用户名: 密码: 验证码:
半导体微盘谐振腔的模式特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体微腔激光器由于其高集成度、低阈值、低功耗等优点而在通信、光互联和光神经网络等方面有着广阔的应用前景,并且作为最早发展起来的微腔激光器,已引起研究者广泛的关注。
     半导体激光器的数值分析是器件制作的基础,本文分别运用解析法和时域有限差分方法对二维圆形微腔和三维圆盘微腔进行了数值模拟,并考察了它们的模式特性。
     通过计算得出的主要结果如下:
     一、运用解析法分析了二维圆盘微腔的模式特性。对空气中的折射率为n_1=2.56的圆盘,我们给出了TE模式波长随角量子数v和径向量子数l的变化。图中可以看出,随着径向量子数l和角量子数v的增加,模场分布更趋向于限制在圆内。
     二、运用三维时域有限差分(FDTD)方法,用FullWAVE软件为辅助,讨论了纵向折射率分布为n_(air)/3.4/n_(sub)的圆盘结构的模式特性,其中,空气折射率n_(air)=1.0。当衬底折射率n_(sub)由2.0变化到3.17时,对于半径为1μm,厚度为0.2μm的对称盘,我们用时域有限差分方法得到了横模和纵模图,从这些横模图我们可以得到关于半导体微盘激光器的模式特性的一些结论。从图中可以看出微腔中的主要光学模式是一种沿着边缘进行环状传播的具有较高品质因子的特殊模式—“回音壁”模式(Whisper Gallery Mode)。当衬底折射率小时,由于在有源区与衬底的边界处光波被全反射,所以光波被限制在折射率大的有源层内,沿着有源层面的方向传播。当衬底折射率接近有源区折射率时有明显的光泄露。
     三、运用FDTD方法对半径为1μm,厚度为0.2μm,纵向折射率分布为n_(air)/3.4/n_(sub)的圆盘微腔进行光场分布模拟时发现,当衬底折射率n_(sub)由2.0变化到3.17时,圆盘横向基模和一阶模的模式波长的变化趋向于交叉耦合。进一步分析发现,当n_(sub)=2.0和2.5时两种模式的光在圆盘微腔横向和纵向方向上很好地被限制,光场分布都呈现出“回音壁”特点,若使在圆盘中形成“回音壁”模式特点的光场分布,则尽量要拉大圆盘和衬底折射率之差,当n_(sub)=2.8到3.17时两种模式的光在纵向方向上限制变弱,在衬底中光能量泄露明显增多,变化到n_(sub)=3.17时两种模式中TE_(01)模式逐渐偏离“回音壁”模式特点。另外比起低阶模式,高阶模式更容易形成“回音壁”模式。还有我们把第三章和第四章得到的光场分布结果进行了比较,结果发现,我们得到非常接近的结果。这对半导体微盘激光器的设计具有一定的理论指导意义。
Semiconductor microcavity laser has a lot of merit such as ultrasmall volumn、ultralow threshold current and so on,so it has great application potential in optical communication,optical interconnection and optical neural networks.As the earliest developed microcavity laser, Microdisk laser has attracted researchers' great attention all over the world.
     It is known that the numerical value analysis of Semiconductor laser is the basis of devices production.In this thesis,2-dimensional(2-D) and 3-dimensional(3-D) microdisk lasers are analysed by using the Analytical Method and the Finite-Difference Time-Domain technique, (FDTD) and some important results are achieved as follows:
     By using Analytical Method,the properties of the mode for the 2-dimensional(2-D) microdisk are investigated.As for the microdisk with the refractive index of n_1= 2.56 in the air,the TE mode's changes according to azimuthal quantum number v and radial mode number l is given.In addition,the mode field distributions tends to be limited within the circle with the increasing of the azimuthal mode number v and radial mode number l.
     By using 3-D Finite-Difference Time-Domain technique as well as with the aid of FULLWAVE,the properties of the mode for the microdisk with a vertical refractive index distribution of n_(air)/3.4/n_(sub) are investigated.The map of TE mode and vertical mode is obtained by 3D-FDTD simulation for the microdisk with a thickness of 0.2μm,and a radius of 1μm,when the refractive index is n_(air)=1.0,the refractive index n_(sub) is varied from 2.0 to 3.17,from which we can obtain the conclusion about the mode properties of the microdisk laser.From the map we can find the main optical mode in the microcavity is a special mode-whisper Gallery Mode with high quality factor,transmitting circularly on the edge of microdisk.When the refractive index n_(sub) is minimums,because the light wave is fully reflected on the interface between the disk and the substrate,the light wave is limited within the disk,transmitting along the disk.corresponding to an increasing horizontal radiation loss,when refractive index n_(sub) is similar to active regions refractive index.
     For the microdisk with a thickness of 0.2μm,a radius of 1μm and the vertical refractive index distribution of n_(air)/3.4/n_(sub),the two modes' wavelengths tend to be identical--a mode across coupling trend is observed between the fundamental and the first order modes when the refractive index n_(sub) change from 2.0 to 3.17.when n_(sub)=2.0,n_(sub)=2.5, the two modes are limited horizontally and vertically in Cylindrically microcavity--both of the Optical-Field Distribution will possess of quite good whispering-gallery modes characteristic,if wanting to get the Optical-Field Distribution with the whispering-gallery modes characteristic,we must try to magnify the difference.When n_(sub)=2.8,n_(sub)=3.17,the vertical limit to the option is decling--the loss of the optical energy is obviously increasing at the substrate,and when n_(sub)=3.17,the TE_(01) mode gradually deviates from the features of the whispering-gallery modes.Furthermore,compared with fundamental mode,high mode is much easier to form the whispering-gallery modes. The results of the optical field distribution in chapter 3 and chapter 4 are compared only to find the quite close results.The above-mentioned conclusions will have a practical significance to the design of the semiconductor microcavity lasers.
引文
[1]Russell D.An Introduction to the Development of the Semiconductor Laser.IEEE J.Quantum Electron,23,(6):651-657(1987)
    [2]江剑平,《半导体激光器》,电子工业出版社。2000
    [3]Suematsu Y and Adams A R.Handbook of Semiconductor Lasers and Photonic Integrated Circuits.Ohmsha,ltd,1994
    [4]黄德修,半导体光电子学,电子科技大学出版社,1989
    [5]J.W.Shi,E.S.Jin,D.S.Gao.The junction voltage saturation and reliability of semiconductor lasers.Optical and Quantum Electronics,24,775-781.(1992)
    [6]M.G.A.Bernard,G.Duraffourg.Laser condition in semiconductors.Phys.status solid.,vol.1,pp:699,1961
    [7]M.l.Nathan,W.P.Dumke,G.Bums,et al.,Stimulated emission of radiation from GaAs pn-junctions.Appl.Phys.Lett.,voll,pp:62,(1962)
    [8]T.M.Quist,R.H.Rediker,R.J.Keyes,et al.,Semiconductor master of GaAs.Appl.Phys.Lett.,Vol.1,pp:91,(1962)
    [9]R.N.Hall,G.E.Fenner,J.D.Kingsley,T.J.Scoltys,and R.O.Clarson,"Coherent light emission from GaAs junctions," Phys.Rev.Lett.9,366-368(1962)
    [10]H.Kroemer.A Proposed Class of Heterojunction Lasers.IEEE Proc.,vol.51,pp:1782,1963.
    [11]J.M.Woodall.Solid State Device Conference.California USA.,vol.6:19,1967
    [12]M.B.Panishi,I.Hayashi and S.Sumski,IEEE J.Quantum Electron.,vol.5,pp:210,1969.
    [13]Z.I.Alferov,V.M.Andreev,E.L.Portnoy,et al.,Injection lasers based on heterojunctions in the AIAs-GaAs system with low threshold at room temperature.Sov.Phys.Semiconductor.,vol.3,pp:1107,1970.
    [14]M.B.Panish,I.Hayashi and S.Sumski,Doubled-heterostructure injection lasers with room-temperature thresholds as low as 2300A/cm~2.APPL.Lett.,vol.16,pp:326,1970.
    [15]B.Mroziewicz et.al.Translated by J.Krauze "Physics of Semiconductor Lasers".Amsterdam:North-Holland,1991
    [16]Jafprit Singh."Semiconductor Optoelectronics,Physics and Technology".M.C.Graw-Hill Incomp,1995
    [17]Thijs,P.J.A.;Binsma,J.J.M.;L.F.Tiemijer,and T.van Dongren,"sub-mA threshold current(0.62 mA)and high output power(220 mW) 1.5 μ m tensile strained InGaAs single quantum well lasers,"Electron.Lett.,28,829-830(1992).
    [18]王德,李学千.“半导体激光器的最近进展及其应用现状”,光学精密工程,vol.9,pp:281,2001.
    [19]R.Dingle,W.Wiegmann,and C.H.Henry,"Quantum states of confined carriers in very thin AI_XGa_(1-X)As-GaAs-AI_XGa_(1-x)As heterostructures," Phys.Rev.Lett.33,827-830(1974)
    [20]W.T.Tsang,"A graded-index waveguide separate-confinement laser with very low.Threshold and a narrow Gaussian beam," Appl.Phys.Lett.39,134-137(1981).
    [21]W.D.Laidig,P.J.Caldwell,Y.F.Lin,and C.K.Peng."Strained layer quantum well injection laser".Appl.Phys.Lett.,1984,44:653
    [22]W.D.Laidig,Y.F.Lin,and P.J.Caldwell,"Properties of InxGal-xAs-GaAs strained-layer quantum-well-heterostructure injection lasers".J.Appl.Phys.1985,57:33
    [23]N.Chand,E.E.Becker,J.P.Van der Zidl,S.N.G.Chu,and N.K.Dutta."Excellent uniformity and very low (<50A/cm~2) threshold current density strained InGaAs quantum well diode lasers on GaAs substrate" Appl.Phys.Lett.1991,58:1700
    [24]R.M.Kolbas,N.G.Anderson,W.D.Iaidig,Y.Sin,y.c.Lo,K.Y.Hsieh,and Y.J.Yang."Strained-layer InGaAs-GaAs-AlGaAs photopumped and current injection lasers" IEEE.J.Quantum.Electron.1988,24:1605
    [25]Zhang Yejin,Chen Weiyou,Jiang Heng,et al.Approximate well width and optical gain formulas of 1.55μm In_(1-x-y)Ga_yAl_xAs compressively strained quantum-well laser.Chinese Journal of Semiconductors,2001,22(1):11
    [26]杜宝勋.半导体激光器原理.北京:兵器工业出版社,2001:196
    [27]Ishikawa H,Suemune I.Analysis of temperature dependent optical gain of strained quantum well taking account of carriers in the SCH layer.IEEE Photonics Technol Lett,1994,6:344
    [28]K.J.Vahala,Optical microcavities,Nature 424,839-846(2003).
    [29]S.L.McCall,A.F.J.Levi,R.E.Slusher,S.J.Pearton,R.A.Logan,W.G.mode microdisk lasers,Appl.Phys.Lett.,60,289-291(1992)
    [30]Li C Ma N,Poon A W.Waveguide-coupled octagonal microdisk channel add-drop filters[J].Optics Lett,2004,25(9):471-473.
    [31]Yamamoto,Y.,Tassone,F.& Cao,H.Semiconductor Cavity Quantum Electrodynamics(Springer,New York,2000)
    [32]Thompson,R.J.,Rempe,G.& Kimble,H.J.,Observation of normal-mode splitting for an atom in an optical cavity,Phys.Rev.Lett.68,1132-1135(1992).
    [33]Yong-Zhen Huang,Member,IEEE,Wei-Hua Guo,and Qi-Ming,Analysis and Numerical Simulation of Eigenmode Characteristics For Semiconductor Lasers With an Equilateral Triangle Micro-Resonator IEEE.Quantum Electronics,2001,37(1),00386-4-00386-12.
    [34]耿素杰,王琳.“半导体激光器及其在军事领域的应用”,激光与红外,vol.33,pp:311,2003.
    [35]阎守胜,甘子钊,《介观物理》,北京大学出版社 1995
    [36]F.De Martini,G.Innocenti,G.R.Jacobovita,P.Mataloni,Anomalous Spontaneous Emission Time in a Microscopic Optical Cavity[J],Phys.Rev.Lett.,1987,59;2955-2958.
    [37]Hong-Gyu Park,Se-Heon Kim,et al.,Electrically driven single-cell photonic crystal laser.Science.305.14444(2004)
    [38]D.J.Heinzen,J.J.Childs,J.F.Thomas,M.S.Feld,Phys.Rev.Lett.,1987,58;1320.
    [39]Matthew Pelton,Charles Santori,Jelena Vuckovic,Bingyang Zhang,Glenn S.Solomon,Jocelyn Plant,and Yoshihisa Yamamoto,Efficient Source of Single Photons:A Single Quantum Dot in a Micropost Microcavity,Phys.Rev.Lett.89,233602(2002).
    [40]Armani,D.K.,Kippenberg,T.J,.Spillane,S.M.& Vahala,K.J.Ultra-high-Q toroid microcavity on a chip.Nature 421,925-928(2003)
    [41]Painter,O.et al.Two-dimensional photonic band-gap defect mode laser,Science 284,1819-1821(1999).
    [42]Lord Rayleigh."The problem of the Whispering Gallery" in Scientific Papers,Cambridge University,Cambridge,England,1912,5(1):617.
    [43]Y.Akahane,T.Asano,B.S.Song,and S.Noda,High-Q photonic nanocavity in a two- dimensional photonic crystal,Nature 425,944-947(2003)
    [44]E.Yablonovitch,Inhavited spontaneous emission in solid-state physics and electronics,Phys.Rev.Lett.,58,2059-2062(1987).
    [45]S.John,Strong localization of photons in certain disordered dielectric superlattices,Phys.Rev.Lett.,58,2486-2489(1987).
    [46]F.J.Levi,R.E.Slusher,S.L.McCall,T.Tanbum-EK,D.L.Coblentz and S.J.Pearton,Room temperature operation of microdisc lasers with submilliamp threshold current[J],Electron.Lett.1992,28;1010-1012.
    [47]A.F.J.Levi,R.E.Slusher,S.L.McCall,S.J.Pearton,and W.S.Hobson,Room- temperature lasing action in In_(0.51)Ga_(0.49)P/in_(0.2)Ga_(0.8)As microcylinder laser diodes,Appl.Phys.Lett.,62,2021-2023(1993).
    [48]A.F.J.Levi,S.L.McCall,S.J.Pearton,and R.A.Logan,Room temperature operation of submicrometre radius disk laser,Electron.Lett.29,1666-1667(1993).
    [49]M.Fujita,K.Inoshita and T.Baba,Room temperature continuous wave lasing characteristics of GaInAsP/InP microdisk injection laser,Electron.Lett.34,278-279(1998).
    [50]S.M.K.Thiyagarajan,A.F.J.Levi,C.K.Lin,I.Kim,P.D.Dapkus and S.J.Pearton,Continuous room-temperature operation of optically pumped InGaAs/InGaAsP microdisk lasers,Electron.Lett.34,2333-2334(1998).
    [51]S.M.K.Thiyagarajan,D.A.Cohen,A.F.J.Levi,S.Ryu,R:Li,and P.D.Dapkus,Continuous room-temperature operation of microdisk laser diodes,Electron.Lett.35,1252-1254(1999).
    [52]M.Fujita,R.Ushigome and T.Baba,Continuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 μA,Electron.Lett.36,790-791(2000).
    [53]M.Fujita,R.Ushigome and T.Baba,Large Spontaneous Emission Factor of 0.1 in a Microdisk Injection Laser,IEEE Photon.Technol.Lett.13,403-405(2001).
    [54]Jerome Faist,Clair Gmachl,Marinella Striccoli,Carlo Sirtori,Federico Capasso,Deboran L.Sivco,and Alfred Y.Cho,Quantum cascade disk lasers,Appl.Phys.Lett.69,2456-2458(1996).
    [55]S.Gianordoli,L.Hvozdara,G.Strasser,W.Schrenk,K.Unterrainer,and E.Gornik,GaAs/AlGaAs-based microcylinder lasers emitting at 10μm,Appl.Phys.Lett.75,1045-1047(1999).
    [56]H.Cao,J.Y.Xu,W.H.Xiang,Y.Ma,S.H.Chang,S.T.Ho and G.S.Solomon,Optically pumped InAs quantum dot microdisk lasers,Appl.Phys.Lett.76,3519-3521(2000).
    [57]X.Liu,W.Fang,Y.Huang,X.H.Wu,S.T.Ho,H.Cao and R.P.H.Chang,Optically pumped ultraviolet microdisk laser on a silicon substrate,Appl.Phys.Lett.76,3519-3521(2000).
    [58]E.D.Haberer,R.Sharma,C.Meier,A.R.Stonas,S.Nakamura,S.P.DenBaars,and E.L.Hu,Free-standing,optically pumped,GaN/InGaN mierodisk lasers fabricated by photoeleetrochemical etching,Appl.Phys.Lett.85,5179-5181(2004).
    [59]程开富,“国内外半导体微碟激光器的发展现状”,电子科学技术评论,2005
    [60]吴根柱,张子莹,任大翠等,MOCVD生长InGaAs/InGaAsP多量子阱光泵微碟激光器,半导体学报,2001,22(8),1057-1062.
    [61]章蓓,王若鹏,丁晓民等,InGaAsP单量子阱半导体微盘激光器研究~*,红外与毫米波学报,1995,14(4),253-256.
    [62]A.F.J.Levi,R.E.Slusher,S.L.McCall,J.L.Glass,S.J.Pearton,and R.A.Logan,Direc -tional Light coupling from microdisk lasers,Appl.Phys.Lett.62,561-563(1993).
    [63]D.Y.Chu,M.K.Chin,W.G.Bi,H.Q.Hou,C.W.Tu,and S.T.Ho,Double-disk structure for output coupling in microdisk lasers,Appl.Phys.Lett.65,3167-3169(1994).
    [64]J.U.Nockel,A.D.Stone,Ray and wave chaos in asymmetric resonant optical cavities,Nature 385,45-47(1997).
    [65]C.Gmachl,F.Capasso,E.E.Narimanov,J.U.Nockel,A.D.Stone,J.Faise,D.L.Sivco,A.Y.Cho,High-Power Directional Emission from Microlasers with Chaotic Resonators,Science 280,1556-1564(1998).
    [66]E.Gornik,Geometrical shaping of microlaser emission patterns,Science 280,1544-1545(1998).
    [67]G.D.Chern,H.E.Tureci,A.D.Stone,and R.K.Chang,M.Kneissl and N.M.Johnson,Unidirectional lasing feom LnGaN multiple-quantum-well spiral-shaped micropillars,Appl.Phys.Lett.83,1710-1712(2003).
    [68]S.K.Kim,S.H.Kim,G.H.Kim,H.G.Park,D.J.Shin,and Y.H.Lee,Highly directional emission from few-micron-size elliptical microdisks,Appl.Phys.Lett.84,861-863(2004).
    [69]Seung J.Choi,K.Djordjev,Sang J.Choi,P.D.Dapkus,Microdisk Lasers Vertically Coupled to Output Waveguides,IEEE Photon.Technol.Lett.15,1330-1332(2003).
    [70]J.P.Zhang,D.Y.Chu,S.L.Wu,S.T.Ho,W.G.Bi,C.W.Tu,R.C.Tiberio,Photonic-Wire Laser,Phys.Rev.Lett.75,2678-2681(1995).
    [71]K.S.Yee,Numerical solution of initial boundary value problems involving Maxwell' s equations in isotropic media,IEEE Trans.Antennas.Propagat.14,302-307(1996).
    [72]A.Taflove,Computational Electrodynamies:The Finite-Difference Time-Domain Method,Artech House,Boston/London,1995.
    [73]Allen Taflove,Susan C.Hagness,Computational Electrodynamies:The Finite-Difference Time-Domain Method,Second Edition,Artech House,Boston/London,2000.
    [74]高本庆,时域有限差分法,国防工业出版社,2000。
    [75]葛德彪,阎玉波,电磁波时域有限差分方法,西安:西安电子科技大学出版社,2002.
    [76]G.Mur,IEEE Trans.Electromagnetic Compatibility,23,377(1981).
    [77]王长清,现代计算电磁学基础中的FDTD方法,北京:北京大学出版社,2005。
    [78]J.P.Berenger,J.Computational Physics,114,185(1994).
    [79]王秉中,计算电磁学中的FDTD方法[M],北京:科学出版社,2002。
    [80]胡广书,数字信号处理-理论,算法与实现,清华大学出版社,1997。
    [81]佘守宪,导波光学物理基础,北方交通大学出版社,2003。
    [82]郭长治,“半导体激光模式理论”,人民邮电出版社,1989。
    [83]M.K.Chin,D.Y.Chu,and S.T.Ho,Estimation of spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,J.Appl.Phys,75,3302-3307(1994)
    [84]N.C.Frateschi,and A.F.J.Levi,Resonant modes and laser spectrum of microdisk lasers,Appl.Phys.Lett.66,1932-2934(1995).
    [85]N.C.Frateschi,and A.F.J.Levi,The spectrum of microdisk lasers,J.Appl.Phys,80,644-653(1996).
    [86]F.Laeri and J.U.Nockel,"Nanoporous compound materials for optical applications- Microlaser and microresonators",in Vol.6 of Handbook of Advanced Electronic and Photonic Materials,H.S.Nalwa,ed.(Academic Press,San Diego,2001),pp.58-90.
    [87]D.Marcuse,Light Transmission Optics,Second Edition,New York,Van Nostrand Reinhold Company,1982.
    [88]梁昆淼,数学物理方法,第三版,高等教育出版社,1995.
    [89]J.D.Jackson,Classical Electrodynamics,John Wiley& Sons,New York,1962.
    [90]王沫然,MATLAB 6.0与科学计算,电子工业出版社,2001.
    [91]B.-J.Li and P.-L.Liu,"Numerical analysis of the whispering gallery modes by the The Finite-Difference Time-Domain Method," IEEE J.Quantum Electron.32,1583-1587(1996).
    [92]R.P.Wang and M.-M.Dumitreschu,"Optical modes in semiconductor microdisk lasers," IEEE J.Quantum Electron.34,1933-1937(1998).
    [93]Xian-Shu Luo,Yong-Zhen Huang,et al,;Investigation of mode characteristicsfor microdisk resonators by S-matrix and three-dimensional finite-difference time-domain technique.J.Opt.Soc.Am.B/Vol.23,No.6/June(2006)
    [94]R.P.Wang and M.-M.Dumitreschu,Theory of optical modes in semiconductor microdisk lasers,J.Appl.Phys.81,3391-3397(1997)
    [95]M.Henrschel and K.Richter,"Quantum chaos in optical systems:The annular billiard," Phys.Rev.E 66,056-207(2002)
    [96]Taflove and S.C.Hagness,Computational Electrodynamics:The Finite-Difference Time-Domain Method,Second Edition,Artech House,Boston/London,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700