用户名: 密码: 验证码:
红榉种源变异
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红榉(Zelkova schneideriana Hand-Mazz.)材质优良,花纹美丽,抗压能力、耐水湿性和耐腐朽性强,是室内装饰和高档家具的首选材料,也是船舰、桥梁、建筑、车辆等的高档用材,深受国际国内欢迎,市场价格昂贵。本文研究了红榉不同种源的种子、叶片形态变异、苗期生长节律、木材材性差异及其光合特性和抗旱性,并用ITS序列比较分析了红榉种源的起源与分化。主要研究结果如下:
     (1)红榉种源间(单株间)种子长、宽、长宽比和千粒重等性状的差异均达极显著水平(P<0.01),且种源水平上各性状的遗传力分别为0.9018、0.9210、0.9221和0.9008,单株水平上的遗传力分别为0.9260、0.9792、0.9326和0.9925,表明红榉种子形态性状存在着丰富的遗传变异,且受到中等程度以上的遗传控制;相关分析表明,红榉种子长、宽及千粒重之间存在着极显著相关关系,且红榉种子性状无明显的经向和纬向变异,种子长主要受年均温和无霜期影响,种子宽主要受1月均温影响,而千粒重主要受年均温的影响;聚类分析表明,红榉种子形态特征地理变异呈现区域板块变异模式和随机变异模式等。
     (2)红榉种源间各叶片形态性状的环境方差、表型方差均大于或等于其遗传方差,遗传方差分量所占百分比少,说明红榉叶片形态性状受环境的影响很大;红榉叶片叶面积与叶长、叶宽呈极显著正相关,与周长呈显著相关,且各种源的叶面积拟合方程相关系数均在0.98以上,拟合效果良好;红榉种源间叶片长宽比、形状因子和叶厚的广义遗传力分别为0.7101、0.7064和0.7595,且遗传变异系数小,说明这些性状受到中等程度以上的遗传控制,能够比较稳定地遗传给后代。
     (3)红榉不同种源苗期苗高和地径生长均为全期生长类型,且符合“S”型曲线,并能用Logistic生长方程对其生长节律动态很好的拟合;红榉种源幼苗苗高、地径的物候期参数和生长参数均存在比较明显的差异,各种源间线性生长量占总生长量百分率为54.60%~66.55%。
     (4)红榉不同种源间木材基本密度的差异达到极显著水平,而种源内木材基本密度比较稳定,变异较小;不同种源间木材径向全干缩率不存在显著差异,但种源内不同个体间的差异显著;红榉木材基本密度与径向全干缩率相关关系不显著,表明基本上相互独立遗传,且两者与各地理气候因子相关关系也不显著。
     (5)红榉的净光合速率(Pn)日变化呈双峰型,呈轻微的光合“午休”现象,其峰值分别出现在上午8:00和下午14:00。根据日变化参数Pn、胞间CO_2浓度(Ci)和气孔限制值(Ls)的变化方向,推断红榉光合“午休”主要受非气孔因素限制。相关分析和多元逐步回归分析表明,影响红榉光合速率日变化的主要生理生态因子为Tr、Vpdl、Ca和Ci等。
     (6)当大气CO_2浓度为400μmol·mol~(-1)时,红榉叶片净光合速率(Pn)与光合有效辐射(PAR)之间回归方程为Pn=-9×10~(-6)PAR~2+0.0212PAR+0.592,光饱和点、补偿点及表观量子效率分别为1177.8μmol·m~(-2)·s~(-1)、20.0μmol·m~(-2)·s~(-1)、0.0345;叶片蒸腾速率(Tr)与PAR间回归方程:Tr=0.025PAR+4.535(R~2=0.8169,n=48);叶片水分利用效率(WUE)和PAR之间的回归方程:WUE=~(-2)×10~(-6)PAR~2+0.0033PAR+0.1939,相关系数为0.8222(n=48);在1200μmol·m~(-2)·s~(-1)PAR条件下,Pn与CCO_2之间回归方程为Pn=~(-2)×10~(-5)CCO_22+0.0621CCO_2-5.5018,R~2=0.936(n=45),CO_2饱和点、补偿点、羧化速率分别为1552.5μmol·mol~(-1)、84.8μmol·mol~(-1)、0.0403;Tr随CCO_2增强基本保持稳定不变。WUE与CCO_2之间回归方程为:WUE=~(-3)×10~(-6)CCO_22+0.0105CCO_2–0.9442,R~2=0.8945(n=45)。
     (7)红榉不同种源叶片净光合速率日变化趋势并不一致,其中怀化种源表现为单峰曲线,而湖州等其他3个种源则表现为双峰曲线,且湖州种源的光合日均值显著高于其他种源;相关分析和逐步回归分析表明,不同红榉种源净光合速率日变化的影响因子大体相似,其中蒸腾速率和光合有效辐射为最稳定的影响因子;红榉不同种源的净光合速率的光响应曲线和CO_2响应曲线的总体趋势相同,但不同种源间光补偿点、光饱和点、CO_2补偿点及CO_2饱和点差异较大。
     (8)红榉叶片中脯氨酸、丙二醛、可溶性蛋白质、可溶性糖和叶绿素含量等生理指标在不同种源间存在着极显著差异;隶属函数法综合评价表明,5个红榉种源的抗旱性顺序为赣州种源>怀化种源>滁州种源>湖州种源>南京种源。这说明红榉不同种源间存在着较大的抗旱性能力差异,具有较大的种源选择潜力。
     (9)红榉5个种源的ITS序列、ITS1和ITS2长度变异范围分别为561~623bp、157~210bp和215~222bp;软件DNAMAN、遗传距离和UPGMA法系统发育树表明,南京种源与赣州种源的亲缘关系较近,湖州种源与怀化种源的亲缘关系较近,而滁州种源则单独聚为一类。
As an endemic species, Zelkova schneideriana Hand.-Mazz. is valuable for economy andfor landscape designing. Because of the over exploitation, the resources become less and less,so that it was listed in Red Dated Book with second grade. In this paper, The seed and leafmorphologic characteristics, seedling growth rhythm, wood characteristics, photosynthesis anddrought-tolerance, and ITS sequence analysis of different provenances were conducted, and theresults were as following:
     (1) Highly significant differences were found among different provenances (individuals)in seed length, width, ratio of length to width, and1000-grain weight, and theirs heritabilitywere0.9018,0.9210,0.9221and0.9008at the provenance level, and0.9260,0.9792,0.9326and0.9925at the individual level, respectively. This indicated that these seed morphologiccharacters lied abundant genetic variation, and were in moderate to higher genetic controlled.There were highly significant correlation among seed length, width and1000-grain weight, andthese seed morphologic characters demonstrated no obvious longitude or latitude variationtendency, seed length was mainly affected by annual average temperature and frostless days,seed width was average temperature in January, While1000-grain weight was annual averagetemperature; Cluster analysis suggested that the geographic variation of seed morphologiccharacters of some distribution zones represented regional block variation pattern, while theothers showed random variation pattern.
     (2)The environmental variance (VE), phenotypic variance (VP) of leaf traits amongdifferent provenances were equal to, or greater than the genetic variance(VG), this indicatedthat these traits were mainly affected by the environment; And there were highly significantdifference between leaf length, width and area, and theirs coefficients of the regressionequation were greater than0.98; And the broad-sense heritability of length/width, form factorand thickness were0.7101,0.7064and0.7595, respectively, and theirs genetic variation coefficients were rather smaller, these revealed that these traits were in moderate to highergenetic controlled.
     (3) The growth rhythm of the seedling height and basal diameter belonged to full-timegrowth type, and matched perfectly with “S” curve, and was fitted by Logistic GrowthEquation at significant level; Compared among different provenances, there existed significantdifference among theirs phenophase and growth parameters of height and basal diameter, andthe ratio of total linear growth reached from54.60%to66.55%.
     (4)There were highly significant differences of the basic density among differentprovenances, While theirs CV were rather stable; There were no significant differences ofradial dry shrinkage among different provenances, While the individuals within oneprovenance revealed rather higher difference; Basic density was not closely related to radialdry shrinkage. Based on this, independent selection of basic density and radial shrinkage wereexpected to generate improved effects. And both of them had no significant correlation to thegeographic and meteorological factors too.
     (5)The diurnal change of net photosynthetic rate (Pn) showed double-peak curve with aslightly midday depression, with maximum values occurred at about8:00am and14:00pm.And the midday depression was mainly controlled by non-stomatal factors judging from thechanging tendency of net photosynthetic rate, intercellular CO_2concentration (Ci) and stomatallimitation (Ls). Correlation and regression analyses showed that Tr、Vpdl、Ca and Ci wereimportant affecting factors on the photosynthesis.
     (6)Under the condition of400μmol·mol~(-1)CO_2, the regression equations between Pn andPAR is Pn=-9×10~(-6)PAR~2+0.0212PAR+0.592; the light saturation point (LSP), lightcompensation point(LCP) and apparent quantum yield (AQY)are1177.8μmol·m~(-2)·s~(-1),20.0μmol·m~(-2)·s~(-1),0.0345, respectively; the regressive equation between transpirationrate(Tr)and PAR is Tr=0.025PAR+4.535, and the regressive equation between waterutilization efficiency(WUE) and PAR is WUE=~(-2)×10~(-6)PAR~2+0.0033PAR+0.1939withR~2=0.8222. Under the condition of1200μmol·m~(-2)·s~(-1)of PAR, the regressive equation betweenPn and CO_2contents is Pn=~(-2)×10~(-5)CCO_22+0.0621CCO_22-5.5018with R~2=0.936(n=45), CO_2 saturation point (CSP), CO_2compensation point (CCP) and Carboxylation efficiency (CE) are1552.5μmol·mol~(-1)、84.8μmol·mol~(-1)、0.0403, respectively; The regressive equation betweenWUE and CO_2contents is WUE=~(-3)×10~(-6)CCO_22+0.0105CCO_2–0.9442。However, Tr keepssteadily with the increase of CO_2contents.
     (7) The diurnal variation of Pn of different provenances revealed different changetendency, and the Huaihua provenance showed single-peak curve, while the other threedemonstrated double-peak one, and the later all were limited by stomata factors, and thediurnal average of Pn of Huzhou provenance were higher significantly than the others; Thecorrelation analysis and stepwise regression analysis showed that the main affecting factorswere transpiration rate (Tr) and photosynthetic active radiation (PAR), and so on; The testedprovenances showed similar responses of Pn to PAR and Ci with evident provenance differenceof light compensation point (LCP), light saturation point (LSP), CO_2compensation point (CCP)and CO_2saturation point.
     (8) There were highly significant difference of Pro, MDA, Soluble protein, Soluble sugarand Chl contents among different provenances, and the comprehensive evaluation of thedetermination of membership function revealed that the order of drought-tolerance of differentprovenances were Ganzhou>Huaihua>Chuzhou>Huzhou>Nanjing.
     (9) The length of ITS sequence, ITS1and ITS2ranged61~623bp,157~210bp and215~222bp, respectively. And the DNAMAN, genetic distance and UPGMA analysis showedthat the relationships between Nanjing provenance and Ganzhou provenance, and betweenHuzhou provenance and Huaihua provenance were closer than the others, and the Chuzhouprovenances was clustered one single groups.
引文
[1]中国科学院中国植物志编辑委员会.中国植物志(第22卷)[M].北京:科学出版社,1999
    [2]中国植物学会(中华人民共和国国务院正式批准公布).国家重点保护野生植物名录(第一批)[J].植物杂志,1999,(5):4~11
    [3]汪灵丹,张日清.榉树的研究进展[J].广西林业科学,2005,34(4):188~191,211
    [4]周青,顾沈华,刘丽月.榉树大苗培育需注意的几个问题[J].防护林科技.2010,(2):120
    [5]沈建军,黄旭波,柏明娥,等.榉树种子形态特征与萌发特性研究[J].浙江林业科技,2011,31(6):56~60
    [6]李铁华,文仕知,喻勋林,等.榉树种子贮藏过程中的活力变化研究[J].林业科技,2008,33(2):4~7
    [7]李铁华,张伟,文仕知,等.贮藏温度与时间对榉树种子活力及抗氧化特性的影响[J].中南林业科技大学学报,2012,32(9):1~5
    [8]李铁华,文仕知,喻勋林,等.聚乙二醇(PEG)渗调处理恢复和提高榉树种子活力的研究[J].安徽农业科学,2008,36(3):887~888
    [9]计成法.大叶榉育苗试验及苗期生长规律的研究[J].科学与财富,2010,(7):197
    [10]张日清,杨婕,金晓玲,等.榉树实生苗苗期内源激素含量的动态变化[J].经济林研究,2011,29(4):1~5
    [11]蔡建武,金凯.大叶榉育苗技术初报[J].中国园艺文摘,2011,(8):74~75
    [12]沈建军,冯小燕,柏明娥,等.榉树温室育苗试验及苗期生长规律研究[J].山东林业科技,2012,(1):15~17
    [13]付玉嫔,杨卫,祁荣频,等.榉树容器苗壮苗培育技术研究[J].西部林业科学,2006,35(2):31~35
    [14]付玉嫔,祁荣频,李玉媛.榉树容器苗苗木分级与种源研究[J].广西林业科学,2005,34(3):127~131
    [15]窦全琴,仲磊,张敏,等.榉树苗木质量分级研究[J].江苏林业科技,2009,36(1):1~4,14
    [16]占正军,胡廷刚,赵忠菊,等.不同扦插基质对榉树根系生长的影响[J].现代林业科技,2011,(22):213~214
    [17]刘德良,张琴.珍稀濒危植物榉树扦插繁殖研究[J].西北林学院学报,2001,16(1):37~39
    [18]吴学礼,付玉嫔,祁荣频,等.榉树扦插繁殖技术试验初报[J].林业调查规划,2008,33(3):140~142
    [19]姜志强.榉树扦插繁殖技术与生根机理的研究[D].南京,南京林业大学,2008
    [20]裴有才.珍稀濒危树种榉树的扦插繁殖试验初报[J].安徽农学通报,2009,15(9):205~207
    [21]钟飞霞,金晓玲,康睿.榉树无性繁殖技术研究进展[J].现代农业科技,2010,(7):217,220
    [22]钟飞霞.榉树无性繁殖技术研究[D].长沙,中南林业科技大学,2010
    [23]张春桃,胡希军,罗雪梅,等.榉树的扦插繁殖技术[J].经济林研究,2011,29(2):108~110
    [24]汪灵丹,张日清,金晓玲.大叶榉顶芽诱导与增殖培养[J]..中南林业科技大学学报,2010,30(6):75-79
    [25]金晓玲.榉树的生物学特性和微繁技术研究[D].株洲,中南林学院,2003
    [26]张立军,周丽君.大叶榉人工栽培技术研究[J]..湖南林业科技,1999,26(4):18~23,47
    [27]何林,万立东.榉树育苗及造林技术[J]..安徽林业科技.2006,(3):41
    [28]李静.榉树播种育苗及造林技术[J]..安徽林业,2007,(6):37
    [29]张丽红,张再德.榉树营林措施的若干探讨[J]..中小企业管理与科技.2010,(21):227
    [30]王国祥.榉树栽培技术[J].现代农业科技,2010,(17):227,229
    [31]顾沈华,凌柏芳,刘丽月,等.村宅旁大叶榉中幼龄散生木抚育复壮试验[J]..防护林科技,2012,(1):31~32
    [32]方元平,项俊,刘聪,等.英山吴家山森林公园榉树种群结构[J].黄冈师范学院学报,2006,25(3):27~29,52
    [33]方元平,项俊,胡杨,等.鄂东大别山区榉树资源现状及其保护.安徽农业科学,2007,35(3):835~836
    [34]方元平,刘胜祥,项俊,等.湖北省榉树自然种群分布研究[J]..长江流域资源与环境,2007,16(6):744~747
    [35]夏尚光.榉树和黄连木叶绿素荧光特性的比较研究[J]..天津农业科学,2011,17(1):32~37
    [36]廖飞勇,覃事妮,谢瑛.大气CO2浓度倍增对榉树原初光能转换的影响[J]..中南林业科技大学学报,2008,28(3):23~27
    [37]Han S.,S. Ecophysiological interpretations on the water relations parameters of trees (VI): Diagnosis ofdrought tolerance by the P-V curves of twenty broad-leaved species[J].. Journal of Korean ForestrySociety,1991,80(2):210~219
    [38]芮雯奕,田云录,张纪林.干旱胁迫对6个树种叶片光合特性的影响[J]..南京林业大学学报,2012,36(1):68~72
    [39]焦秀洁.NaCl胁迫下榉树生理生化特性的研究[D].南京,南京林业大学,2009
    [40]夏尚光.NaCl胁迫对5个树种叶肉细胞超微结构的影响[J].安徽林业科技,2011,37(2):3~7
    [42]赵旺兔,彭冶,丁雨龙.榉树叶片解剖构造和叶肉细胞超微结构的观察[J].植物资源与环境学报,2003,12(2):52~57
    [43]Ljubesic N., Wrischer M.. Different illumination dependent behaviour of chloroplast ultrastructure in theall and leaf tissues of zelkova serrata Aurea[J]. Bioehemin und Physiologie derPflanzen(BPP),1992,188(2):97~103
    [44]赵旺兔,甘小洪,丁雨龙.榉树木材的发育解剖学研究[J].南京林业大学学报,2003,27(3):39~43
    [45]赵旺兔.榉树生物学特性及园林应用研究[D].南京,南京林业大学,2003
    [46]Lim D.O, Soh W.Y. Comparative anatomy of secondary xylem in normal and dwarf individuals of somewood plants[J]. Korean Journal of Botany,1991,34(1):9~18
    [47]罗明芳,李家平,管朝华.榉树苗木培育技术[J]..江苏林业科技,2009,36(3):38~39.
    [48]罗雪梅,金晓玲,刘雪梅.榉树叶色变化类型和原因探析[J].广东农业科学,2011,(23):54~57
    [49]黄利斌,汪企明,樊丛梅,等.榉树半同胞家系苗期性状变异的研究[J]..江苏林业科技,2001,28(6):1~3
    [50]曹娴,罗玉兰,崔心红,等.榉树遗传变异分析及优良单株选择[J]..海交通大学学报(农业科学版),2010,28(6):499~503
    [51]刘勋成,李玉媛,陈少瑜.不同榉树种源遗传多样性的ISSR分析[J].西部林业科学,2005,34(2):43~47
    [52]何平,金晓玲,盛卫平,等.立地条件和营林模式对榉树生长的影响[J].中南林业科技大学学报,2010,30(12):11~15
    [53]Michelle R L, Westoby M and Jurado E. Correlates of seed size variation: a comparison among five temperate floras[J]. J. of Eco,1995,83:517~530
    [54]徐博,王赞,陆景伟,等.内蒙古东部地区小叶锦鸡儿表型变异研究[J].植物研究,2009,29(3):276~281
    [55]谢春平,方彦,方炎明.福建茫荡山乌冈栎种子性状变异研究[J].安徽农业大学学报,2011,38(4):1~6
    [56]刘丽丽,汪恩锋,李建辉.濒危植物长叶榧种子形态变异研究[J].种子,2012,31(1):31~33
    [57]魏志刚,高玉池,杨传平,等.引种盐松不同种源种子表型性状和发芽特性[J].东北林业大学学报,2009,37(11):7~10
    [58]徐亮,包维楷,何永华.4个岷江柏种群的球果和种子形态特征及其地理空间差异[J].应用与环境生物学报,2004,10(6):707-711
    [59]李晓洁,徐化成.白皮松种子发芽习性及其种源变异的研究[J].林业科学,1989,25(2):97~104
    [60]宋丽华,王娅丽.几个臭椿种源种子的生物学特性变异研究[J].农业科学研究,2005,26(1):18~22
    [61]Langlet O. Ecological variability and taxonomy of forest trees,In:Kozlowskii TT ed. Tree Growth.Renald Press Co,1962,332~373
    [62] Wright J W. Introduction to forest genetics. New York, San Francisco, London: Academic Press,1976,283~331
    [63] Wells O O. Geographic variation in Ponderosa pine. Silvae Genet.1964,13(4):89~103
    [64]舒枭,杨志玲,杨旭,等.不同产地厚朴种子性状的变异分析[J].林业科学研究,2010,23(3):457~461
    [65]中华人民共和国国家标准.GB2772—1999林木种子检验规程[S].北京:中国标准出版社,2000
    [66]沈熙环.林木育种学[M].北京:中国林业出版社,1990:55~70
    [67]程诗明,顾万春.苦楝表型性状梯度变异的研究[J].林业科学,2006,42(5):29~35
    [68]王军辉,顾万春,万军,等.桤木不同种源球果及种子性状的遗传变异[J].东北林业大学学报,2006,34(2):1~4
    [69]佘诚棋,方升佐,杨万霞.青钱柳种子形态特征的地理变异[J].南京林业大学学报(自然科学版),2008,32(4):63~66
    [70]刘永红,杨培华,韩创举,等.油松不同种源种实性状的变异分析[J].浙江林学院学报,2008,25(2):163~168
    [71]杨志玲,杨旭,谭梓峰,等.厚朴不同种源及家系种子性状的变异[J].中南林业科技大学学报,2009,29(5):49~55
    [72]黄雪方,金雅琴,李冬林.乌桕不同种源种子性状的地理变异[J].西南林业大学学报,2011,31(4):44~48
    [73]徐化成,孙肇凤.油松种群地理分化的多变量分析.林业科学,1984,20(1):9~17
    [74]徐化成.油松地理变异和种源选择[M].北京:中国林业出版社,1991:15
    [75]魏胜利,王文全,秦淑英,等.甘草种源种子形态与萌发特性的地理变异研究[J].中国中药杂志,2008,33(8):869~873
    [76]喻方圆,刘远.聚乙二醇渗透处理对马尾松种子活力的影响.南京林业大学学报,2000,24(1):38~40
    [77]卢欣石,何琪.种群遗传变异及基因多样度分析[J].草业学报,1999,8(3):76
    [78]BROEHMAN N C, SOLTIS P S. Recurrent formation and polyphly of Nordic polyploids in Draba(Brassicaeeae)[J].Alner.J.Bot,1992,79(6):673~688.
    [79]CHECHOWITZ, DOROTHY M CHAPPELL,SHELDON I GUITMAN,et a1.Morphological,electrophoretic, and ecological analysis of Quercus macrocarpa population in the Black Hills of SouthDakota and Wyoning [J].Canada Journal of Botany,1990,68(10):2185~2194.
    [80]崔宏安,陈铁山,范龙霞,等.陕西省种源香椿天然类型叶的结构与抗逆性研究[J].西北林学院学报,2008,23(2):39~41
    [81]张颖,孙向阳,曲天竹,等.三倍体毛白杨不同无性系叶片养分含量研究[J].西北林学院学报,2008,23(2):84~88.
    [82]Mott K A. Amphistomy as an adaptation to high intensity in Ambrosia cordifolia(Compositae)[J].American Journal of Botany,1991,78:76~29.
    [83]郭玉华,蔡志全,曹坤芳,等.四种热带雨林树种光合和形态解剖特征对不同生长光强的适应[J].武汉植物学研究,2004,22(3):240~244
    [84]李梅,韩海荣,康峰峰,等.山西灵空山辽东栎种群叶性状表型变异研究[J].北京林业大学学报,2005,27(5):10~16
    [85]舒枭,杨志玲,杨旭,等.不同种源厚朴叶片性状变异及幼苗生长量研究[J].生态与农村环境学报,2009,25(4):19~25
    [86]张凤良,张方秋,潘文,等.17个红锥种源叶片性状变异分析[J].广东林业科技,2011,27(3):20~26
    [87]申文辉,刘建,唐庆兰.桉树无性系叶片性状和光合参数差异比较分析[J].2011,(1)3~5
    [88]马育华.植物育种的数量遗传学基础[M].南京:江苏科学技术出版社,1980:45~46
    [89]孙道理,邹国良.杨树速生期产量结构因子的分析[J].山东林业科技,1992,(2):18~21
    [90]Kozlowski T T, Pallardy S G. Physiology of woody plants[M].2nd ed. New York: Academic Press,1997
    [91] Larcher W. Physiological plant ecology[M].4th ed. Berlin: Springer-verlag,2003
    [92]Clark D B,0livas P C,Oberbauer S F,et al.First direct landscape_scale measurement of tropical rain forestleaf area index, a key driver of global primary productivity[J]. Ecology Letters,2008,11:163~172
    [93]Malhado A C M, Whittaker R J, Malhi Y,et a1.Spatial distribution and functional significance of leaflamina shape in Amazonian forest trees[J]. Biogeosciences Discuss,2009,6:1837~1874
    [94] Malhado A C M, Costa M H, de Lima F Z, et a1. Seasonal leaf dynamics in an Amazonian tropicalforest. Forest Ecology and Management,2009,258:1161~1165.
    [95]李芳兰,包维楷.植物叶片形态解剖结构对环境变化的响应与适应[J].植物学通报,2005,22(增刊):ll8~l27
    [96]单保山.遗传力的概念及其发展.I.关于传统遗传力的几个问题.河北农业大学学报,1988,11(1):39~44
    [97]孙鸿有,郑勇平,翁春媚,等.杉木种子园种子品质性状变异及遗传参数.浙江林学院学报,2005,22(1):61~65
    [98]秦光华,姜岳忠,乔玉玲,等.黑杨派杨树杂交F1子代苗期遗传测定.东北林业大学学报,2011,39(4):29~32
    [99]李斌,顾万春.白皮松天然种群种实性状表型多样性研究[J].生物多样性,2002,10(2):181~188
    [100]UCOUSSO A,MICHAUD H,LUMARET R.Reproduction and gene flow in the genus Quercus[J].Annals of Forest Science,1993,50:91~106
    [101]李爱平.樱桃圆柏不同种源苗期高生长与物候节律的研究.内蒙古林业科技,2011,37(3):13~16
    [102]杨志玲,杨旭,谭梓峰,等.厚朴不同种源苗期生长模型的拟合[J].西北农林科技大学学报(自然科学版),2011,39(4):60~68
    [103]曾志光,肖复明,包国华,等.山杜英种源苗期性状和木材材性遗传变异的研究[J].江西农业大学学报,2003,25(6):815~818
    [104]柳学军,曹福亮,汪贵斌,等.不同落羽杉种源木材密度的变异[J].南京林业大学学报(自然科学版),2006,30(4):51~54
    [105]任世奇,罗建中,彭彦,等.17年生邓恩桉两个种源木材密度与干缩性研究[J].亚热带植物科学,2010,39(2):5~9
    [106]任世奇,罗建中,谢耀坚,等.不同桉树无性系及树干高度木材的干缩特性研究[J].西北林学院学报,2012,27(1):232~237
    [107]Smith D M. Maximum moisture content method for determining specific gravity of small wood smples:Rept. No.2014[R]. Madison, Wisconsin: USDA Forest Serv, Forest Prod Lab,1954
    [108]许忠坤,徐清乾,张勰,等.杉木无性系木材尺寸稳定性研究[J].湖南林业科技,2010,37(5):20~21
    [109]Fang S Z,Yang W Z. Interclonal and within-tree variation in wood properties of poplar clone [J].Journal of Forestry Research,2003,14(4):263~268
    [110]项东云,陈健波,申文辉,等.大花序桉种源间木材物理性质变异研究[J].广西林业科学,2008,37(2):57~65
    [111]王秀花,陈柳英,马丽珍,等.7年生木荷生长和木材基本密度地理遗传变异及种源选择[J].林业科学研究,2011,24(3):307~313
    [112]刘青华,金国庆,张蕊,等.24年生马尾松生长、形质和木材基本密度的种源变异与种源区划[J].林业科学,2009,45(10):55~61
    [113]姜笑梅,等.中国桉树和相思人工林性质与加工利用[M].北京:科学出版社,2007:1~2
    [114]Murehie E H, Horton H. Contrasting patterns of photosynthetic acclimation to the light environment aredependent on the differential expression of the responses to altered irradiance and spectral quality[J].Plant Cell and Environment,1998,21(2):139~148
    [115]迟丽华,宋凤斌.松嫩平原4种植物光合作用光响应特性的研究[J].吉林农业大学学报,2007,29(2):119~122,138
    [116]Berry J A, Downton W J S. Environmental Regulation of Photosynthesis [M]. New York: AcademicPress,1982:263~343
    [117]Fischer R A, Turner N C. Plant Productivity in the Arid and Semiarid Zones [J]. And Rev Plant Physiol,1978,29:227~317
    [118]王旭军,吴际友,廖德志,等.响叶杨光合蒸腾和水分利用效率对光强及CO2浓度升高的响应[J].南京林业大学学报(自然科学版),2009,33(2):55~59
    [119]邹琦.作物抗旱生理生态研究[M].济南:山东科学技术出版社,1994:155~163
    [120]潘瑞炽,董愚得.植物生理学(第三版)[M].高等教育出版社,l995,106~117
    [121]张景光,周海燕,王新平,等.沙坡头地区一年生植物的生理生态特性研究[J].中国沙漠,2002,22(4):350~353
    [122]许大全.光合作用效率[M].上海:上海科学技术出版社,2002,39~56,84~98
    [123]武维华.植物生理学[M].北京:科学出版社.2003,55~56
    [124]孙伟,王德利,王立。模拟光条件下禾本科植物和藜科植物蒸腾特性与水分利用效率比较.生态学报,2003,23(4):814~819
    [125]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis [J]. Annual Review of PlantPhysiology,1982,33:317~345
    [126]王颖,魏国印,张志强,等.7种园林树种光合参数及水分利用效率的研究[J].河北农业大学学报,2006.29(6):47~51
    [127]WALTER LARCHER.植物生理生态学[M].翟志席,郭玉海,马永泽,等,译.北京:中国农业大学出版社,1997
    [128]潘瑞炽.植物生理学[M].第4版.北京:高等教育出版社,2001.55~57,91~95
    [129]林伟宏.植物光合作用对大气C02浓度升高的反应[J].生态学报,1998,18(5):529~537
    [130] Allen L H J.Plant responds to rising carbon dioxide and potential interactions with airpollutant[J].Environ Qual,1990,19:15~34
    [131]Kimball B A, Mauney J R, Nakayama F S,et a1. Effects of increasing atmospheric CO2on vegetation[J]. Vegetation,1993,104:65~67
    [132]邱国雄.植物光台作用效率[A].余叔文.植物生理与分子生物学[M].北京:科学技术出版社,1992
    [133]Tognettic R, Longobucco, Raschi A. Water relations of Quercus ilex and Quercus pubescentes treesgrow close by a natural carbon dioxide in a environment. In: Raschi A,Vaccari F P, Miglietta F.Ecosystem response to CO2: The MAPLE project results. Belgium: European Communities,1999,53~81
    [134]张劲松,孟平,高峻.板蓝根光合及水分生理生态特性[J].东北林业大学学报,2004,32(3):26~28
    [135]王旭军,康向阳,吴际友,等.响叶杨光合速率及生理生态因子的日变化研究[J].湖南林业科技,2008,35(5):5~8,12
    [136]朱林,温秀云,李文武.中国野生种毛葡萄光合特性的研究[J].园艺学报,1994,21(1):31~34
    [137]黎枯琛,邱治军.树木抗旱性及抗旱造林技术研究综述.世界林业研究,2003,l6(4):17~22.
    [138]杨海燕.南洋楹种源幼苗抗旱性的初步研究.广州,华南农业大学,2006
    [139]王琰,陈建文,狄晓艳.水分胁迫下不同油松种源SOD、POD、MDA及可溶性蛋白比较研究.生态环境学报,2011,20(10):1449~1453
    [140]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版,2000
    [141]邹琦.植物生理生化实验指导[M].北京:中国农业出版社,1997
    [142]张志良.植物生理学实验指导[M].北京:高等教育出版社,1990
    [143]刘学义.大豆抗旱性评定方法探讨.中国油料.1986,(4):23~26
    [144] BOHNERT H J, JENSEN R G. Strategies for engineering water-stress tolerance in plants.Trends inBiotechnology,1996,14(3):89~97
    [145]STAJNER D, MIMICA-DUKIC N, GASIC O. Adaptability to drought in sugar beet cultivars.Biologica Plantarum,1995,37:107~112
    [146]许祥明,叶和春,李国凤.脯氨酸代谢与植物抗渗透胁迫的研究进展[J].植物学通报,2000,l7(6):536~542
    [147]袁琳,克热木伊力,张利权.Nacl胁迫对阿月浑子实生苗活性氧代谢与细胞膜稳定性的影响[J].植物生态学报,2005,29(6):985~991
    [148]何开跃,李晓储,黄利斌,等.干旱胁迫对木兰科5树种生理生化指标的影响们.植物资源与环境学报,2004,13(4):20~23
    [149] RAI V K, LALORAYA M M. Correlative studies on plant growth and metabolism II.Effect of lightand of gibberellic acid on the changes in protein and soluble nitrogen in lettuce seedlings[J]. PlantPhysiol,1967,42:440~444
    [150]姜卫兵,马凯,朱建华.多效唑提高草莓耐盐性的效应.江苏农业学报,1992,8(4)13~17
    [151]刘世鹏,贾培军,陈宗礼,等.水分胁迫对枣树组培苗渗透调节物质的影响[J].延安大学学报,2007,26(1):55~58.
    [152]SALADIN G,CLEMENT C,MAGNE C. Stress effects of flumioxaz in herbicide on grapevines grownin vitro. Plant cell reports,2003,21(12):1221~1227
    [153]郑丕尧,蒋钟怀,王经武.夏播“京早七号”玉米叶片叶绿素含量消长规律的研究[J].华北农学报,1988,3(1):21~27
    [154] Oh S A,Park J H,Lee G I,et al.Identification of three genetic loci controlling leaf senescence inArabidopsis thaliana[J].Plant Journal,1997,12(3):527~533
    [155]王学奎.植物生理生化实验原理和技术[M].北京,高等教育出版社,2006,134~137.
    [156] Goodwin T W. The biochemistry of Carotenoids[J]. Plant, Chapman and Hall,1980(1):529.
    [157]周佩珍,叶钰坤,汤佩松,等.叶绿素中不同a/b比例对还远2,6-二氯氛靛能力的影响[J].植物生理学报,1964,1(2):154~158
    [158]杨学荣.植物生理学[M].北京:人民教育出版社,1982:86~125
    [159]潘瑞炽,董愚得.植物生理学[M].北京:高等教育出版社,1984:112~114
    [160]杨俊,马健,王婷婷,等.5种荒漠植物抗旱性指标相关性的定量评价[J].干旱区资源与环境,2009,23(6):143~146
    [161]林剑伟,,阙友雄,陈天生,等.核糖体DNA的内转录间隔区序列标记在真菌分类鉴定中的应用[J].生物技术通讯,2007,18(2)292~294
    [162]屈良鹄,陈月琴.生物分子分类检索表-原理与方法[J].中山大学学报,1999,38(1)1~6
    [163]WhiteT J, Bruns T, Lee Set al.Amplification and direct sequencing of fungal ribosomal RNA genes forphylogenetics. In:Innes M, Gelfand D, Sninsky Jet al.eds. PCR protocols: a guide to methods andapplications,1990,315~322.
    [164]屈伸,刘志国.分子生物学实验技术[M].北京:化学工业出版社,2008:42~131

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700