用户名: 密码: 验证码:
围产期奶牛瘤胃微生物区系的变化及微生态制剂的调控作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
奶牛处于分娩前三周至分娩后三周这段时间称为围产期。分娩前1周奶牛的采食量下降30%,产后5周内摄食不能满足泌乳所需的能量,这经常会导致能量负平衡,严重的能量负平衡可引发酮病和脂肪肝。瘤胃中乙酸、丙酸和丁酸等挥发性脂酸的比率与瘤胃中微生物的种类和数量密切相关。正常状态下,瘤胃中的碳水化合物被微生物发酵生成挥发性脂肪酸。反刍动物所需的葡萄糖90%是通过糖异生获得,其中50-60%是由丙酸通过糖异生生成。因此,研究围产期奶牛瘤胃微生物区系(尤其是丙酸生成优势菌)的变化及调控对于防治酮病和脂肪肝等围产期能量负平衡性疾病有着重要的意义。本实验通过末端限制性片段长度多态性分析(T-RFLP)技术和荧光定量PCR技术对围产期奶牛瘤胃微生物区系进行分析,并运用瘤胃微生态理论、细菌代谢工程策略,以丙酸生成菌和酵母复合调控瘤胃丙酸生成为技术核心,研制针对围产期奶牛能量负平衡的微生态制剂,为防治围产期奶牛能量负平衡开辟一条新的途径。
     连续检测围产期健康奶牛和酮病奶牛瘤胃微生物区系证明,围产期健康奶牛从高粗日粮转换成高精日粮时,瘤胃中乳酸生成菌--牛链球菌和乳酸杆菌的数量显著增加,但丙酸生成菌--反刍月形单胞菌和埃氏巨型球菌的数量显著减少,乳酸不能充分分解利用,导致挥发性脂酸浓度降低,生糖先质丙酸供给不足,促进了能量负平衡和酮病疾病的发生。
     酵母菌与反刍月形单胞菌+埃氏巨型球菌在体外复合培养表明,以啤酒酵母、产朊假丝酵母和伯顿毕赤酵母这三种酵母组合利用乳酸生成丙酸的能力最强,可促进反刍月形单胞菌、埃氏巨型球菌生成丙酸的能力,增加培养基中丙酸的浓度。
     围产期健康奶牛和酮病奶牛灌服复合微生态制剂后,可以促进瘤胃反刍兽月形单胞菌、埃氏巨型球菌、产琥珀酸丝状杆菌、纤维素分解菌和厌氧菌的生长和繁殖,抑制乳酸杆菌和牛链球菌的生长;增加瘤胃内挥发性脂肪酸浓度;降低分娩后健康奶牛和酮病奶牛血液中β-羟丁酸浓度,升高血液中葡萄糖浓度。
     健康奶牛灌服复合瘤胃微生态制剂后,临床检查、血液生化指标分析未见异常,说明该微生态制剂安全、无毒、可靠。初步证实该微生态制剂可缓解围产期奶牛的能量负平衡。
The transition period of a dairy cow is defined as the period from three weeks priorto calving to three weeks after calving. Feed consumption during the week beforecalving declines 30%, while feed intake during the first five weeks of lactation isinsufficient to meet the increasing energy demands of lactation. During this time,energy output in the form of milk exceeds energy input in the form of feed, which leadsto negative energy balance (NEB) or ketosis. The ratio of acetic acid, propionic acidand butyric acid generated in the rumen is affected by the type of forage, and the speciesand quantity of rumen bacteria. In the normal state, carbohydrates are fermented by avariety of bacteria in the rumen, and transformed into volatile fatty acids by thecorresponding enzymes. In ruminant animals, approximately 90% of the glucose issupplied by gluconeogenesis, with 50-60%of this being derived from propionate. It isimportant to investigate the relationship between composition of the bacterialcommunity and concentration of VFAs in the rumen during the transition period, or inthe case of ketosis, in dairy cows to identify strategies that might alleviate or avoidNEB and ketosis through regulation of microbial fermentation in the rumen. Inpresent study we analyzed the rumen microbiome composition of cows in the transitionperiod, cows with ketosis and non-perinatal cows using terminal restriction fragmentlength polymorphism (TRFLP) analysis of 16S rRNA genes and Quantitative PCR. Andbacteria metabolic engineering strategy and the change of rumen function are used asthe theoretical basis, and with the compound of propionic bacteria and yeast as thecore technology. This will open up a new way for the prevention and control for NEBin transition period cows.
     This test proved that transition and ketosis cows into a high-grain from alow-gtain diet, the amount of latic-producing baceria—lactobacillus and streptococcusbovis were significantly increase in the rumen, but the amount of propionic-ptoducingbaceria—selenomonas ruminantium and megasphaera elsdeniim were significantlyreduce in the rumen, lactic acid can not be fully catabolism, resulting in lowerconcentration of VFAs to promote a negative energy balance and ketosis disease.
     Screening the optimal yeast combination from Saccharomyces cerevisiae, Candida utilis, Burton pichia pastorios with Selenomonas ruminantium andMegasphaera elsdenii, a rumimal compound probiotics for negative energy balance intransition period cows was developed successfully. The probiotics could promote theuse of lactic acid by Saccharomyces cerevisiae, Candida utilis, Burton pichiapastorios combined with Selenomonas ruminantium and Megasphaera elsdenii, andincreased the concentration of propionic acid in vitro.
     When administered with the probiotics to the transition period cows with NEB orketosis, increased the ruminal amount of Selenomonas ruminantium, Megasphaeraelsdeniim, Fibrobacter succinogenes, cellulose decomposition bacteria and anaerobicbacteria; decreased the amount of Lactobacillus and Streptococcus bovis. Increasedthe concentration of VFAs in rumen; decreased the concentration of BHBA in serumof post-partum and ketiosis cows; increased the concentration of glucose in serum ofpost-partum and ketiosis cows.
     The health cows which were administered with the composite ruminal probioticsdisplayed no change of the blood biochemical index and clinical manifestation,indicating that the composite ruminal probiotics is safe,non-toxic and reliable fortransition period cows.
引文
[1] Payne J. M., K. G. Hibbitt, B. F. Sansom. Production disease in farm animals, F,1973 [C].
    [2] Mulligan F. J., M. L. Doherty. Production diseases of the transition cow [J]. TheVeterinary Journal, 2008, 176(1): 3-9.
    [3] Kelton D. F., K. D. Lissemore, R. E. Martin. Recommendations for recordingand calculating the incidence of selected clinical diseases of dairy cattle [J].Journal of dairy science, 1998, 81(9): 2502-2509.
    [4] Ingvartsen K. L., R. J. Dewhurst, N. C. Friggens. On the relationship betweenlactational performance and health: is it yield or metabolic imbalance that causeproduction diseases in dairy cattle? A position paper [J]. Livestock ProductionScience, 2003, 83(2-3): 277-308.
    [5] Leblanc S. J. Postpartum uterine disease and dairy herd reproductiveperformance: A review [J]. The Veterinary Journal, 2008, 176(1): 102-114.
    [6] Houe H., S. Ostergaard, T. Thilsing-Hansen, et al. Milk fever and subclinicalhypocalcaemia--an evaluation of parameters on incidence risk, diagnosis, riskfactors and biological effects as input for a decision support system for diseasecontrol [J]. Acta veterinaria Scandinavica, 2001, 42(1): 1.
    [7] Curtis C. R., H. N. Erb, C. J. Sniffen, et al. Association of parturienthypocalcemia with eight periparturient disorders in Holstein cows [J]. Journal ofthe American Veterinary Medical Association, 1983, 183(5): 559.
    [8] Leblanc S. J., K. E. Leslie, T. F. Duffield. Metabolic predictors of displacedabomasum in dairy cattle [J]. Journal of dairy science, 2005, 88(1): 159-170.
    [9] Buckley F., K. O'sullivan, J. F. Mee, et al. Relationships among milk yield, bodycondition, cow weight, and reproduction in spring-calved Holstein-Friesians [J].Journal of Dairy Science, 2003, 86(7): 2308-2319.
    [10] Enemark J. The monitoring, prevention and treatment of sub-acute ruminalacidosis (SARA): A review [J]. The Veterinary Journal, 2008, 176(1): 32-43.
    [11] Dann H. M., D. E. Morin, G. A. Bollero, et al. Prepartum intake, postpartuminduction of ketosis, and periparturient disorders affect the metabolic status ofdairy cows [J]. Journal of dairy science, 2005, 88(9): 3249-3264.
    [12] Grummer R. R. Nutritional and management strategies for the prevention offatty liver in dairy cattle [J]. The Veterinary Journal, 2008, 176(1): 10-20.
    [13] Kim I. H., G. H. Suh. Effect of the amount of body condition loss from the dryto near calving periods on the subsequent body condition change, occurrence ofpostpartum diseases, metabolic parameters and reproductive performance inHolstein dairy cows [J]. Theriogenology, 2003, 60(8): 1445-1456.
    [14] Ducusin R. J. T., Y. Uzuka, E. Satoh, et al. Effects of extracellular Ca2+ onphagocytosis and intracellular Ca2+ concentrations in polymorphonuclearleukocytes of postpartum dairy cows [J]. Research in Veterinary Science, 2003,75(1): 27-32.
    [15] Degaris P. J., I. J. Lean. Milk fever in dairy cows: A review of pathophysiologyand control principles [J]. The veterinary journal, 2008, 176(1): 58-69.
    [16] Roche J. R. The incidence and control of hypocalcaemia in pasture-basedsystems [J]. Acta veterinaria Scandinavica Supplementum, 2003, 97(141.
    [17] Lean I. J., P. J. Degaris, D. M. Mcneil, et al. Hypocalcemia in dairy cows:meta-analysis and dietary cation anion difference theory revisited [J]. Journal ofdairy science, 2006, 89(2): 669-684.
    [18] Goff J. P. The monitoring, prevention, and treatment of milk fever andsubclinical hypocalcemia in dairy cows [J]. The Veterinary Journal, 2008,176(1): 50-57.
    [19] Bramley E., I. J. Lean, W. J. Fulkerson, et al. The definition of acidosis in dairyherds predominantly fed on pasture and concentrates [J]. Journal of dairyscience, 2008, 91(1): 308-321.
    [20] O’grady L., M. L. Doherty, F. J. Mulligan. Subacute ruminal acidosis (SARA) ingrazing Irish dairy cows [J]. The Veterinary Journal, 2008, 176(1): 44-49.
    [21] Enemark J. M. D., R. J. Jorgensen, P. S. Enemark. Rumen acidosis with specialemphasis on diagnostic aspects of subclinical rumen acidosis: a review [J].Veterinarija ir zootechnika, 2002, 20(42): 16-29.
    [22] Plaizier J. C., D. O. Krause, G. N. Gozho, et al. Subacute ruminal acidosis indairy cows: The physiological causes, incidence and consequences [J]. TheVeterinary Journal, 2008, 176(1): 21-31.
    [23] Kleen J. L., G. A. Hooijer, J. Rehage, et al. Subacute ruminal acidosis (SARA): areview [J]. Journal of Veterinary Medicine Series A, 2003, 50(8): 406-414.
    [24] Aschenbach J. R., G. Gabel. Effect and absorption of histamine in sheep rumen:significance of acidotic epithelial damage [J]. Journal of animal science, 2000,78(2): 464-470.
    [25] Ohtsuka H., C. Watanabe, M. Kohiruimaki, et al. Comparison of two differentnutritive conditions against the changes in peripheral blood mononuclear cells ofperiparturient dairy cows [J]. The Journal of veterinary medical science/theJapanese Society of Veterinary Science, 2006, 68(11): 1161.
    [26] Burton J. L., S. A. Madsen, L. C. Chang, et al. Gene expression signatures inneutrophils exposed to glucocorticoids: a new paradigm to help explain‘neutrophil dysfunction’in parturient dairy cows [J]. Veterinary immunology andimmunopathology, 2005, 105(3): 197-219.
    [27] Spears J. W., W. P. Weiss. Role of antioxidants and trace elements in health andimmunity of transition dairy cows [J]. The Veterinary Journal, 2008, 176(1):70-76.
    [28] Villalobos-F J. A., C. Romero-R, M. R. Tarrago-C, et al. Supplementation withchromium picolinate reduces the incidence of placental retention in dairy cows[J]. Canadian Journal of Animal Science, 1997, 77(2): 329-330.
    [29] Scaletti R. W., D. S. Trammell, B. A. Smith, et al. Role of Dietary Copper inEnhancing Resistance to Escherichia coli Mastitis [J]. Journal of dairy science,2003, 86(4): 1240-1249.
    [30] Weiss W. P., J. S. Hogan, D. A. Todhunter, et al. Effect of vitamin Esupplementation in diets with a low concentration of selenium on mammarygland health of dairy cows [J]. Journal of dairy science, 1997, 80(8): 1728-1737.
    [31] Miller J. K., E. Brzezinska-Slebodzinska, F. C. Madsen. Oxidative stress,antioxidants, and animal function [J]. Journal of Dairy Science, 1993, 76(9):2812-2823.
    [32] Andrieu S. Is there a role for organic trace element supplements in transitioncow health? [J]. The Veterinary Journal, 2008, 176(1): 77-83.
    [33] Kehrli Jr M. E., B. J. Nonnecke, J. A. Roth. Alterations in bovine neutrophilfunction during the periparturient period [J]. American journal of veterinaryresearch, 1989, 50(2): 207.
    [34] Kehrli Jr M. E., B. J. Nonnecke, J. A. Roth. Alterations in bovine lymphocytefunction during the periparturient period [J]. American journal of veterinaryresearch, 1989, 50(2): 215.
    [35] Mallard B. A., J. C. Dekkers, M. J. Ireland, et al. Alteration in immuneresponsiveness during the peripartum period and its ramification on dairy cowand calf health [J]. Journal of Dairy Science, 1998, 81(2): 585-595.
    [36] Goff J. P., R. L. Horst. Physiological Changes at Parturition and TheirRelationship to Metabolic Disorders [J]. Journal of Dairy Science, 1997, 80(7):1260-1268.
    [37] Kehrli Jr M. E., K. Kimura, J. P. Goff, et al. Immunological dysfunction inperiparturient cows-what role does it play in postpartum infectious diseases, F,1999 [C].
    [38] Hammon D. S., I. M. Evjen, T. R. Dhiman, et al. Neutrophil function and energystatus in Holstein cows with uterine health disorders [J]. Veterinary immunologyand immunopathology, 2006, 113(1): 21-29.
    [39] Gunnink J. W. Pre-partum leucocytic activity and retained placenta [J].Veterinary Quarterly, 1984, 6(2): 52-54.
    [40] Gilbert R. O., Y. T. Grohn, C. L. Guard, et al. Impaired post partum neutrophilfunction in cows which retain fetal membranes [J]. Research in veterinaryscience, 1993, 55(1): 15-19.
    [41] Cai T. Q., P. G. Weston, L. A. Lund, et al. Association between neutrophilfunctions and periparturient disorders in cows [J]. American journal ofveterinary research, 1994, 55(7): 934.
    [42] Van Werven T., Y. H. Schukken, J. Lloyd, et al. The effects of duration ofretained placenta on reproduction, milk production, postpartum disease andculling rate [J]. Theriogenology, 1992, 37(6): 1191-1203.
    [43] Laven R. A., A. R. Peters. Bovine retained placenta: aetiology, pathogenesis andeconomic loss [J]. Veterinary record, 1996, 139(19): 465-471.
    [44] Correa M. T., H. Erb, J. Scarlett. Path analysis for seven postpartum disorders ofHolstein cows [J]. Journal of dairy science, 1993, 76(5): 1305-1312.
    [45] Joosten I., M. F. Sanders, E. J. Hensen. Involvement of major histocompatibilitycomplex class I compatibility between dam and calf in the aetiology of bovineretained placenta [J]. Animal genetics, 1991, 22(6): 455-463.
    [46] Kimura K., J. P. Goff, M. E. Kehrli, et al. Decreased neutrophil function as acause of retained placenta in dairy cattle [J]. Journal of dairy science, 2002,85(3): 544-550.
    [47] Kimura K., T. A. Reinhardt, J. P. Goff. Parturition and Hypocalcemia BluntsCalcium Signals in Immune Cells of Dairy Cattle1 [J]. Journal of dairy science,2006, 89(7): 2588-2595.
    [48] Miller H. V., P. B. Kimsey, J. W. Kendrick, et al. Endometritis of dairy cattle:diagnosis, treatment and fertility [J]. Bovine Pract, 1980, 15(13-23.
    [49] Bondurant R. H. Inflammation in the bovine female reproductive tract [J].Journal of Animal Science, 1999, 77(suppl 2): 101-110.
    [50] Gilbert R. O., N. R. Santos, K. N. Galvao, et al. The relationship betweenpostpartum uterine bacterial infection (BI) and subclinical endometritis (SE) [J].J Dairy Sci, 2007, 90(Suppl 1): 469.
    [51] Bretzlaff K. Rationale for treatment of endometritis in the dairy cow [J]. TheVeterinary clinics of North America Food animal practice, 1987, 3(3): 593.
    [52] Williams E. J., D. P. Fischer, D. E. Noakes, et al. The relationship betweenuterine pathogen growth density and ovarian function in the postpartum dairycow [J]. Theriogenology, 2007, 68(4): 549-559.
    [53] Huzzey J. M., D. M. Veira, D. M. Weary, et al. Prepartum behavior and drymatter intake identify dairy cows at risk for metritis [J]. Journal of dairy science,2007, 90(7): 3220-3233.
    [54] Drillich M., H. J. Sabin, M. Sabin, et al. Comparison of two protocols for thetreatment of retained fetal membranes in dairy cattle [J]. Theriogenology, 2003,59(3): 951-960.
    [55] Sheldon I. M., M. Bushnell, J. Montgomery, et al. Minimum inhibitoryconcentrations of some antimicrobial drugs against bacteria causing uterineinfections in cattle [J]. Veterinary record, 2004, 155(13): 383-387.
    [56] Drillich M., U. Reichert, M. Mahlstedt, et al. Comparison of two strategies forsystemic antibiotic treatment of dairy cows with retained fetal membranes:preventive vs. selective treatment [J]. Journal of dairy science, 2006, 89(5):1502-1508.
    [57] Leblanc S. J., T. F. Duffield, K. E. Leslie, et al. Defining and diagnosingpostpartum clinical endometritis and its impact on reproductive performance indairy cows [J]. Journal of Dairy Science, 2002, 85(9): 2223-2236.
    [58] Kunz P. L., J. W. Blum, I. C. Hart, et al. Effects of different energy intakesbefore and after calving on food intake, performance and blood hormones andmetabolites in dairy cows [J]. Animal Production, 1985, 40(2): 219-231.
    [59] Chew B. P., R. E. Erb, J. Fessler, et al. Effects of ovariectomy during pregnancyand of prematurely induced parturition on progesterone, estrogens, and calvingtraits [J]. Journal of Dairy Science, 1979, 62(4): 557-566.
    [60] Edgerton L. A., H. D. Hafs. Serum luteinizing hormone, prolactin,glucocorticoid, and progestin in dairy cows from calving to gestation [J]. Journalof Dairy Science, 1973, 56(4): 451-458.
    [61] Grummer R. R., P. C. Hoffman, M. L. Luck, et al. Effect of prepartum andpostpartum dietary energy on growth and lactation of primiparous cows [J].Journal of dairy science, 1995, 78(1): 172-180.
    [62] Grummer R. R., S. J. Bertics, D. W. Lacount, et al. Estrogen induction of fattyliver in dairy cattle [J]. Journal of dairy science, 1990, 73(6): 1537-1543.
    [63] Bertics S. J., R. R. Grummer, C. Cadorniga-Valino, et al. Effect of prepartumdry matter intake on liver triglyceride concentration and early lactation [J].Journal of Dairy Science, 1992, 75(7): 1914-1922.
    [64] Vazquez-Anon M., S. Bertics, M. Luck, et al. Peripartum liver triglyceride andplasma metabolites in dairy cows [J]. Journal of dairy science, 1994, 77(6):1521-1528.
    [65] Bell A. W. Lipid metabolism in liver and selected tissues and in the whole bodyof ruminant animals [J]. Progress in lipid research, 1979, 18(3): 117.
    [66] Kunz P. L., J. W. Blum, I. C. Hart, et al. Effects of different energy intakesbefore and after calving on food intake, performance and blood hormones andmetabolites in dairy cows [J]. Animal Production, 1985, 40(02): 219-231.
    [67] Grummer R. R. Impact of changes in organic nutrient metabolism on feeding thetransition dairy cow [J]. Journal of Animal Science, 1995, 73(9): 2820-2833.
    [68] Zamet C. N., V. F. Colenbrander, C. J. Callahan, et al. Variables associated withperipartum traits in dairy cows. I. Effect of dietary forages and disorders onvoluntary intake of feed, body weight and milk yield [J]. Theriogenology, 1979,11(3): 229-244.
    [69] Curtis C. R., H. N. Erb, C. J. Sniffen, et al. Path Analysis of Dry PeriodNutrition, Postpartum Metabolic and Reproductive Disorders, and Mastitis inHolstein Cows1 [J]. Journal of dairy science, 1985, 68(9): 2347-2360.
    [70] Zamet C. N., V. F. Colenbrander, R. E. Erb, et al. Variables associated withperipartum traits in dairy cows. II. Interrelationships among disorders and theireffects on intake of feed and on reproductive efficiency [J]. Theriogenology,1979, 11(3): 245-260.
    [71] Coppock C. E., C. H. Noller, S. A. Wolfe, et al. Effect of forage-concentrateratio in complete feeds fed ad libitum on feed intake prepartum and theoccurrence of abomasal displacement in dairy cows [J]. Journal of DairyScience, 1972, 55(6): 783-789.
    [72] Hernandez-Urdaneta A., C. E. Coppock, R. E. Mcdowell, et al. Changes inforage-concentrate ratio of complete feeds for dairy cows [J]. Journal of DairyScience, 1976, 59(4): 695-707.
    [73] Johnson D. G., D. E. Otterby. Influence of dry period diet on early postpartumhealth, feed intake, milk production, and reproductive efficiency of Holsteincows [J]. Journal of Dairy Science, 1981, 64(2): 290-295.
    [74] Holter J. B., M. J. Slotnick, H. H. Hayes, et al. Effect of prepartum dietaryenergy on condition score, postpartum energy, nitrogen partitions, and lactationproduction responses [J]. Journal of dairy science, 1990, 73(12): 3502-3511.
    [75] Dirksen G. U., H. G. Liebich, E. Mayer. Adaptive changes of the ruminal mucosaand their functional and clinical significance [J]. Bovine Pract, 1985,20(116-120.
    [76] Grummer R. R. Etiology of lipid-related metabolic disorders in periparturientdairy cows [J]. Journal of Dairy Science, 1993, 76(12): 3882-3896.
    [77] Holtenius P., G. U. N. Olsson, C. Bjorkman. Periparturient concentrations ofinsulin glucagon and ketone bodies in dairy cows fed two different levels ofnutrition and varying concentrate/roughage ratios [J]. Journal of VeterinaryMedicine Series A, 1993, 40(1-10): 118-127.
    [78] Studer V. A., R. R. Grummer, S. J. Bertics, et al. Effect of prepartum propyleneglycol administration on periparturient fatty liver in dairy cows [J]. Journal ofDairy Science, 1993, 76(10): 2931-2939.
    [79] Sauer F. D., J. K. G. Kramer, W. J. Cantwell. Antiketogenic effects of monensinin early lactation [J]. Journal of Dairy Science, 1989, 72(2): 436-442.
    [80] Prange R. W., C. L. Davis, J. H. Clark. Propionate production in the rumen ofHolstein steers fed either a control or monensin supplemented diet [J]. Journal ofAnimal Science, 1978, 46(4): 1120-1124.
    [81] Stephenson K. A., I. J. Lean, M. L. Hyde, et al. Effects of sodium monensin onadaptations to lactation of dairy cows [J]. J him Sci, 1994, 72(Suppl 1): 384.
    [82] Van Saun R. J., S. C. Idleman, C. J. Sniffen. Effect of undegradable proteinamount fed prepartum on postpartum production in first lactation Holstein cows[J]. Journal of dairy science, 1993, 76(1): 236-244.
    [83] Chew B. P., J. R. Eisenman, T. S. Tanaka. Arginine infusion stimulates prolactin,growth hormone, insulin, and subsequent lactation in pregnant dairy cows [J].Journal of dairy science, 1984, 67(11): 2507-2518.
    [84] Vicini J. L., J. H. Clark, W. L. Hurley, et al. Effects of abomasal or intravenousadministration of arginine on milk production, milk composition, andconcentrations of somatotropin and insulin in plasma of dairy cows [J]. Journalof Dairy Science, 1988, 71(3): 658-665.
    [85] Julien W. E., H. R. Conrad, D. R. Redman. Influence of dietary protein onsusceptibility to alert downer syndrome [J]. Journal of Dairy Science, 1977,60(2): 210-215.
    [86] Strang B. D., S. J. Bertics, R. R. Grummer, et al. Effect of long-chain fatty acidson triglyceride accumulation, gluconeogenesis, and ureagenesis in bovinehepatocytes [J]. Journal of dairy science, 1998, 81(3): 728-739.
    [87] Chew B. P., F. R. Murdock, R. E. Riley, et al. Influence of prepartum dietarycrude protein on growth hormone, insulin, reproduction, and lactation of dairycows [J]. Journal of Dairy Science, 1984, 67(2): 270-275.
    [88] Hook T. E. Protein effects on fetal growth, colostrum and calf immunoglobulinsand lactation in dairy heifers [D]; Colorado State University, 1987.
    [89] Rode L. M., T. Fujieda, H. Sato, et al. Rumen-protected amino (RPAA) acidsupplementation to dairy cows pre-and post-parturition [J]. J Dairy Sci, 1994,77(243.
    [90] Durand D., Y. Chilliard, D. Bauchart. Effects of lysine and methionine on invivo hepatic secretion of VLDL in the high yielding dairy cow [J]. J Dairy Sci,1992, 75(Suppl 1): 279.
    [91] Hong H. A., L. H. Duc, S. M. Cutting. The use of bacterial spore formers asprobiotics [J]. FEMS microbiology reviews, 2005, 29(4): 813-835.
    [92] Afrc R. F. Probiotics in man and animals [J]. Journal of Applied Microbiology,1989, 66(5): 365-378.
    [93] Yoon I. K. Influence of direct-fed microbials on ruminal microbial fermentationand performance of ruminants [J]. Asian-Australasian Journal of AnimalSciences, 1995, 8(3): 533-555.
    [94] Kung Jr L. Direct-fed microbials for dairy cows and enzymes for lactating dairycows: New theories and applications, F, 2001 [C].
    [95] Nocek J. E., W. P. Kautz, J. A. Z. Leedle, et al. Ruminal supplementation ofdirect-fed microbials on diurnal pH variation and in situ digestion in dairy cattle[J]. Journal of dairy science, 2002, 85(2): 429-433.
    [96] Kung Jr L., A. O. Hession. Preventing in vitro lactate accumulation in ruminalfermentations by inoculation with Megasphaera elsdenii [J]. Journal of AnimalScience, 1995, 73(1): 250-256.
    [97] Reynolds C. K., P. C. Aikman, B. Lupoli, et al. Splanchnic metabolism of dairycows during the transition from late gestation through early lactation [J]. Journalof Dairy Science, 2003, 86(4): 1201-1217.
    [98] Stein D. R., D. T. Allen, E. B. Perry, et al. Effects of Feeding Propionibacteria toDairy Cows on Milk Yield, Milk Components, and Reproduction1 [J]. Journal ofdairy science, 2006, 89(1): 111-125.
    [99] Weiss W. P., D. J. Wyatt, T. R. Mckelvey. Effect of feeding propionibacteria onmilk production by early lactation dairy cows [J]. Journal of dairy science, 2008,91(2): 646-652.
    [100] Rose A. H. Responses to the chemical environment [J]. The yeasts, 1987,2(5-40.
    [101] Jouany J. P., F. Mathieu, J. Senaud, et al. Influence of protozoa and fungaladditives on ruminal pH and redox potential [J]. S Afr J Anim Sci, 1999,29(65-66.
    [102] Lynch H. A., S. A. Martin. Effects of Saccharomyces cerevisiae Culture andSaccharomyces cerevisiae Live Cells on In Vitro Mixed RuminalMicroorganism Fermentation [J]. Journal of Dairy Science, 2002, 85(10):2603-2608.
    [103] Chaucheyras F., G. Fonty, G. Bertin, et al. Effects of a strain of Saccharomycescerevisiae (Levucell SC), a microbial additive for ruminants, on lactatemetabolism in vitro [J]. Canadian Journal of Microbiology, 1996, 42(9):927-933.
    [104] Jones G. W., J. M. Rutter. Role of the K88 antigen in the pathogenesis ofneonatal diarrhea caused by Escherichia coli in piglets [J]. Infection andimmunity, 1972, 6(6): 918-927.
    [105] Forestier C., C. De Champs, C. Vatoux, et al. Probiotic activities ofLactobacillus casei rhamnosus: in vitro adherence to intestinal cells andantimicrobial properties [J]. Research in Microbiology, 2001, 152(2): 167-173.
    [106] Frizzo L. S., L. P. Soto, M. V. Zbrun, et al. Lactic acid bacteria to improvegrowth performance in young calves fed milk replacer and spray-dried wheypowder [J]. Animal Feed Science and Technology, 157(3): 159-167.
    [107] Holzapfel W. H., R. Geisen, U. Schillinger. Biological preservation of foodswith reference to protective cultures, bacteriocins and food-grade enzymes [J].International Journal of Food Microbiology, 1995, 24(3): 343-362.
    [108] Dicks L. M. T., M. Botes. Probiotic lactic acid bacteria in the gastro-intestinaltract: health benefits, safety and mode of action [J]. Beneficial Microbes, 1(1):11-29.
    [109] Carlsson J., Y. Iwami, T. Yamada. Hydrogen peroxide excretion by oralstreptococci and effect of lactoperoxidase-thiocyanate-hydrogen peroxide [J].Infection and immunity, 1983, 40(1): 70-80.
    [110] Cotter P. D., C. Hill, R. P. Ross. Bacteriocins: developing innate immunity forfood [J]. Nature Reviews Microbiology, 2005, 3(10): 777-788.
    [111] Krehbiel C. R., S. R. Rust, G. Zhang, et al. Bacterial direct-fed microbials inruminant diets: Performance response and mode of action [J]. Journal of AnimalScience, 2003, 81(14 suppl 2): E120-E132.
    [112] Miettinen M., J. Vuopio-Varkila, K. Varkila. Production of human tumornecrosis factor alpha, interleukin-6, and interleukin-10 is induced by lactic acidbacteria [J]. Infection and immunity, 1996, 64(12): 5403-5405.
    [113] Gilliland S. E. Acidophilus Milk Products: A Review of Potential Benefits toConsumers1 [J]. Journal of dairy science, 1989, 72(10): 2483-2494.
    [114] Adams M. C., J. Luo, D. Rayward, et al. Selection of a novel direct-fedmicrobial to enhance weight gain in intensively reared calves [J]. Animal FeedScience and Technology, 2008, 145(1): 41-52.
    [115] Nocek J. E., W. P. Kautz. Direct-fed microbial supplementation on ruminaldigestion, health, and performance of pre-and postpartum dairy cattle [J].Journal of dairy science, 2006, 89(1): 260-266.
    [116] Ghorbani G. R., D. P. Morgavi, K. A. Beauchemin, et al. Effects of bacterialdirect-fed microbials on ruminal fermentation, blood variables, and themicrobial populations of feedlot cattle [J]. Journal of Animal Science, 2002,80(7): 1977.
    [117] Nocek J. E., W. P. Kautz, J. A. Z. Leedle, et al. Direct-fed microbialsupplementation on the performance of dairy cattle during the transition period[J]. Journal of dairy science, 2003, 86(1): 331-335.
    [118] Oetzel G. R., K. M. Emery, W. P. Kautz, et al. Direct-fed microbialsupplementation and health and performance of pre-and postpartum dairy cattle:a field trial [J]. Journal of dairy science, 2007, 90(4): 2058-2068.
    [119] Chiquette J., M. J. Allison, M. A. Rasmussen. Prevotella bryantii 25A Used as aProbiotic in Early-Lactation Dairy Cows: Effect on Ruminal FermentationCharacteristics, Milk Production, and Milk Composition1 [J]. Journal of dairyscience, 2008, 91(9): 3536-3543.
    [120] Kim S. W. Development of a direct-fed microbial for beef cattle [M]. ProQuest,2007.
    [121] Ripamonti B., A. Agazzi, A. Baldi, et al. Administration of Bacillus coagulans incalves: recovery from faecal samples and evaluation of functional aspects ofspores [J]. Veterinary research communications, 2009, 33(8): 991-1001.
    [122] Kritas S. K., A. Govaris, G. Christodoulopoulos, et al. Effect of Bacilluslicheniformis and Bacillus subtilis supplementation of ewe's feed on sheep milkproduction and young lamb mortality [J]. Journal of Veterinary Medicine SeriesA, 2006, 53(4): 170-173.
    [123] Qiao G. H., A. S. Shan, N. Ma, et al. Effect of supplemental Bacillus cultures onrumen fermentation and milk yield in Chinese Holstein cows [J]. Journal ofAnimal Physiology and Animal Nutrition, 94(4): 429-436.
    [124] Coe M. L., T. G. Nagaraja, Y. D. Sun, et al. Effect of virginiamycin on ruminalfermentation in cattle during adaptation to a high concentrate diet and during aninduced acidosis [J]. Journal of animal science, 1999, 77(8): 2259.
    [125] Goad D. W., C. L. Goad, T. G. Nagaraja. Ruminal microbial and fermentativechanges associated with experimentally induced subacute acidosis in steers [J].Journal of Animal Science, 1998, 76(1): 234.
    [126] Tajima K., S. Arai, K. Ogata, et al. Rumen bacterial community transition duringadaptation to high-grain diet [J]. Anaerobe, 2000, 6(5): 273-284.
    [127] Tajima K., R. I. Aminov, T. Nagamine, et al. Diet-dependent shifts in thebacterial population of the rumen revealed with real-time PCR [J]. Applied andEnvironmental Microbiology, 2001, 67(6): 2766-2774.
    [128] Fernando S. C., H. T. Purvis Ii, F. Z. Najar, et al. Rumen microbial populationdynamics during adaptation to a high-grain diet [J]. Applied and environmentalmicrobiology, 2010, 76(22): 7482-7490.
    [129] Hino T., K. Shimada, T. Maruyama. Substrate preference in a strain ofMegasphaera elsdenii, a ruminal bacterium, and its implications in propionateproduction and growth competition [J]. Applied and environmentalmicrobiology, 1994, 60(6): 1827-1831.
    [130] Maroune M., S. Bartos. Interactions between rumen amylolytic andlactate-utilizing bacteria in growth on starch [J]. Journal of AppliedMicrobiology, 1987, 63(3): 233-238.
    [131] Nisbet D. J., S. A. Martin. Effect of a Saccharomyces cerevisiae culture onlactate utilization by the ruminal bacterium Selenomonas ruminantium [J].Journal of Animal Science, 1991, 69(11): 4628-4633.
    [132] Counotte G. H. M., R. A. Prins, R. Janssen, et al. Role of Megasphaera elsdeniiin the fermentation of DL-[2-13C] lactate in the rumen of dairy cattle [J].Applied and environmental microbiology, 1981, 42(4): 649-655.
    [133] Stevenson D. M., P. J. Weimer. Dominance of Prevotella and low abundance ofclassical ruminal bacterial species in the bovine rumen revealed by relativequantification real-time PCR [J]. Applied microbiology and biotechnology, 2007,75(1): 165-174.
    [134] Moe P. W., H. F. Tyrrell. Metabolizable energy requirements of pregnant dairycows [J]. Journal of Dairy Science, 1972, 55(4): 480-483.
    [135] Bell A. W. Regulation of organic nutrient metabolism during transition from latepregnancy to early lactation [J]. Journal of Animal Science, 1995, 73(9):2804-2819.
    [136] Callaway E. S., S. A. Martin. Effects of a Saccharomyces cerevisiae Culture onRuminal Bacteria that Utilize Lactate and Digest Cellulose [J]. Journal of DairyScience, 1997, 80(9): 2035-2044.
    [137] Newbold C. J., F. M. Mcintosh, R. J. Wallace. Changes in the microbialpopulation of a rumen-simulating fermenter in response to yeast culture [J].Canadian journal of animal science, 1998, 78(2): 241-244.
    [138] Schingoethe D. J., K. N. Linke, K. F. Kalscheur, et al. Feed efficiency of midlactation dairy cows fed yeast culture during summer [M]. J Dairy Sci. 2004:4178-4181.
    [139]时建忠.酵母培养物的研究进展[J].饲料工业, 1998, 19(3): 11-14.
    [140] Desnoyers M., S. Giger-Reverdin, G. Bertin, et al. Meta-analysis of the influenceof Saccharomyces cerevisiae supplementation on ruminal parameters and milkproduction of ruminants [J]. Journal of dairy science, 2009, 92(4): 1620-1632.
    [141] Nagaraja T. G., E. C. Titgemeyer. Ruminal Acidosis in Beef Cattle: The CurrentMicrobiological and Nutritional Outlook1 and 2 [J]. Journal of Dairy Science,2007, 90(E. Suppl): E17-E38.
    [142] Owens F. N., D. S. Secrist, W. J. Hill, et al. Acidosis in cattle: a review [J].Journal of Animal Science, 1998, 76(1): 275.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700