程学报,2005,27(5):582-586.
    黄海龙,谢雅妍.佛山市—环线软基处理试验研究.公路与汽运,2006,113(2):63-76.
    积庆臣,孙永军,刘伟,张岳松.电渗技术在吹填泥袋坝固结中的应用研究.东北水利水电,2001,19(9):14-16.
    焦丹.软粘土电渗固结试验研究.杭州:浙江大学硕士学位论文,2010.
    李海深.围海造地地区基础工程的实践和探讨.土工基础,1997,11(4):48-51.
    李苗,张林洪,王甦达.电渗法处理填土地基的排水效果影响因素分析.岩土工程技术,2007,21(4):4-7.
    廖敬堂,廖宏志.真空电渗井点降水及低能量强夯加固技术在软基加固中的应用.华南港工,2009,1:30-36.
    刘凤松,刘耘东.真空-电渗降水-低能量强夯联合软弱地基加固技术在软土地基加固中的应用.中国港湾建设,2008,157(5):43-47.
    刘国华,王振宇,黄建平.土的电阻率特性及其工程应用研究.岩土工程学报,2004,26(1):83-87.
    刘伟.围海造地热潮的驱动机制及调控分析.中国国土资源经济,2008,21(11):29-31.
    欧孝夺.岩土工程固结技术用于水土分离的研究.南宁:广西大学硕士学位论文,1998.
    潘建纲.国内外围填海造地的态势及对海南的启示.新东方,2008,154:32-36.
    松尾新一郎编.孙明漳,梁清彦译.土质加固方法手册.北京:中国铁道出版社,1983.
    苏金强,王钊.电渗的二维固结理论.岩土力学,2004,25(1):125-131.
    谭罗荣,孔令伟.特殊岩土工程土质学.北京:科学出版社,2006.
    陶春.真空电渗法在中船龙穴造船基地软土地基处理中的应用.广东土木与建筑,2008,(7):18-20.
    汪俊波,刘斯宏,徐伟,王柳江.电渗法处理大连大窑湾超软土室内试验.水运工程,2010,(1):15-19.
    《汪闻韶院士土工问题论文选集》编委会.汪闻韶院士土工问题论文选集.北京:中国建筑工业出版社,1999.
    王翠英.提速条件下基床病害整治方案试验.路基工程,1998,77(2):11-15.
    王文.饱和土体电渗机理及基本理论研究.杭州:浙江大学硕士学位论文,2004.
    王立久,迟耀辉,郑万勇.电渗滤水混凝土的应用研究.沈阳建筑大学学报(自然科学版),2006,22(6):939-944.
    王甦达.多雨潮湿地区电渗法处理过湿填料技术研究.昆明:昆明理工大学硕士学位论文,2007.
    王甦达,张林洪,费维水,魏业清.电渗法处理过湿填料的施工技术.公路工程,2009,34(3):15-19.
    王甦达,张林洪,吴华金,段翔,陈加洪.电渗法处理过湿土填料中有关参数设计的探讨.岩土工程学报,2010,32(2):211-215.
    王协群,邹维列.电渗排水法加固湖相软粘土的试验研究.武汉理工大学学报,2007,29(2):95-99.
    王协群.电渗排水法加固软土的研究.武汉:武汉水利电力大学硕士学位论文,1996.
    王引生.电渗机理的探讨.上海地质,1983,(4):28-35.
    王祖源,张庆福.大学物理(下册).北京:机械工业出版社,2002.
    文海家,严春风,汪东云.吹填软土的工程特性研究.重庆建筑大学学报,1999,21(2):79-83.
    吴辉.真空-电渗联合排水固结理论分析与数值模拟.北京:清华大学学士学位论文,2010.
    奚正修.电渗喷射井点对淤泥质粘土深层降水的作用.施工技术,1983,(2):7-12.
    先立志.电渗作用应用在打椿工程中的介绍.公路,1957,2:11-12.
    杨建永,黄文钿.胶结充填电渗脱水试验研究.有色矿山,1995,(6):29-31
    Lee I K, White W,Ingles O G.俞调梅,叶书麟,曹名葆译校.岩土工程.北京:中国建筑工业出版社,1986.
    曾国熙,高有潮.软粘土的电化学加固.浙江大学学报,1956,8:12-35.
    张林洪,吴华金,王甦达.三种降低土料含水量方法的试验研究.岩土工程技术,2007,21(4):170-175.
    张迎春,谭祥韶,魏金霞,刘吉福.电渗法在公路软基处理中的应用实录.高速公路地基处理理论与实践—全国高速公路地基处理学术研讨会论文集,北京:人民交通出版社,2005.
    赵建国,朱文凯.电渗-强夯综合法加固软弱地基的实践.地质与勘探,1994,30(2):76-80。
    浙江大学地基与基础教研室.软粘土电化学加固在工程上的应用初稿.1959a.
    浙江大学地基与基础教研室实验室.软土地基室内电化学加固试验.1959b.
    钟显奇,杨丽容,谢沃林.珠江电厂深层电渗喷射井点施工技术.广东省基础工程公司,1983.
    周加祥,佘鹏,刘铮,丁富新.水平电场污泥脱水过程.化工学报,2001,52(7):635-638.
    周顺华,唐秋生,巫锡畴,吴邦颖.软土地区铁路基床病害的电化学处理法探讨.铁道学报,1999,21(1):107-109.
    朱伟,张春雷,刘汉龙,高玉峰.疏浚泥处理再生资源技术的现状.环境科学与技术,2002,25(4):3941.
    庄艳峰,王钊.土体电现象的应用.河海大学学报(自然科学版),2002,30(6):112-115.
    邹维列,杨金鑫,王钊.电动土工合成材料用于固结和加筋设计.岩土工程学报,2002,24(3):319-322.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700