用户名: 密码: 验证码:
一维ZnO基纳米材料光学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,ZnO基纳米材料,尤其是纳米线、纳米同轴线等一维结构的ZnO基纳米材料,因具有紫外波段直接带隙、特殊光传播模式,展现出奇异的光学特性,在紫外光探测器件、紫外发光器件、量子信息等诸多领域有重要的应用前景,引起了科技领域的广泛关注。
     本文以Zn_2SiO_4纳米线和Zn-Zn_2SiO_4纳米同轴线这两种一维ZnO基纳米材料为对象,对其发光和光传播等特性进行研究,以揭示其物理起源。取得以下几个方面研究结果。
     研究了Zn_2SiO_4纳米线的光学性质。通过第一性原理计算其表面态,分析Zn_2SiO_4纳米线的发光起源。讨论纳米线中的回音壁光学共振模式,揭示了不同区域阴极荧光光谱产生和变化的原因。
     研究了Zn-Zn_2SiO_4纳米同轴线的光传播性质。采用阴极荧光方法,测量表征了Zn-Zn_2SiO_4纳米同轴线的光谱,详细分析了CL谱的中紫外、可见光和红外区域三个发光峰所对应的光学模式。同时,仿真模拟表面等离子激元在结构中的传播特性,进而揭示了CL谱中纳米同轴线根部光强增强、顶端发光猝灭现象的物理起源。
     研究了表面等离子激元辅助形成的谐振腔中的激子与腔光共振模的耦合。通过比较发现,表面等离子激元共振模式具有最小的模体积和最大的精细度。CL谱的中紫外发光峰分裂说明,表面等离子激元辅助形成的光学谐振腔中发生了强耦合。进一步测量变温CL谱,观察到由表面等离子激元共振对波长的不对称选择特性所导致的特殊的反交叉现象。
One dimensional ZnO-based nano-materials having direct band gaps in ultraviolet(UV) and special optical modes can be exploited for UV-optoelectronic devices and quantum information.Recently,there has been much interest in nanowires and nanocables which show enhanced transmission at specific wavelengths.In this thesis,we focus our attention on the luminescent and transmission properties of Zn_2SiO_4 nanowires and Zn-Zn_2SiO_4 nanocables to reveal their physical origins.
     The optical properties of Zn_2SiO_4 nanowires are studied by experiment measurements and theoretical calculations.The luminescent origin is discussed by analysing the Zn_2SiO_4 surface states using a first principles calculation.The varieties of the cathodoluminescence(CL) spectra on different areas are clarified with the resonance of whispering-gallery mode(WGM) in the nanowires.
     The optical transmission properties of Zn-Zn_2SiO_4 nanocables are measured by CL technique.The optical modes,corresponding to the emissions bands on spectrum in mid-UV,visible,and infrared regions,are analyzed experimentally and theoretically in detail.It is revealed that propagation of surface plasmon(SP) is responsible for the enhancement at the root and the annihilation at the top of nanocable for the mid-UV emission.
     The coupling between the exciton and cavity resonant mode in the SP-assisted nanocavity are studied experimentally.Compared with WGM and waveguide mode, SPR mode is known to have the smallest effective mode volume and the highest finesse.The split in mid-UV emission implies a strong coupling take place in the optical nanocavity.Further temperature dependent CL measurement exhibits a special anticrossing due to the unsymmetrical wavelength-selectivity of SPR.
引文
[1]张立德,牟季美,纳米材料和纳米结构[M],北京:科学出版社,2001.
    [2]W.P.Halperin,Quantum size effects in metal particles[J],Rev.of Modern Phys.,1986,58:533.
    [3]张立德,解思深,纳米材料和纳米结构——国家重大基础研究项目新进展[M],北京:化学工业出版社,材料科学与工程出版中心,2005.
    [4]张立德,牟季美,物理学与新型(功能)材料专题系列介绍(Ⅲ)开拓原子和物质的中间领域—纳米微粒与纳米固体[J],物理,1992,21:167
    [5]D.L.Feldhein and C.D.Keating,Self-assembly of single electron transistors and related devices[J],Chem.Soc.Rev.,1998,27:1.
    [6]P.W.Levy,Color Centers and Radiation-Induced Defects in A1_2O_3[J],Phys.Rev.,1961,123:1226.
    [7]L.G.J.de Haart,and G.Blasse,The observation of exciton emission from rutile single crystals[J],J.Sol.Stat.Chemistry,1986,61:135.
    [8]S.K.Deb,Photoconductivity and photoluminescence in amorphous titanium dioxide[J],Sol.Stat.Comm.,1972,11:713.
    [9]M.J.Weber,Laser Excited Fluorescence Spectroscopy in Glass,in:Laser Spectroscopy of Solids[M],New York:Springer-Verlag Berlin Neidelberg,1981.
    [10]Y.Liu,Z.Jian-er,A.Larbot,and M.Persin,Preparation and characterization of nano-zinc oxide[J],J.Mat.Proc.Tech.,2007,189:379.
    [11]C.N.R.Rao,F.L.Deepak,G.Gundiah,and A.Govindaraj,Inorganic nanowires,Prog.Solid State Chem.2003,31:5.
    [12]Y.Zhang,K.Suenaga,C.Colliex,and S.Iijima,Coaxial Nanocable:Silicon Carbide and Silicon Oxide Sheathed with Boron Nitride and Carbon[J],Science,1998,281:973.
    [13]G.W.Meng,L.D.Zhang C.M.Mo,S.Y.Zhang,Y.Qin,S.P.Feng,and H.J.Li,Synthesis of "A β-SiC nanorod within a SiO_2 nanorod" one dimensional composite nanostructures[J],Sol.Stat.Comm.,1998,106:215.
    [14]Y.C.Zhu,Y.Bando,and Y.Uemura,ZnS-Zn nanocables and ZnS nanotubes[J],Chem.Comm.,2003,836.
    [15]B.Y.Geng,G.W.Meng,L.D.Zhang,and G Wang,X.Peng,CdSe-Filled silica nanotubes[J],Chem.Comm.,2003,2572.
    [16]Q.Li and C.Wang,One-Step Fabrication of Uniform Si-Core/CdSe-Sheath Nanocables[J],J.Am.Chem.Soc.,2003,125:9892.
    [17]Q.Li and Wang C.,Fabrication of Zn/ZnS nanocable heterostructures by thermal reduction/sulfidation[J],Appl.Phys.Lett.,2003,82:1398.
    [18]J.Zhang,L.D.Zhang,F.H.Jiang,and Z Dai,Intensive blue-light emission from semiconductor GaN nanowires sheathed with BN layers[J],Chem.Phys.Lett.,2004,383:423.
    [19]X.Feng,X.Yuan,T.Sekiguchi,W.Lin,and J.Kang,Aligned Zn-Zn_2SiO_4 core-shell nanocables with homogenously intense ultraviolet emission at 300 nm[J],J.Phys.Chem.B,2005,109:15786.
    [20]J.Wang,M.S.Gudiksen,X.Duan,Y.Cui,and C.M.Lieber,Highly polarized photoluminescence and photodetection from single indium phosphide nanowires[J],Science,2001,293:5534.
    [21]M.H.Huang,S.Mao,F.Henning,H.Yan,Y.Wu,H.Kind,E.Weber,R.Russo,and P.Yang,Room-temperature ultraviolet nanowire nanolasers[J],Science,2001,292:1897.
    [22]J.C.Johnson,H.J.Choi,K.P.Knutsen,R.D.Schaller,P.Yang,and R.J.Saykally,Single gallium nitride nanowire lasers[J],2002,1:106.
    [23]V.N.Astratov,S.Yang,S.Lam,B.D.Jones,D.Sanvitto,D.M.Whittaker,A.M.Fox,M.S.Skolnick,A.Tahraoui,P.W.Fry,and M.Hopkinson,Whispering gallery resonances in semiconductor micropillars[J],Appl.Phys.Lett.,2007,91:071115.
    [24]J.Rybczynski,K.Kempa,A.Herczynski,Y.Wang,M.J.Naughton,Z.F.Ren,Z.P.Huang,D.Cai,and M.Giersig,Subwavelength waveguide for visible light[J],Appl.Phys.Lett.,2007,90:021104.
    [1]A.Twitchet,Electron microscopy and analysis Lecture 3:Image formation[Z],2000.
    [2]G.Mie,Contributions to the optics of turbid media,especially colloidal metal solutions[J],Ann.Phys.,1908,25:377.
    [3]R.Gans,Form of ultramicroscopic particles of silver[J],Ann.Phys.,1915,47:270.
    [4]葛德彪,电磁波时域有限差分方法[M],西安:西安电子科技大学出版社,2002.
    [5]高本庆,时域有限差分法FDTD Method[M],北京:国防工业出版社,1995.
    [6]K.S.Yee,Numerical Solution of Initial Boundary Value Problems involving Maxwell's Equations in Isotropic Media[J],IEEE Trans.Antennas Propag.,1966,AP-14:302.
    [7]F.A.Fernandez and Y.Lu,A variational finite element formulation for dielectric waveguides in terms of transverse magnetic fields[J],IEEE Trans.Magnetics.,1991,27:3864.
    [8]Z.P.Liao,H.L.Wong,G.P.Yang,and Y.F.Yuan,A transimitting boundary for transient wave analyses[J],Sci.Sin.,Ser.A,1984,28:1063.
    [9]J.P Berenger,A perfectly matched layer for the absorption of electromagnetic wave[J],Comput.Phys.,1994,114:185.
    [10]K.Kunz and R.Luebbers,The Finite Difference Time Domain Method for Electromagnetics[M],Florida:CRC-Press,1993.
    [11]R.J.Luebbers,F.R.Hunsberge,and K.S.Kunz,IEEE Trans.Antennas Propag.1991,39:29.
    [12]R.X.Bian,R.C.Dunn,X.S.Xie,and P.T.Leung,Single Molecule Emission Characteristics in Near-Field Microscopy[J],Phys.Rev.Lett.,1995,75:4772.
    [13]J.T.Krug Ⅱ,E.J.S(?)nchez,and X.S.Xie,Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation[J],J.Chem.Phys.,2002,116:10895.
    [14]H.Mabuchi and A.C.Doherty,Cavity quantum electrodynamics:coherence in context[J],Science,2002,298:1372.
    [15]G.Nogues,A.Rauschenbeutel,S.Osnaghi,M.Brune,J.M.Raimond,and S. Haroche,Seeing a single photon without destroying it[J],Nature,1999,400:239.
    [16]C.Weisbuch,M.Nishioka,A.Ishikawa,and Y.Arakawa,Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity[J],Phys.Rev.Lett.,1992,69:3314.
    [17]H.Yokoyama,K.Nishi,T.Anan,Y.Nambu,S.D.Brorson,E.P.Ippen,and M.Suzuki,Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities[J],Optical and Quantum Electronics,1992,24:S245.
    [18]V.A.Haisler,A.I.Toropov,A.K.Bakarov,O.R.Bajutova,I.A.Derebezov,A.K.Kalagin,M.M.Kachanova,N.B.Kuzmin,A.S.Medvedev,and A.S.Suranov,Ultralow-threshold cryogenic oxide-GaAs distributed Bragg vertical-cavity surface-emitting laser with AlAs reflectors[J],J.App.Phys.,2004,96:1289.
    [19]K.Aoki,D.Guimard,M.Nishioka,M.Nomura,S.Iwamoto,and Y.Arakawa,Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity[J],Nature Photonics,2008,2:688.
    [20]T.Yoshie,A.Scherer,J.Hendrickson,G.Khitrova,H.M.Gibbs,G.Rupper,C.Ell,O.B.Shchekin,and D.G.Deppe,Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity[J],Nature,2004,432:200.
    [21]A.Christ,S.G.Tikhodeev,N.A.Gippius,J.Kuhl,and H.Giessen,Waveguide-Plasmon Polaritons:Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab[J],Phys.Rev.Lett.,2003,91:183901.
    [22]E.M.Purcell,Spontaneous emission probabilities at radio frequencies[J],Phys.Rev.,1964,69:681.
    [23]S.Haroche and J.M.Raimond,Cavity quantum electrodynamics[J],Scientific American,1993,268:26.
    [24]J.M.Raimond and S.Haroche,Confined electrons and photons[M],New York:Plenum Press,1995
    [25]R.Houdre,R.P.Stanley,U.Oesterle,M.Ilegems,and C.Weisbuch,Room-temperature cavity polaritons in a semiconductor microcavity[J],Phys.Rev.B,1994,49:16761.
    [26]V.Vedral,Modem Foundations of Quantum Optics[M],复旦大学出版社,2006.
    [27]Bahaa E.A.Saleh and M.C.Teich,Fundamentals of photonics[M],United States:John Wiley&Sons,Inc.,1991.
    [28]J.R.Tischler,M.S.Bradley,Q.Zhang,T.Atay,A.Nurmikko,and V.Bulovic,Solid state cavity QED:Strong coupling in organic thin films[J],Organic Electronics,2007,8:94.
    [29]J.P.Reithmaier,G.Sek,A.Loffier,C.Hofmann,S.Kuhn,S.Reitzenstein,L.V.Keldysh,V.D.Kulakovskii,T.L.Reinecke,and A.Forchel,Strong coupling in a single quantum dot-semiconductor microcavity system[J],Nature,2004,432:197.
    [30]L.C.Andreani,G.Panzarini,and J.Gerard,Strong-coupling regime for quantum boxes in pillar microcavities:Theory[J],Phys.Rev.B,1999,60:13276.
    [31]I.R.Sellers,F.Semond,M.Leroux,J.Massies,M.Zamfirescu,F.Stokker-Cheregi,M.Gurioli,A.Vinattieri,M.Colocci,A.Tahraoui,and A.A.Khalifa,Polariton emission and reflectivity in GaN microcavities as a function of angle and temperature[J],Phys.Rev.B,2006,74:193308.
    [32]R.P.Stanley,R.Houdre,C.Weisbuch,U.Oesterle,and M.Ilegems,Cavity-polariton photoluminescence in semiconductor microcavities:Experimental evidence[J],Phys.Rev.B,1996,53:10095.
    [33]R.Houdre,C.Weisbuch,R.P Stanley,U.Oesterle,P.Pellandini,and M.Ilegems,Measurement of Cavity-Polariton Dispersion Curve from Angle-Resolved Photoluminescence Experiments[J],Phys.Rev.Lett.,1994,73:2043.
    [34]J.R.Tischler,M.S.Bradley,and V.Bulovic,Strong coupling in a microcavity LED[J],Phys.Rev.Lett.,2005,95:036401.
    [1]X.Feng,X.Yuan,T.Sekiguchi,W.Lin,and J.Kang,Aligned Zn-Zn_2SiO_4 core-shell nanocables with homogenously intense ultraviolet emission at 300 nm[J],J.Phys.Chem.B,2005,109:15786.
    [2]G.Kresse and J.Furthmuller,Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J].Phys.Rev.B,1996,54:1169.
    [3]G.Kresse and J.Furthmuller,Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J].Comput.Mater.Sci.,1996,6:15.
    [4]Q.Zhuang,X.Feng,Z.Yang,J.Kang,and X.Yuan,Enhancement in middle-ultraviolet emission in a surface-plasmon-assisted coaxial nanocavity[J],Appl.Phys.Lett.,2008,93:091902.
    [5]H.Chang,H.D.Park,K.S.Sohn,and J.D.Lee,Electronic structure of ZnzSiO4 and Zn_2SiO_4:Mn[J],J.Korean Phys.Soc.,1999,34:545.
    [6]W.Kohn and L.J.Sham,Self-consistent equations including exchange and correlation effects[J],Phys.Rev.,1965,140(4A):A 1133.
    [7]L.H.Thomas,The calculation of atomic fields[J].Proc.Camb.Phil.Soc.,1927,23:542.
    [8]S.McCall,A.F.J.Levi,R.E.Slusher,S.J.Pearton,and R.A.Logan,Whispering-gallery mode microdisk lasers[J],Appl.Phys.Lett.,1992,60:289.
    [9]W.Zakowicz,Whispering-gallery-mode resonances:a new way to accelerate charged particles[J],Phys.Rev.Lett.,2005,95:114801.
    [10]L.Rayleigh,Further application of Bessel's functions of high order to the whispering gallery and allied problems[J],Philos.Mag.,1914,27:100.
    [1]L.J.Lauhon,M.S.Gudiksen,D.Wang,and C.M.Lieber,Epitaxial core-shell and core-multishell nanowire heterostructures[J].Nature,2002,420:57-61.
    [2]R.H.Ritchie,Plasma losses by fast electrons in thin films[J],Phys.Rev.,1957,106:874.
    [3]H.Racther,Surface plasmons[M],Berlin:Springer,1988.
    [4]Y.Fedutik,V.V.Temnov,O.Schops,U.Woggon,and M.V.Artemyev,Exciton-plasmon-photon conversion in plasmonic nanostructures[J],Phys.Rev.Lett.,2007,99:136802.
    [5]S.Coyle,M.C.Netti,J.J.Baumberg,M.A.Ghanem,P.R.Birkin,P.N.Bartlett; and D.M.Whittaker,Confined plasmons in metallic nanocavities[J],Phys.Rev.Lett.,2001,87:176801.
    [6]A.P.Lenham and D.M.Treherne,The optical constants of single crystal of cadmium and zinc[J],Proc.Phys.Soc.London,1964,83:1059.
    [7]http://cameo.mfa.org/browse/record.asp?subkey=10100.
    [8]G.Sek,C.Hofmann,J.P.Reithmaier,A.Loffier,S.Reitzenstein,M.Kamp,L.V.Keldysh,V.D.Kulakovskii; T.L.Reinecke,and A.Forchel,Investigation of strong coupling between single quantum dot excitons[J],Physica E,2006,32:471.
    [9]A.Pawlis,A.Khartchenko,O.Husberg,D.J.As,K.Lischka,and D.Schikora,Large room temperature Rabi-splitting in II-VI semiconductor[J],Microelectron J.,2003,34:439.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700