用户名: 密码: 验证码:
过瘤胃γ-氨基丁酸(GABA)的研制及其对奶牛生产性能的影响与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
γ-氨基丁酸(GABA)是哺乳动物中枢神经系统中重要的神经递质,对动物具有多种调节功能。GABA在单胃动物上研究较多,但在反刍动物中研究报道很少。由于GABA在瘤胃内会被降解,本文首先开展了GABA的过瘤胃保护技术研究,研制出在瘤胃中较稳定、并能在瘤胃后有效释放的过瘤胃GABA(RP-GABA);然后研究了(?)P-GABA对围产期奶牛和泌乳盛期奶牛采食量和生产性能的影响,并从血液生理生化指标、采食相关基因表达等方面,探讨了GABA的作用机理。
     1、过瘤胃GABA的研制(试验一)
     由于GABA极易在瘤胃降解,因此首先对GABA进行过瘤胃包被加工研制。采用了L9(34)正交试验设计,以GABA的含量,被材种类和进料速度(压力)为变量,得到9种产品。以药物溶出法作为检测方法,筛选出四种溶出度较低的产品作为后续过瘤胃效果评定;然后采用体外法和半体外法进行评价,筛选出过瘤胃保护率和瘤胃后释放率较优的产品,并通过体外产气试验测定RP-GABA对瘤胃发酵参数的影响。结果显示:在瘤胃中放置2h后,GABA完全消失,而RP-GABA的消失率显著下降。瘤胃后消化率测定结果,样品残渣和RP-GABA样品的释放率都达到90%,说明RP-GABA在瘤胃后大部分可被释放。筛选出的四种样品可吸收率为90.8%-98.3%;综合产品的过瘤胃率,其总消化率分别为49.2%-75.8%。上述结果表明,在包被材料、进料压力和芯材含量三种因素中,包被材料对RP-GABA的稳定性起关键作用;RP-GABA对瘤胃发酵参数几乎没有影响。在GABA含量为50%、用固体棕榈油脂包被、压力11kp的条件下加工而成的RP-GABA,其过瘤胃保护率较高,且在下部消化道释放好。因此,后续试验均用该条件下调制的RP-GABA。
     2、GABA对荷斯坦奶牛采食量和生产性能的影响
     围产期和泌乳高峰期是泌乳奶牛的关键阶段,围产期奶牛采食量的上升滞后于奶量的上升,而泌乳高峰期的采食量也常不能满足高产的需要,所以改善这两个阶段的采食量至关重要。因此,本研究利用研制的RP-GABA,开展了围产期奶牛和泌乳高峰期奶牛的效果试验。
     2.1GABA对围产期奶牛采食量和生产性能的影响(试验二)
     根据上一胎次乳产量、预产期和胎次选择40头经产奶牛,按配对法均分为四组,第一组饲喂基础日粮(对照),第二组在基础日粮上添加0.6g/dGABA,第三和第四组分别在基础日粮中添加RP-GABA1.2g/d (GABA=0.6g/d)和2.4g/d(GABA=1.2g/d),试验期从产前2周至产后4周,每周测定乳产量和乳成分,每周测定奶牛采食量。结果发现,饲喂1.2g/d GABA可显著提高产后3-4周奶牛采食量(P<0.05),同时显著提高乳蛋白产量(P<0.05)。
     2.2. GABA对泌乳盛期奶牛采食量和生产性能的影响(试验三)
     根据乳产量、胎次选择泌乳盛期奶牛48头,按配对法均分为四个组,设置四个处理,分别为基础日粮(对照)、基础日粮添加RP-GABA0.8g/d,1.6g/d或2.4g/d(GABA添加量分别为0.4,0.8和1.2g/d)。试验期为8周。每周测定乳产量和乳成分,于第1、4、7周测定奶牛采食量。结果发现,试验组的干草采食量显著大于对照组(P<0.05),0.4g/d GABA组奶牛的奶产量显著高于对照组(P<0.05),而1.2g/d GABA组奶牛的奶产量与对照组无差异。0.4和0.8g/d GABA组奶牛乳蛋白产量显著高于对照组(P<0.05),乳脂率对照组与处理组间无差异。表明GABA可提高泌乳盛期奶牛采食量和生产性能。
     可见,在日粮中添加GABA可提高奶牛干物质采食量,进而改善奶牛生产性能。
     3、GABA促进奶牛采食量的机理研究
     在单胃动物中,GABA主要通过神经肽Y (NPY)和胆囊收缩素(CCK)代谢通路对动物采食进行调控,但其在奶牛中作用机理尚不清楚。本研究通过血液代谢指标和采食相关基因mRNA丰度(以湖羊为模式动物)两个层面,对GABA在奶牛中的促采食机理进行了初步研究。
     3.1GABA对奶牛血液代谢指标的影响(试验四)
     在上述围产期奶牛的试验三中,每周采血样集,测定血浆代谢指标;在泌乳盛期奶牛试验(试验二)中,第1、4、7周采集血样,测定血浆代谢指标。结果发现,在围产期奶牛产后第三、四周,在日粮中添加1.2g/dGABA提高奶牛血清中过氧化物歧化酶(SOD)、GSH-Px、总抗氧化能力(T-AOC)浓度(P<0.05),降低奶牛血清中NEFA浓度,降低奶牛血中CCK浓度(P<0.05),各处理间血清NPY和leptin(瘦素)浓度均无差异。在泌乳盛期日粮中添加0.8g/dGABA可提高奶牛血清中谷胱甘肽还原酶(GSH-Px)活性(P<0.05),降低奶牛血清丙二醛(MDA)浓度(P<0.05); GABA组奶牛血清游离脂肪酸(NEFA)浓度显著低于对照组;血清NPY浓度在各组间无差异。上述结果提示,添加GABA可增强奶牛抗氧化能力,改善奶牛健康状况,可能通过CCK途径提高奶牛采食量。
     3.2GABA对采食相关基因表达的影响(试验五)
     根据体重选取断奶湖羊24只,按随机区组设计分为3个处理,每个处理4个重复(栏),每个重复2只羔羊。采用全混合日粮模式,在基础日粮上添加0mg/d(对照)、140mg/d和280mg/d的RP-GABA (GABA分别为0,70和140mg/d),试验期为42天,每周连续测定三次日采食量。在饲养试验结束时进行屠宰试验,取十二指肠和回肠粘膜上皮,测定采食相关基因mRNA丰度。结果发现,在日粮中添加140mg/d GABA可显著提高断奶湖羊采食量(P<0.05),并提高试验期4-6周湖羊日增重(P<0.05),显著提高十二指肠上皮GABA-B受体1nRNA丰度,抑制CCK-2受体的相对表达量(P<0.05)。提示在反刍动物中,GABA可能通过CCK途径,对采食量进行调控。
     综上所述,包被材料是RP-GABA的稳定性关键因素;在日粮中添加GABA可提高围产期和泌乳盛期荷斯坦奶牛的采食量,进而提高其产奶性能,适宜的添加剂量分别为1.2g/d和0.6g/d。GABA对反刍动物的调控可能与CCK代谢通路有关。
Gama-aminobutyric acid (GABA) is one of the most important neurotransmitter in central nervous system, and has many regulatory functions on the animals. Many researches have been conducted with mono-gastric animals on the effects of GABA. However, there are few reports on ruminant animals. Due to the ruminal degradability of GABA, rumen-protected technology of GABA was developed to make GABA available in ruminants. A kind of rumen-protected (RP-GABA) which is stable in rumen but released efficiently in post-rumen digestive tracts was developed; the selected RP-GABA was then used to determine the effects of RP-GABA on feed intake and milk performance in transition and early lactating cows; finally, mechanisms of GABA on dairy cows were investigated by changes in serum variables and expression of feed intake related genes.
     1. Preparation of RP-GABA (Trail1)
     As GABA could be easily degraded in rumen, it should be protected before it can be applied in ruminant animals. The trail was conducted to prepare RP-GABA of high rumen-protected rate and intestinal digestive rate. Nine samples were designed and prepared, according to orthogonal design L9(34). GABA content, coating materials and air pressure were defined as the variations of preparation protocol. Dissolution rates were measured and four products with lower dissolution rates were selected to determine the ruminal and post-ruminal dissolution rates. The study was then conducted to estimate the dissolution rates of RP-GABA with the methods of in vitro and in sacco. All products had lower degraded rates than that of unprotected GABA (almost degraded within2h). Post-ruminal dissolution rates of the four products were over90%, indicating that they can be almost dissolved. All products had dissolution rates above90%in the digestive tract and the total digestive rates of were estimated to be from49.2%-75.8%. In summary, within the three factors (coating material, air pressure and GABA content), coating material played the key role in stability of RP-GABA. RP-GABA (50%GABA content, solid palm fatty acid pelled, air pressure11kp) was of low dissolution rate and high post-ruminal dissolution rate, and was selected to be used in all the following in vivo trails.
     2. Effects of GABA on feed intake and lactating performance in Holstein dairy cows (Trail2and3)
     Transition and early lactating are critical physiological periods for Holstein dairy cows. Feed intake of both transition and early lactating cows may not meet the requirements of the increasing milk yield. Thus, feed intake of these cows is a key issue for dairy nutrition. Thus, prepared RP-GABA was applied to investigate its effects on transition and early lactating cows.
     2.1Effects of dietary GABA on feed intake and lactating performance in transition dairy cows (Trail2)
     Transition cows:Forty multiparous cows were blocked based on previous milk production, parity, estimated calving date and body weight and were randomly assigned to one of four treatments and received either no GABA (control) or were supplemented with non-protected GABA (1.2g/day) or RP-GABA (1.2and2.4g/day (GABA=0.6and1.2, respectively)), respectively. The experiment lasted from2weeks before calving to4weeks after calving. Milk yield and milk composition were recorded weekly. The results showed that, during3rd and4th week, cows fed1.2g/d GABA had higher feed intake, and higher milk protein yield (4th week), compared with that of the control.
     2.2Effects of dietary GABA on feed intake and lactation performance in early lactating dairy cows (Trail3)
     Forty-eight multiparous cows were blocked based on days in milk (DIM), milk production and parity and were randomly assigned to one of four treatments with RP-GABA added at levels of0,0.8,1.6or2.4g/d (GABA=0,0.4,0.8, and1.2, respectively), respectively. The experimental period was8weeks. Milk yield and milk composition (fat, true protein, lactose) were recorded weekly. Results indicated that cows fed GABA consumed more grass hay (P<0.05). Cows consumed0.4g/d GABA were of higher milk yield (P<0.05), compared those of the control, but yielding off when cows consumed1.2g/d RP-GABA. Milk protein yield increased in the cows fed0.4or0.8g/d RP-GABA, respectively. No difference was observed in either fat or protein contents of milk. Cows fed0.4and0.8g/d GABA had higher lactose contents, compared with those of the control (P<0.05). In summary, dry matter intake and milk performance could enhanced dose-dependently in cows fed GABA.
     In summary, GABA enhanced milk performance by increasing feed intake in Holstein dairy cows.
     3The mechanism of GABA on dry matter intake in dairy cows (Trail4and5)
     In mono-gastric animals, GABA mainly regulated feed intake through neuropeptide Y (NPY) and cholecystokinin (CCK) pathways. However, the mechanism is not clear in dairy cows. Thus, the current study was conducted to investigate the mechanism of GABA in feed intake regulation in dairy cows, by determining serum variables and genes expression related with feed intake (with Hu sheep as model).
     3.1Effects of GABA on serum variables in dairy cows (Trail4)
     In trail2, sera of transition cows were collected weekly. Serum contents of NPY, CCK, leptin and biochemical and antioxidative metabolites were analyzed weekly and the calving day. In trail3, sera of early lactating cows were collected in the1st,4th, and7th week, and serum contents of GABA, neuropeptide Y, and biochemical and antioxidant variables were analyzed. The results indicated that feeding1.2g/d GABA enhanced serum SOD (super oxide dismutase), GSH-Px (gluthathione peroxidase) and T-AOC (total antioxidation capacity) contents, decreased serum NEFA contents, and decreased serum CCK contents during3-4week after calving, compared with that of the control (P<0.05). No difference was observed in leptin among all treatments. For early lactating cows, animals fed0.8g/d GABA had higher GSH-Px and lower malondialdehyde (MDA) contents in sera, compared with those of the control (P<0.05). All cows fed GABA were of low NEFA contents (P<0.05). GABA did not change serum NPY contents in both studies. In summary, GABA enhanced anti-oxidative capacity and health condition. GABA enhanced feed intake through pathway related with CCK.
     3.2Effect of GABA on gene expression related with feed intake (Trail5)
     Twenty-four Hu lambs weaned at age of50d were divided into three groups of eight lambs each, with four units of two lambs in each group, based on body weight, and were randomly assigned to three dietary treatments with addition of RP-GABA at levels of0,140or280mg/d (GABA=0,70,140mg/d). Feeding trial lasted6weeks. The DMI was recorded weekly in three consecutive days. At the end of the trial, four lambs from each group were slaughtered, and duodenum and ileum mucosa were obtained from RNA abundance measurements of genes regulating feed intake. The result indicated that DMI was significantly higher (P<0.05) in the lambs fed140mg/d GABA than those of the control during the whole period. Compared with control, lambs fed140mg/d RP-GABA had higher mRNA abundance of GABA-B receptor (P<0.05) and lower mRNA abundance of CCK-2receptor (P<0.05) in duodenum mucosa. The results indicated that RP-GABA regulated dry matter intake by affecting mRNA abundances of GABA-B and CCK-2receptors in duodenum epithelia.
     In summary, coating material could be the key factor in stability of the RP-GABA products. Addition of GABA enhanced feed intake and then milk performance in both transition and early lactating cows, respectively. The optimal doses of GABA were1.2and0.6g/d for transition cow and early lactating cows, respectively. Regulatory effect in feed intake induced by GABA might be related with CCK metabolic pathway.
引文
Abucham, J., and Reichlin, S.1991. Regulation of cholecystokinin octapeptide secretion by rat cerebral cortial cells in primary culture. Endocrinology.129(6):3125-3133.
    Adham, M., Higashiguchi, S., and Horie, K.2006. Relaxation and immunity enhancement effects of gamma-Aminobutyric acid (GABA) administration in humans. Biofactors.3(26):201-208.
    Agenas, S., Burstedt, E., and Holtenius, K.2003. Effects of feeding intensity during the dry period.1. Feed intake, body weight, and milk production. Journal of Dairy Science. 86(3):870-882.
    Allen, M. S.1996. Physical constraints on voluntary intake of forages by ruminants. Journal of Animal Science.74(12):3063-3075.
    Anand, B. K., and Brobeck, J. R.1951. Hypothalamic control of food intake in rats and cats. Yale Journal of Biologt Medicine.24:123-140.
    AOAC.1990. Official Methods of Analysis.15th ed. Vol.1. Assoc Offic. Anal. Chem., Arlington, VA.
    Awapara, J., Landua, A. J., and Fuerst, R.1950. Free y-aminobutyric acid in brain. Biology Chemistry.187:35-39.
    Bateman, H. D., Spain, J. N., and Kerley, M. S.1999. Evaluation of ruminally protected methionine and lysine or blood meal and fish meal as protein soures for lactating Holsteins. Journal of Dairy Science.82:2115-2120.
    Baumont, R., Seguier, N., and Dulphy, J. P. 1990. Rumen fill, forage palatability and alimentary behaviour in sheep. Journal of Agricultural Science.115(2):277-284.
    Bell, A. W.1980. Lipid metabolism in the liver and selected tissues and in the whole body of ruminant animal. Progress of Lipid Research.18:117.
    Bell, A.W.1995. Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. Journal of Animal Science.73:2804-2819.
    Bergman, E. N.1971. Hyperketonemia-ketogenesis and ketone body metabolism. Journal of Dairy Science.54:936-948.
    Billingsley, M. L, Suria, A.1982. Effects of peripherally administered GABA and other amino acids on cardiopulmonary responses in anesthetized rats and dogs. Archives Internationales De Pharmacodynamie Et De Therapie.255:131-140.
    Blagdon, P. A and Morgan, R. D.1996. Method for increasing the production of milk in ruminants. US.5496571.
    Booth, P. J.1990. Metabolic influences on hypothalamic-pituitary-ovarian function in the pig. Journal of Reproductive Fertility.40:89-100.
    Bradford, B. J., and Allen, M. S.2007. Depression in feed intake by a highly fermentable diet is related to plasma insulin concentration and insulin response to glucose infusion. Journal of Dairy Science.90:3838-3845.
    Bray, G. A.2000. Afferent signals regulating food intake. Proceedings of The Nutrition Society.59(3):373-384.
    Brockman, R. P.1979. Roles for insulin and glucagon in the development of ruminant ketosis. Canadian Veterinary Journal.20:121-126.
    Bruss, M. L.1993. Metabolic fatty liver of ruminants. Advances of Veterinary Science Medicine.37:417-449.
    Canale, C. J., Muller, L. D., and Mccahom, H. A.1990. Dietary fat and ruminally protected amino acid for high producing dairy cows. Journal of Dairy Science.73: 135-141.
    Casse, E. A., and Rulquin, H., and Huntington, G. B.1994. Effect of mesenteric vein infusion of propionate on splanchnic metabolism in primiparous Holstein cows. Journal of Dairy Science.77(11):3296-3303.
    Cavassini, P., Cicognani, P., and Meiners, J. A.2006. A composition of matter comprising particles which contain choline chloride to be administrated in a rumen protect and post-ruminally effective form. CA.2532803.
    Ceddia, R. B., and William, Jr. W. N., and Curi, R.2001. The response of skeletal muscle to leptin. Frontiers in Bioscience.6:90-97.
    Close, W. H., and Mount, L. E.1978. The effects of plane of nutrition and environmental temperature on the energy metabolism of the growing pig.1. Heat loss and critical temperature. British Journal of Nutrition.40(3):413-421.
    Cole, R. K., and Abbas, W. R., and Maiti, R. N.1996. Effect of continuous infusion of GABA and baclofen on gastric secretion in anaesthetized rats. Indian Journal of Experimental Biology.34(10):978-981.
    Czerkawsiki, J. W.1977. Breckenridge.Design and development of long-term rumen stimulation technique. British Journal of Nutrition.38:371.
    Dado, R. G., and Allen, M. S.1995. Intake limitations, feeding behavior, and rumen function of cows challenged with rumen fill from dietary fiber or inert bulk. Journal of Dairy Science.78(1):118-133.
    Dann, H. M., Varga, G. A., and Putnam, D. E.1999. Improving energy supply to late gestation and early postpartum dairy cows. Journal of Dairy Science.82(8):1765-1778.
    DeBoer, G., Trenkle, A., and Young, J. W.1985. Glucagon, insulin, growth hormone, and some blood metabolites during energy restric-tion ketonemia of lactating cows. Journal of Dairy Science.68:326-337.
    Defrain, J. M, Hippen, A. R., and Kalscheur, K. F.2004. Feeding glycerol to transition dairy cows:effects on blood metabolites and lactation performance. Journal of Dairy Science.87(12):4195-4206.
    Della-Fera, M. A., Baile, C. A., Schneider, B. S., and Grinker, J. A.1981. Cholecystokinin antibody injected in cerebral ventricles stimulates feeding in sheep. Science.212(4495):687-689.
    Den, B.1976. Determination of metabolizable energy in straw for ruminants by in vitro and in vivo methods. Sweden Journal of Agricultural Research.4:53
    Donkin, S. S., Varga, G. A., and Sweeney, T. F.1989. Rumen-protected methionine and lysine:effects on animal performance,milk protein yield and physiological measures. Journal of Dairy Science.72:1484-1489.
    Douglas, G. N., Overton, T. R., and Bateman, H. G.2006. Prepartal plane of nutrition, regardless of dietary energy source, affects periparturient metabolism and dry matter intake in Holstein cows. Journal of Dairy Science.89(6):2141-2157.
    Drackley, J. K.1999. Biology of dairy cows during the transition period:The final frontier? Journal of Dairy Science.82:2259-2273.
    Drackley, J. K., Richard, M. J., Beitz, D. C., and Young, J. W.1992. Metabolic changes in dairy cows with ketonemia in response to feed restriction and dietary 1,3-butanediol. Journal of Dairy Science.75:1622-1634.
    Echo, J. A., Lamonte, N., and Ackerman, T. F.,2002. Alteration in food intake aliceted by GABA and opioid agonists and antagonists administered into the ventral tegmental area region of rats. Integrative Physiological And Behavioral Science.76(1):107-16.
    Fabian, J., Chiba, L. I., Kuhlers, D. L., Frobish, L. T., Nadarajah, K., and McElhenney, W. H.2003. Growth performance, dry matter and nitrogen digestibilities, serum profile, and carcass and meat quality of pigs with distinct genotypes. Journal of Anim Science. 81(5):1142-1149.
    Fan, Z. Y, Deng, J. P., Liu, G. H.2007. Study on the Effect of y-Aminobutyric Acid on the Reproduction Performance and Internal Hormone Levels in Growing Pigs. Chinese Journal of Animal Nutrition.
    Ferrell, C. L., and Jenkins, T. G.1985. Energy utilization by Hereford and Simmental males and females. Animal Production.41:53-61.
    Ferrell, C. L., Koong, L. J., and Nienaber, J. A.1986. Effect of previous nutrition on body composition and maintenance energy costs of growing lambs. British Journal of Nutrition 56:595-605.
    Fisher, D. S.1994. Baumont R.Modeling the rate and quantity of forage intake by ruminants during meals. Agricultural Systems.45(1):43-53.
    Fisher, D. S.1996. Modeling ruminant feed intake with protein, chemostatic, and distension feedbacks. Journal of Animal Science.74:3076-3081.
    Fluharty, F. L., and McClure, K. E.1997. Effects of dietary energy intake and protein concentration on performance and visceral organ mass in lambs. Journal of Animal Science.75,604-610.
    Franklin, S. T., Young, J. W. and Nonnecke, B. J.1991. Effects of ketones, acetate, butyrate, and glucose on bovine lymphocyte proliferation. Journal of Dairy Science. 74:2507-2516.
    Frederic, W., Z. D. Ling and Rene. De. Proft.2002. Correlation between GABA release from rat islet β-cells and their metabolic state. American Journal of Physiology Endocrinology.282:E937-E942.
    Goff, J. P., and Horst, R. L.1997. Physiological changes at parturition and their relationship to metabolic disorders. Journal of Dairy Science.80:1260-1268.
    Green, T., Dimaline, R., Peikin, S., and Dockray, G. J.1988. Action of the cholecystokinin antagonist L364,718 on gastric emptying in the rat. American Journal of Physiology.255(5 Pt 1):G685-689.
    Greenstein, R. J., Isola, L., and Gordon, J.1990. Differential cholecystokinin gene expression in brain and gut of the fasted rat. The American Journal of the Medical Sciences.299:32-37.
    Grummer, R. R.2008. Nutritional and management strategies for the prevention of fatty liver in dairy cattle. The Veterinary Journal.176(1):10-20.
    Grummer, R. R.1993. Etiology of lipid-related metabolic disorders in periparturient dairy cows. Journal of Dairy Science.76(12):3882-3896.
    Grummer, R. R.1993. Etiology of lipid-related metabolic disorders in periparturient dairy cows. Journal of Dairy Science.76:3882-3896.
    Grummer, R. R.1995. Impact of changes in organic nutrient metabolism on feeding the transition dairy cow. Journal of Animal Science 73:2820-2833.
    Gubler, U., Chua, A. O., Young, D., Fan, Z. W., and Eng, J.1987. Cholecystokinin mRNA in porcine cerebellum. Journal of Biology Chemistry.262(31):15242-15245.
    Gulati, S., Scott, T. W., and Ashes, J. R.1997. In vitro assessment of fat supplements for ruminants. Animal Feed. Science and Technology.64:127-132.
    Herdt, T. H.2000. Ruminant adap tation to negative energy balance:influences on the etiology of ketosis and fatty liver. Veterinary Clinical North American Food Animal Practice. (16):215-230.
    Houpt, T. R., Anika, S. M., and Wolff, N. C.1978. Satiety effects of cholecystokinin and caerulein in rabbits. American Journal of Physiology.235(1):R23-R28.
    Hu, Y. Y., He, S. S., and Xu, R. S.2001. Metabolism and Secretion of GABA in Kindle hippocampus neurons. Journal of Apoplexy and Nervdus Diseases.18(3):134-136.
    Illius, A. W., and Jessop, N. S.1996. Metabolic constraints on voluntary intake in ruminants. Journal of Animal Science.74(12):3052-3062.
    Inui, A.1999. Neuropeptide Y feeding receptors:are multiple subtypes involved? Trends In Pharmacological Sciences.20(2):43-46.
    Ketelaars, J. J., and Tolkamp, B. J.1996. Oxygen efficiency and the control of energy flow in animals and humans. Journal of Animal Science.74(12):3036-3051.
    King, B. D., and Rompala, R. D.1998. Method for enhancing feed efficiency in ruminants with an encapsulating choline composition. US.5807594.
    Knight, C. H., Beever, D. E. and Sorensen, A.1999. Metabolic loads to be expected from different genotypes under different systems. Metabolic Stress in Dairy Cows. British Society of Animal Science. Occasional Publication 24:27-36.
    Korpi, E. R., and Sinkkonen, S. T.2006. GABA-A receptor subtypes as targets for neuropsychiatric drug development. Pharmacology Therapy.109 (122):12-32.
    Krnjevic, K., and Schwartz, S.1966. Is y-Aminobutyric acid an inhibitory transmitter. Nature.211:1372-1374.
    Lopez, S., Carro, M. D. Gonzalez, J. S.1998. Comparison of different in vitro and in situ methods to estimate the extent and rate of degradation of hays in the rumen. Animal Feed Science and Technology.73:99-113.
    Mbanya, J. N., Anil, M. H., and Forbes, J. M.1993. The voluntary intake of hay and silage by lactating cows in response to ruminal infusion of acetate or propionate, or both, with and without distension of the rumen by a balloon. British Journal of Nutrition.69(3):713.
    McNeel, R. L., Ding, S. T., Smith, E. O., and Mersmann, H. J.2000. Effect of feed restriction on adipose tissue transcript concentrations in genetically lean and obese pigs. Journal of Animal Science.78(4):934-942.
    McNiven, M. A., Prestlokken, E., and Mydland, L. T.2002. Laboratory procedure to determine protein digestibility of heat-treated feedstuffs for dairy cattle. Animal Feed Science and Technology. (96):1-13.
    Mesgarana, M. D., and Sternb, M, D.2005. Ruminal and post-ruminal protein disappearance of various feeds originating from Iranian plant varieties determined by the in situ mobile bag technique and alternative methods. Animal Feed Science and Technology. (118):31-46.
    Michalet, D., and Cerneau, P.1991. Influence of foodstuff particle size on in situ degradation of nitrogen in the rumen. Animal Feed Science and Technology.35: 69-81.
    Miller, B. G.2000. Method for increasing milk production in lactating dairy cattle. US. 6106871.
    Miller, J. K., Brzezinska-Slebodzinska, E., and Madsen, F. C.1993. Oxidative stress, antioxidants and animal function. Symposium:antioxidants, immune response and animal function. Journal of Dairy Science.76:2812-2823.
    Miller, J. K., Brzezinska-Slebodzinska, E., and Madsen, F. C.1993. Oxidative stress, antioxidants, and animal function. Journal of Dairy Science.76:2812-2823.
    Miller, J. K., Madsen, F. C., Lyons, T. P., and Jacques, K. A.1994. Transition metals, oxidative status, and animal health:Do alterations in plasma fast-acting antioxidant lead to disease in livestock? Biotechnology in the feed industry. Pages 283-301 in Proc. Alltech's Tenth Annu. Symp. T. P. Lyons and K. A. Jacques, ed. Nottingham Univ. Press, Nottingham, UK.
    Miner, J. L., Della-Fera, M. A., Paterson, J. A., and Baile, C. A.1989. Lateral cerebroventricular injection of neuropeptide Y stimulates feeding in sheep. American Journal of Physiology.257(2 Pt 2):383-387.
    Minson, D. J.1963. The effect of pelleting and wafering on the feeding value of roughage-A review. Grass and Forage Science.18:39-50.
    Moran, T. H., and McHugh, P. R.1988. Gastric and nongastric mechanisms for satiety action of cholecystokinin. American Journal of Physiology.254(4 Pt 2):628-632.
    Moran, T. H., and McHugh, P. R.1982. Cholecystokinin suppresses food intake by inhibiting gastric emptying. American Journal of Physiology.242(5):R491-R497.
    Murondoti, A., Jorritsma, R., and Beynen, A. C.2004. Activities of the enzymes of hepatic gluconeogenesis in periparturient dairy cows with induced fatty liver. Journal of Dairy Research.71(2):129-134.
    Nakayama, Y, Hattori, N., and Otani, H.2006. Gamma-aminobutyric acid(GABA)-C receptor stimulation increases prolactin (PRL) secretion in cultured rat anterior pituitary cells. Biochemical Pharmacology.12(71):1705-1710.
    Natale, G., Blandizzi, C., and Carignani, D.1995. Central GABA-A receptors exert a tonic inhibitory control on gastric pepsinogen secretion in anaesthetized rats. Autonical Pharmacology.15(3):187-196.
    Nishimura, K., and T. Morita.1995. Granular agent for ruminants and process for producing the same. US.5635198.
    Nocek, J. E., and Tamminga, S.1991. Sites of Digestion of starch in the gastrointestinal tract of dairy cows and its effect on milk and composition. Journal of Dairy Science. 74:3598.
    Oba, M., and Allen, M. S.2009. Dose-response effects of intra-ruminal infusion of propionate on feeding behavior of lactating cows in early or midlactation. Journal of Dairy Science.86(9):2922-2931.
    Orskov, E. R., and Mcdonald, I.1979. The Estimation Degradability in the Rumen from incubation Measurements Weight According to Rate of Passage. Journal of Agricultural Science.92:499.
    Papas, A. M.1984. Effects of rumen-protected methionine on plasma free amino acid and production by dairy cows. Journal of Nutrition.114:2221.
    Parrott, R. F., Heavens, R. P., and Baldwin, B. A.1986. Stimulation of feeding in the satiated pig by intracerebroventricular injection of neuropeptide Y. Physiology Behavior.36(3):523-525.
    Patton, J., Kenny, D. A., and Mcnamara, S.2007. Relationships among milk production, energy balance, plasma analytes, and reproduction in Holstein-Friesian cows. Journal of Dairy Science.90(2):649-658.
    Pedernera, M., Garcia, S. C., Horagadoga, A.2008. Energy Balance and Reproduction on Dairy Cows Fed to Achieve Low or High Milk Production on a Pasture-Based System. Journal of Dairy Science.91:3896-3907
    Pigueras, L., and Vicente, M.2004. Peripheral GABAB agonists stimulate gastric acid secretion in mice. British Journal of Pharmacology.142:1038-1048.
    Pinotti, L., Rebucci, R., and Fusi, E.2003. Milk Choline, α-Tocopherol and Neutrophil Chemotaxis in the Periparturient Dairy Cow. Veterinary Research.27:265-268.
    Plokhov, A. Y.2000. Applied biochemistry and biotechnology.88:257-265.
    Provenza, F. D., and Balph, D. F.1990. Applicability of five diet-selection models to various foraging challenges ruminants encounter. Behavioural mechanisms of food selection.20:423-459.
    Provenza, F. D.1995. Postingestional feedback as an elementary determinant of food preference and inake in rumiants. Journal of Range Management.48:2-17.
    Pu, S., Jain, M. R., and Horvath, T. L.1999. Interactions between neuropeptide Y and γ-aminobutyric acid in stimulation of feeding:a morphological and pharmacological analysis. Endocrinology.140:933-940.
    Pysera, B., and Opalka, A.2000. The effect of gestation and lactation of dairy cows on lipid and lipoprotein patterns and composition in serum during winter and summer feeding. Journal of Animal Feed Science.9:411-424.
    Reidelberger, R. D.1992. Abdominal vagal mediation of the satiety effects of exogenous and endogenous cholecystokinin in rats. American Journal of Physiology.263(6 Pt 2): R1354-R1358.
    Roberts, E., and Frankel, S.1950. γ-Aminobutyric acid in brain:its formation from glutamic acid. Biology Chemistry.187:55-63.
    Rukkwamsu, T. T., Kruip, A. M., and Wensing, T.1999. Relationship between overfeeding and overconditioning in the problems of high producing dairy cows during the postparturient period. Veterinary Quarterly.21:71-77.
    Rukkwamsuk, T., Wensing, T., and Geelen, M.1999. Effect of fatty liver on hepatic gluconeogenesis in periparturient period. Journal of Dairy Science.82:500-505.
    Sato, S., Suzuki, T., and Okada, K.1994. Suppression of mitogenic response of bovine peripheral blood lymphocytes by ketone bodies. Journal of Veterinary Medicine Science.57:183-188.
    Savory, C. J., and Gentle, M. J.1983. Effects of food deprivation, strain, diet and age on feeding responses of fowls to intravenous injections of cholecystokinin. Appetite.4(3): 165-176.
    Scalera, G.1991. Effects of corticocerebellar lesions on taste preferences, body weight gain, food and fluid intake in the rat. Journal of Physiology.85(4):214-222.
    Schalm, J. W., and Schultz, L. H.1976. Relationship of insulin concentration to blood metabolites in dairy cows. Journal of Dairy Science.59:255-261.
    Schultz, L. H.1971. Management and nutritional aspects of ketosis. Journal of Dairy Science.54:962-973.
    Schwartz, G. J.2000. The role of gastrointestinal vagal afferents in the control of food intake:current prospects. Nutrition.16(10):866-873.
    Sclafani A.1991. Starch and sugar tastes in rodents:an update. Brain Research Bulletin. 27(3-4):383-386.
    Sharma, B. K., and Erdman, R. A.1989. Effect of dietary and abomasally infused choline on milk production responses of lactating dairy cows. Journal of Nutrition.119: 248-254.
    Shuji, H., Yugo, H., and Ryo, F.1998. A prolactin-releasing peptide in the brain. Nature. 393(6682):272-276.
    Shuye, P. U., Mukul, R. J., and Tamas, L.1999. Interactions between neuropeptide Y and y-aminobutyric acid in stimulation of feeding:a morphological and pharmacological analysis. Endocrinology.140(2):910-933.
    Shuye, P. U., Mukul, R. J., and Tamas, L.1999. Interactions between neuropeptide Y and y-aminobutyric acid in stimulation of feeding:a morphological and pharmacological analysis. Endocrinology.140(2):910-933.
    Sies, H.1991. Oxidative stress. Academic Press Ltd., Orlando, FL.
    Small, D. M., Voss, J., and Mak, Y. E.2004. Experience-dependent neural integration of taste and smell in the human brain. Journal of Neurophysiology.92(3):1892-1903.
    Smith, T. R., Hippen, A. R., and Beitz, D. C.1997. Metabolic characteristics of induced ketosis in normal and obese dairy cows. Journal of Dairy Science.80(8):1569-1581.
    Stocks, S. E., and Allen, M. S.2012. Hypophagic effects of propionate increase with elevated hepatic acetyl coenzyme A concentration for cows in the early postpartum period. Journal of Dairy Science.95(6):3259-3268.
    Strang, B. D., Bertics, S. J., Grummer, R. R. and Armentano, L. E.1998. Effect of long-chain fatty acids on triglyceride accumulation, gluconeogenesis, ureagenesis in bovine hepatocytes. Journal of Dairy Science.81:728-739.
    Stratford, T. R., and Kelley, A. E.1999. Evidence of a functional relationship between the nucleus accumbens shell and lateral hypothalamus subserving the control offeeding behavior. Journal of Neuroscience.19(24):11040-11048.
    Stratford, T. R., and Wirtshafter, D.2004. NPY mediates the feeding elicited by muscimol injections into the nucleus accumbens shell. Neurreport.15(17):2673-2676.
    Stritzler, N. P., Hvelplund, T., and Wolstrup, J.1990. The influence of the position in the rumen on dry matter disappearance from nylon bags. Acta Agriculturae Scandinavica. (49):363-366.
    Sun, F. M.1997. Effect of acupuncture on energy metabolism in simplobesity. International Journal of Clinical Acupupuncture.8(2):124.
    Targowski, S. P., Klucinski, W. and Littledike, T.1985. Suppression of mitogenic response of bovine lymphocytes during experimental ketosis in calves. American Journal of Veterinary Research.46:1378-1384.
    Tedeschi, L. O., Fox, D., and Russell, J. B.2000. Accounting for the effects of a ruminal nitrogen deficiency within the structure of the Cornell Net Carbohydrate and Protein System. Journal of Animal Science.78(6):1648-1658.
    Tien, D. V., Lynch, J. J., Hinch, G. N., and Nolan, J. V.1999. Grass odor and flavor overcome feed neophobia in sheep. Small Ruminant Research.32:223-229.
    Toyokuni, S.1999. Reactive oxygen species-induced molecular damage and its application in pathology. Pathology International.49:91-102.
    Tsushida, T., and T, Murai.1987. Conversion of glutamic acid to y-aminobutyric acid in tea leaves under anaerobic conditions. Agricultural and biological chemistry.51:2 865-2871.
    Tybirk, P.,1989. A model of food intake regulation in the growing pig. Occasional Publication, British Society of Animal Production.
    Udenfriend, S.1950. Identification of y-aminobutyric acid in brain by the isotope derivative method. Biology Chemistry.87:65-69.
    Van Soest, P. J., Bobertson, J. B., and Lewis, B. A.1991. Methods of dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science.74:3583-3597.
    Vazquez-Anon, M., Bertics, S. J., Luck, M., and Grummer, R. R.1994. Peripartum liver triglyceride and plasma metabolites. Journal of Dairy Science.77:1521-1528.
    Veenhuizen, J. J., Drackley, J. K., Richard, M. J., Sanderson, T. P., Miller, L. D., and Young, J. W.1991. Metabolic changes in blood and liver during development and early treatment of experi-mental fatty liver and ketosis in cows. Journal of Dairy Science.74:4238-4253.
    Verstegen, W. M. A., Brandsma, H. A., and Mateman, G.1982. Feed Requirement of Growing Pigs at Low Environmental Temperatures. Journal of Animal Science.55: 88-94.
    Waltner, S. S., McNamara, J. P., and Hillers, J. K.1993. Relationships of body condition score to production variables in high producing Holstein dairy cattle. Journal of Dairy Science.76:3410-3419.
    Wang, Y. M., Wang, J. H., Wang, C., Chen, B., Liu, J. X., Cao, H., Guo, F. C., and Vazquez-Anon, M.2010. Effect of different rumen-inert fatty acids supplemented with a dietary antioxidant on performance and antioxidative status of early-lactation cows. Journal of Dairy Science.93(8):3738-3745.
    Wang, D, M., Wang, C., Liu, H.Y., Liu, J. X., Ferguson, J. D.2013. Effects of rumen-protected y-aminobutyric acid on feed intake, lactation performance, and antioxidative status in early lactating dairy cows.96(5):3222-3227.
    Weakley, D. C., M. D. Stern and L. D. Satter.1983. Factors affecting disappearance of feedstuffs from bags suspended in the rumen. Journal of Animal Science.56:493-507.
    Wilding, J. P., Ajala, M. O., Lambert, P. D., and Bloom, S. R.1997. Additive effects of lactation and food restriction to increase hypothalamic neuropeptide Y mRNA in rats. Journal of Endocrinology.152(3):365-369.
    Wolfenson. D., Y. F. Frei and N. Snapir.1981. Heat stress effects on capillary blood flow and its redistribution in the laying hen. Pflugers Archivement.390(1):86-93.
    Xu, X. G., Yang, Z. F., and Hua, S. H.2001. Promotive effects of GABA on acid secretion from isolated mouse stomach in vitro. Acta Zoologica Sinica.47(2): 170-175.
    Yoshiad, T., Kanegane, H., and Osato, M.2002. Functional analysis of RUNX Mutations in Japanese patients with cleidocranial dysplasia demonstrates novel genotype-phenotype correlations. Ameriancan Journal of Human Genetics.71(4): 724-738.
    Zheng, H. Y, Michele, C., and Irina, S.2003. Peptides that regulate food intake appetite-inducing accumbens manipulation activates hypothalamic orexin neurons and inhibits POMC neurons. American Journal of Physiology and Regulation Physiology. 284:81436-81444.
    Zhu, L. H., Armentano, L. E., Bremmer, D. R., Grummer, R. R. and Bertics, S. J.2000. Plasma concentration of urea, ammonia, glutamine around calving and their relation to liver triglyceride, to plasma ammonia removal and blood acid-base balance. Journal of Dairy Science.83:734-740.
    Zinn, R. A., and Owens, F. N.1983. Influence of feed intake level on site of digestion in steers fed a high concentrate diet. Animal Science.56:471.
    Zou, X. T., Hu, J. C., and Cao, D. R.2009. Effect of y-Aminobutyric Acid on Growth Performance, Antioxidation and Hormones of HPA, HPT Axis in Growth-finishing Swine in Hot Summer. Chinese Journal of Animal and Veterinary Sciences.40(8): 1196-1201.
    Zou. X. T., Hu, J. C., Cao, D. R.2009. Effect of y-Aminobutyric Acid on Growth Performance, Antioxidation and Hormones of HPA, HPT Axis in Growth-finishing Swine in Hot Summer. Chinese Journal of Animal and Veterinary Sciences.40(8): 1196-1201.
    包海生.2006.过瘤胃脂肪的研究进展.饲料工业.(27):52-54.
    曹德瑞,邹晓庭.2007.γ-氨基丁酸在畜牧生产上的应用.中国饲料.(23):30-32.
    陈学斌.1999.动物选择采食行为与调味剂在饲料中的应用.国外畜牧科技,26(5):12-14.
    陈忠,王婷,黄丽明.2002.γ-氨基丁酸对热应激仔鸡生产性能影响的研究.海南师范学院学报(自然科学版).15(1):82-83.
    范志勇.2007.γ-氨基丁酸及其在母猪养殖中的应用.饲料工业.(28):58-61.
    冯仰廉,卢德勋,陆治年,李胜利.2004.反刍动物营养学.北京科学技术出版社.
    冯仰廉.2004.反刍动物营养学.北京:科学出版社.369-370.
    韩占强,林英庭,赵军,赵发盛.2007.奶牛氨基酸过瘤胃技术及效果概述.中国奶 牛.2:12-14.
    胡家澄,邹晓庭.2008.γ-氨基丁酸对肥育猪免疫机能的影响及其作用机理.饲料工业.14:3-5.
    黄虎平,赵瑞峰,王聪,杭军-2008.奶牛过瘤胃蛋白质调控技术研究.2:30-32.
    解新荣,黄远桂.1997.癫痫大鼠脑内NOS与GABA的共存机制.脑与神经疾病杂志.5(1):64-65.
    孔凡德,刘建新,吴跃明.2001.瘤胃保护性氨基酸及其对奶牛生产性能的影响.中国奶牛.1:30-32.
    李爱学.2003.γ-氨基丁酸和氟安定对产蛋高峰期募集摄食行为及有关内分泌的影响.南京,南京农业大学.
    李胜利.2000.过瘤胃淀粉在奶牛营养中的作用.中国奶牛.(4):22-23.
    林亲录,王婧,陈海军.2008.γ-氨基丁酸的研究进展.现代食品科技.25:496-500.
    林少琴.2004.米胚芽中γ-氨基丁酸的分离提取及鉴定.食品科学.25(1):76-78.
    刘清.2004.氨基酸和生物资源.26(1):40-43.
    刘晓牧,王中华,李福昌.2008.奶牛过瘤胃氨基酸的研究进展.饲料工业.8:16-18.
    卢德勋,谢崇文.1991.现代反当动物营养研究方法和技术.农业出社.
    石宝明,孙海霞.2002.瘤胃保护性氨基酸的作用与应用.兽药与饲料添加剂.7(6):28-31.
    斯钦.1996.过瘤胃蛋氨酸添加剂的研究.中国饲料.7:8-10.
    孙凤青.2004.中草药复方制剂“热喘平”治疗奶牛热应激机理研究.西南农业大学.
    滕佳伍.2005.过瘤胃脂肪在反刍动物中的应用研究.中国畜牧兽医.7:3-5.
    王芳权,陈蔚青.2006.比色法快速测定酶转化反应中γ-氨基丁酸质量分数.氨基酸和生物资源.28(2):78-81.
    王建华.2004.瘤胃保护性氨基酸的研制及其对内蒙古白绒山羊消化代谢影响的研究.内蒙古:内蒙古农业大学.
    韦习会,漆兴桂,夏东.2004.日粮添加γ-氨基丁酸对育肥猪生长和饲料利用的影响.家畜生态.25(2):10-12.
    温博贵.1980GABA代谢的研究进展.生理科学进展.11(1):26-32.
    武瑞,张洪友,夏成,肖立群,富艳玲.2005.荷斯坦奶牛酮病对抗氧化系统影响的 研究.动物医学进展.26(1):89-90.
    谢实勇,贾志海,范俊英.2003.瘤胃保护性蛋氨酸稳定性检验研究.当代畜牧.5:31-32.
    徐国忠.2007.过瘤胃保护胆碱的研制及其在荷斯坦奶牛中的应用效果研究.浙江:浙江大学.
    许冬梅.1999.反刍动物饲料蛋白质降解率测定方法述评.宁夏农学院学报.3:70-73.
    许振英.1989.猪的采食量.养猪.2:41-44.
    严蓉,古存,朱珊珊.2005.B型γ-氨基丁酸受体及其应答机制.国外医学麻醉学与复苏分册.26(1):33-35.
    杨凤.动物营养学.中国农业出版社.1993:240-241.
    叶惟怜.1986.γ-氨基丁酸的发现史.生理科学进展.17(2):187-189.
    翟少伟.2006.中国荷斯坦牛乳尿素氮与蛋白质营养关系的研究.博士学位论文.杭州.浙江大学
    张辉,徐满英.2006.γ-氨基丁酸作用的研究进展.哈尔滨医科大学学报.(3):267-268.
    张军民.2001.过瘤胃蛋白质和保护性氨基酸.中国饲料.4:12-13.
    张克英.2006.γ-氨基丁酸对早期断奶仔猪生长性能和血液指标的影响.四川,四川农业大学.
    张生福.1994.奶牛酮病的发生与防治动态.青海畜牧兽医杂志.24(3):38-39.
    张英杰.2000.营养物质过瘤胃保护技术.中国饲料.(20):13-14.
    张月萍,王建军.2001.摄食控制的神经体液机制研究进展.中国神经科学杂志.17:350-353.
    赵炳超,石波,李秀波.2004.新型饲料添加剂—γ-氨基丁酸的制备及应用研究进展.中国畜牧兽医.31:13-14.
    邹胜龙,冯定远.2000.动物热应激机理及其研究进展.广东饲料.4:20-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700