用户名: 密码: 验证码:
微盘光谐振腔的制作研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谐振腔内的光的不断循环,使得在谐振腔频率附近的光能量的储存成为可能,光学微谐振腔的场的作用和反作用之间的相互作用可以成为一些基础研究领域的关键,例如腔量子电动力学实验,自发发射控制,非线性光学,生物化学探测以及量子信息处理。以回音壁模式工作的高性能光学微腔(包括微柱、微盘以及微球体)以其所具有的超高品质系数,小模式体积,以及相对简单的制作过程,使得它们成为FP型微腔以外的最有前途的腔量子电动力学研究手段。基于腔量子电动力学的量子运算的实现,是一种非常有前途及希望实现的量子计算方式,而构成量子计算机的基础是量子门,运用高性能微腔可实现量子门。本文主要对采用光刻以及干法刻蚀进行微盘谐振腔制作工艺进行研究,并给出得到了通过光刻、反应离子束刻蚀、XeF_2刻蚀得到高Q值光微谐振腔的研制结果。论文主要工作和创新之处包括:
     1)在国内首先通过光刻方法以及干法刻蚀方法得到高Q值微盘谐振腔,微盘腔的Q值达到约1×10~5。光刻法制作微盘谐振腔的制作步骤为:光刻,包括基片处理,甩胶,曝光,显影以及光刻胶的处理等;对二氧化硅层的刻蚀,以形成微谐振腔图形;对二氧化硅层下硅层的选择性刻蚀,形成微谐振腔支撑。采用光刻工艺方法制作高Q值微盘腔,不但可以避免滴状和球体状的一些不良特性,同时制作工艺保证了高Q值微盘腔制作的几何尺寸可控性以及制作的重复性,作为随后在量子信息和量子逻辑器件方面的实验研究工作的技术基础。
     2)对制作过程中光刻工艺进行了实验研究。基片处理、涂胶、光刻胶的前烘和后烘、曝光参数、显影参数等许多方面都影响着作为随后刻蚀工艺掩模的光刻胶浮雕图形质量,并最终影响微谐振腔的性能。通过实验,我们的到了适宜的光刻工艺参数。
     3)制作SiO_2微盘谐振腔腔体的研究。使用CHF_3与Ar的混合气体反应离子束刻蚀RIBE进行SiO_2盘成型是可行的,反应气体CHF_3的引入,可提高光刻胶掩模与SiO_2的选择比,并通过调整离子能量、束流密度以及入射角度,得到较快的SiO_2刻蚀速率以及一定范围内可控的侧壁陡直度,可用于制作符合要求的SiO_2微盘谐振腔图形。在微谐振腔制作实验中使用2∶1的CHF_3/Ar混合气体作为工作气体的RIBE制作的SiO_2微谐振腔,得到了边缘清晰、光滑,具有近似垂直侧壁的SiO_2微谐振腔腔体。实验证明,此种刻蚀方法制作SiO_2微谐振腔腔体具有精度高和易于进行刻蚀控制的优点,对保证微谐振腔的几何特征和物理特性是有利的。在国际上首次通过RIBE得到具有垂直侧壁的SiO_2微谐振腔
     4)对采用适宜的Si刻蚀方法得到SiO_2微盘谐振腔支撑进行实验研究。XeF_2对Si进行的刻蚀是一种各向同性的刻蚀,各方向的刻蚀速率与晶向或者硅掺杂物无关,而且此反应不需要进行气体电离,在室温下即可进行,使用的刻蚀系统结构简单,刻蚀条件易于控制。刻蚀后的硅表面粗糙度与刻蚀时的XeF_2气体压强有直接的关系。针对这种刻蚀,我们研制了一种简单的刻蚀系统,并成功地以光刻胶和SiO_2作为掩模层,实现了硅的深度刻蚀和侧面掏空的刻蚀,其刻蚀选择比大于1000∶1;在XeF_2对硅所进行的刻蚀过程中,不会对已经成型的SiO_2微腔造成明显的几何形状影响,以此保证其物理特性;此刻蚀手段应用于微盘谐振腔制造过程中,得到了“蘑菇状”的SiO_2/Si结构的微盘谐振腔,为后续的微腔激光和量子信息逻辑器件的研制奠定了基础。
Re-circulation of light within optical microresonators' volumes enables the storage of optical power near specific resonant frequencies, The interaction of active or reactive material with the modal fields of optical microresonators provides key physical models for basic research such as cavity quantum electrodynamics (QED) experiments, spontaneous emission control, nonlinear optics, bio chemical sensing and quantum information processing. Optical high quality optical microresonators which work in the form of whispering gallery mode (WGM), such as microcylinders, microdisks, and microspheres have been achieved. The combination of their ultrahigh quality factor, very small mode volume, and relatively easy fabrication process, makes them potential means for cavity QED experiments. The proposal based on cavity quantum electrodynamics (QED) is one of the most potential ones to realize quantum gates, which are the most pivotal devices in the experimental schemes to realize quantum computation and quantum computer. In this paper, we research the technics to fabricate microdisk optical resonators with photolithography and etching, and the high Q(about 1×10~5) microdisk optical resonators have been achieved with standard UV photolithography, reactive ion beam etching(RIBE), and silicon etching with XeF_2. The most significant advance of the work described in this thesis is as follow.
     1) The silica microdisk optical resonator which exhibit whispering-gallery-type modes with quality factors (Q) 1×10~5 have been fabricated firstly with standard photolithographic techniques and dry etching in China. The following fabrication steps have been adopted: silicon wafers coated with certain thickness silicon dioxide (SiO_2) are painted with photoresistant (PR); mask graphics is transferred to PR over silica with standard photolithograph; PR graphics is transferred to silica layer with ion beam etching (IBE); silicon under the silica disk is etched with isotropic silicon etching to form mushroom like microresonators. The microdisk optical resonators are free form negative character of microsphere cavity, fabrication process with standard photolithography and dry etching can achieve geometry control and the repeatable fabrication of high Q microdisk cavity; the repeatable and controllable microresonators fabrication process can provide the favorable prophase technical fundament of development of quantum gates.
     2) The research of photolithography technics in this fabrication process. The wafer cleaning, photoresist painting, pre-bake and latter-bake of PR, exposal, developing all can affect the PR figures, which are the masks of latter etching and define the microresonators' capability. These technics parameters have been optimized with experiments.
     3) Research of fabrication of the SiO_2 microresonators. The reactive ion beam etching with Ar/CHF_3 mixed work gas has been used to form the SiO_2 microdisks,, the PR to SiO_2 etching selectivity has been improved with the addition of CHF_3, and the controllable sidewall angle can been achieved with suitable ion energy, gas composition and incident angle. In the fabrication process of microdisk resonators, the SiO_2 microdisk cavity has been achieved with RIBE with 2:1 CHF_3/Ar mixture with smooth edge and vertical sidewall. This etching method has favorable transfer precision and controllability, which is important to keep microcavity's geometrical and physical character. The SiO_2 microdisk resonators with vertical sidewall have been achieved with RIBE in the world. 4) Research of the silicon etching. This silicon etching is used to fabricate the silicon pillar under the SiO_2 microdisk, which support the microresonators. XeF_2 can react with silicon in room temperature and be used as silicon dry etching gas, it is a kind of isotropic dry etching. A XeF_2 pulse etching system with simple structure and easy operating has been constructed to perform SiO_2/Si etching. With this system, the mushroom-like SiO_2/Si structure has been fabricated, and the etching selectivity between silicon and silica mask exceed 1000. SiO_2 microdisk resonators have been fabricated by this etching, which are the fundament of the future quantum computation research.
引文
[1] Lefevre-Seguin V., Haroche S., Towards cavity-QED experiments with silica microspheres, Mater. Sci. Eng. B, 1997, 48: 53-58
    [2] Vernooy D. W., Furusawa A., Georgiades N. Ph. et al., Cavity QED with high-Q whispering gallery modes, Physical Review A, 1998, 57(4): R2293-R2296
    [3] S. L. McCall, A. F. J. Levi, R. E. Slusher et al., Whispering-Gallery Mode Microdisk Lasers, Applied Physics Letters, 1992, 60(3): 289-291
    [4] V. Sandoghdar, F. Treussart, J. Hare et al., Very low threshold whispering gallery mode microsphere laser, Physical Review A, 1996, 54(3): R1777-R1780
    [5] F. Treussart, V. S. Ilchenko, J. -F. Roch et al., Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium, European Physical Journal D, 1998, 1(3): 235-238
    [6] S. M. Spillane, T. J. Kippenberg, K. J. Vahala, Ultralow-threshold Raman laser using a spherical dielectric microcavity, Nature, 2002, 415: 621-623
    [7] R. E. Slusher, Optical Processes in Microcavities, Semicond. Sci. Technol., 1994, 9: 2025-2030
    [8] F. Vollmer, D. Braun, A. Libchaber, Protein detection by optical shift of a resonant microcavity, Applied Physics Letters, 2002. 80(21): 4057-4059
    [9] Serpenguzel A., S. Arnold, G. Griffel, Excitation of Resonances of Microspheres on an Optical-Fiber, Optics Letters, 1995, 20(7): 654-656
    [10] Takao Aoki, Barak Dayan, E. Wilcut, Observation of strong coupling between one atom and a monolithic microresonator, Nature, 2006, 443: 671-674
    [11] Michael A.Nielson,Isaac L.Chuang,量子计算和量子信息(一)——量子计算部分,清华大学出版社,2004年第一版
    [11] Baba T., Fujita M., Sakai A. et al., Lasing characteristics of GalnAsP/InP strained quantum-well microdisk injection lasers with diameter of 2-10 μm, IEEE Photon. Technol. Lett., 1997, 9(7): 878-880
    [12] Baba T., Photonic crystals and microdisk cavities based on GaInAsP-InP system, IEEE J. Select. Topics Quantum Electron., 1997, 3(3): 808-828
    [13] Solomon G. S., Pelton M., Yamamoto Y., Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity, Phys. Rev. Lett., 2001, 86(17): 3903-3906
    [14] Armani D. K., Kippenberg T. J., Spillane S. M. et al., Ultra-high-Q toroid microcavity on a chip, Nature, 2003, 421: 905-908
    [15] Gmachl C., Cappasso F., Narimanov E. E. et al., High-power directional emission from microlasers with chaotic resonances, Science, 1998, 280: 1556-1564
    [16] Painter O. J., Husain A., Scherer A. et al., Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP, J. Lightwave Technol., 1999, 17(11): 2082-2088
    [17] Levi A. F. J., McCall S. L., Pearton S. J. et al., Room temperature operation of submicrometer radius disc laser, Electron. Lett., 1993, 29: 1666-1667
    [18] Cao H., Xu J. Y., Xiang W. H. et al., Optically pumped InAs quantum dot microdisk lasers, Appl. Phys. Lett., 2000, 76(24): 3519-3521
    [19] Hagness S. C., Rafizadeh D., Ho, S. T. et al., FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators, J. Lightwave Technol., 1997, 15(11): 2154-2165
    [20] Little B. E., Chu S. T., Haus H. A. et al., Microring resonator channel dropping filters, J. Lightwave Technol., 1997, 15: 998-1005
    [21] Little B. E., Chu S. T., Pan W. et al., Vertically coupled glass microring resonator channel dropping filters, IEEE Photon. Technol. Lett. 1999, 11(2): 215-217
    [22] Chin M. K., Youtsey C., Zhao W. et al., GaAs microcavity channel-dropping filter based on a race-track resonator, IEEE Photon. Technol. Lett., 1999, 11(12): 1620-1622
    [23] Kippenberg T. J., Spillane S. M., Armani D. K. et al., Fabrication and coupling to planar high-Q silica disk microcavities, Appl. Phys. Lett., 2003, 83(4): 797-799
    [24] Savchenkov A. A., Ilchenko V. S., Matsko A. B. et al., KiloHertz optical resonances in dielectric crystal cavities, Phys. Rev. A, 2004, 70: 051804
    [25] Levi A. F. J., Slusher R. E., McCall S. L. et al., Directional light coupling from microdisk lasers, Appl. Phys. Lett., 1993, 62: 561-563
    [26] Boriskina S. V., Benson T. M., Sewell P. et al., Tuning of elliptic whisperinggallery-mode microdisk waveguide filters, J. Lightwave Technol., 2003, 21(9): 1987-1995
    [27] Kim S.-K., Kim S.-H., Kim G.-H. et al., Highly directional emission from few-micron-size elliptical microdisks, Appl. Phys. Lett., 2004, 84(6): 861-863
    [28] Fukushima T., Harayama T., Stadium and quasi-stadium laser diodes, IEEE J. Select. Topics Quantum Electron., 2004, 10(5): 1039-1051
    [29] Gianordoli S., Hvozdara L., Strasser G. et al., Longwavelength (λ=10μm) quadrupolar-shaped GaAs-AlGaAs microlasers, IEEE J. Quantum. Electron., 2000, 36(4): 458-464
    [30] Ling T., Liu L., Song Q. et al., Intense directional lasing from a deformed square-shaped organic-inorganic hybrid glass microring cavity, Opt. Lett., 2003, 28(19): 1784-1786
    [31] Guo W.-H., Huang Y.-Z., Lu Q.-Y. et al., Whispering-gallery-like modes in square resonators, IEEE J. Quantum Electron., 2003, 39(9): 1563-1566
    [32] Boriskina S.V., Benson T.M., Sewell P. et al., Spectral shift and Qchange of circular and square-shaped optical microcavity modes due to periodical sidewall surface roughness, J. Opt. Soc. Am. B, 2004, 10: 1792-1796
    [33] Boriskina S. V., Benson T.M., Sewell P. et al., Optical modes in imperfect 2-D square and triangular microcavities, IEEE J. Quantum Electron., 2005, 41(6): 857-862
    [34] Akahane Y., Asano T., Song B.-S. et al., High-Q photonic nanocavity in a two-dimensional photonic crystal, Nature, 2003, 425: 944-947
    [35] Srinivasan K., Barclay P.E., Painter O., Fabrication-tolerant high quality factor photonic crystal microcavities, Opt. Express, 2004, 12(7): 1458-1463
    [36] Noda S., Chutinan A., Imada. M., Trapping and emission of photons by a single defect in a photonic bandgap structure, Nature, 2000, 407: 608-610
    [37] Krauss T.F., De La Rue, R.M., Photonic crystals in the optical regime-past, present and future, Progress in Quantum Electronics, 1999, 23: 51-96
    [38] Painter O., Srinivasan K., O'Brien J.D. et al., Tailoring of the resonant mode properties of optical nanocavities in two-dimensional photonic crystalslab waveguides, J. Opt. A: Pure Appl. Opt., 2001, 3: S161-S170
    [39] Coccioli R., Boroditsky M., Kim K. W. et al., Smallest possible electromagnetic mode volume in a dielectric cavity, IEE Proc.- Optoelectron., 1998, 145(6): 391-397
    [40] Gayral B., Gerard J.M., Legrand B. et al., Optical study of GaAs/AlAs pillar microcavities with elliptical cross section, Appl. Phys. Lett., 1998, 72(12): 1421-1423
    [41] Pelton, M., Vuckovic, J., Solomon, G.S., Scherer, A., and Yamamoto, Y., 2002, Threedimensionally confined modes in micropost microcavities: quality factors and Purcell factors, IEEE J. Quantum. Electron. 38(2): 170-177.
    [42] Benyoucef M., Ulrich S.M., Michler P. et al., Enhanced correlated photon pair emission from a pillar microcavity, New J. Physics, 2004, 6: 91
    [43] Santori C., Fattal D., Vuckovic J. et al., Single-photon generation with InAs quantum dots, New J. Physics, 2004, 6: 89-105
    [44] Scheuer J., Green W.M.J., DeRose G.A. et al., InGaAsP annular Bragg lasers: theory, applications, and modal properties, IEEE J. Select. Topics Quantum Electron., 2005, 11(2): 476-484
    [45] Liang W., Xu Y., Huang Y. et al., Mie scattering analysis of spherical Bragg "onion" resonators, Opt. Express, 2004, 12(4): 657-669
    [46] Eldada L., Shacklette L. W., Advances in polymer integrated optics, IEEE J. Select. Topics Quantum Electron., 2000, 6(1): 54-68
    [47] Eldada, L., Advances in telecom and datacom optical components, Opt. Eng., 2001, 40(7): 1165-1178.
    [48] Hillmer H., Germann R., Photonic Materials for Optical Communications, MRS Bulletin, 2003, 5: 340-377
    [49] Poulsen M.R., Borel P.I., Fage-Pedersen J. et al., Advances in silica-based integrated optics, Opt. Eng., 2003, 42(10): 2821-2834
    [50] Laine J.-P., Tapalian H.C., Little B.E. et al., Acceleration sensor based on high-Q optical microsphere resonator and pedestal antiresonant reflecting, Sensors and Actuators A, 2001, 93: 1-7
    [51] Cai M., Painter O., Vahala K.J., Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system, Phys. Rev .Lett., 2000, 85(1): 74-77
    [52] Cai M., Painter O., Vahala K.J. et al., Fiber-coupled microsphere laser, Opt. Lett. 2000, 25(19): 1430-1432
    [53] Ilchenko V.S., Gorodetsky M.L., Yao X.S. et al., Microtorus: a highfinesse microcavity with whispering-gallery modes, Opt. Lett., 2001, 26(5): 256-258
    [54] Polman A., Min B., Kalkman J. et al., Ultralow-threshold erbium-implanted toroidal microlaser on silicon, Appl. Phys. Lett., 2004, 84(7): 1037-1039
    [55] Krioukov E., Klunder D.J.W., Driessen A. et al., Sensor based on an integrated optical microcavity, Opt. Lett., 2002, 27: 512-514
    [56] Melloni A., Costa R., Monguzzi P. et al., Ring-resonator filters in silicon oxynitride technology for dense wavelength-division multiplexing systems, Opt. Lett., 2003, 28(17): 1567-1569
    [57] Barwicz T., Popovic M. A., Rakich P.T. et al., Microring-resonator-based add-drop filters in SiN: fabrication and analysis, Opt. Express, 2004, 12(7): 1437-1442
    [58] Einspruch, N.G. and Frensley, W.R. (eds), 1994, Heterostructure and Quantum Devices, in series VLSI Electronics: Microstructure Science (Academic Press, San Diego).
    [59] Arakawa Y., Yariv A., Quantum-well lasers gain, spectra, dynamics, IEEE J. Quantum Electron., 1986, 22(9): 1887-1899
    [60] Rabiei P., Steier W.H., Tunable polymer double micro-ring filters, IEEE Photon. Technol. Lett., 2003, 15(9): 1968-1975
    [61] Rabiei P., Steie, W. H., Zhang C. et al., Polymer micro-ring filters and modulators, J.Lightwave Technol., 2002, 20: 1968-1975
    [62] Chao C.-Y., Guo L.J., Biochemical sensors based on polymer microrings with sharp asymmetrical resonance, 2003, Appl. Phys. Lett. 83(8): 1527-1529
    [63] Ilchenko V.S., Matsko A. B., Savchenkov A. A. et al., High-efficiency microwave and millimeter-wave electrooptical modulation with whispering-gallery resonators, Proc. SPIE, 2002, 4629: 158-163
    [64] Savchenkov A. A., Ilchenko V.S., Matsko A.B. et al., KiloHertz optical resonances in dielectric crystal cavities, Phys. Rev. A, 2004, 70: 051804
    [65] Savchenkov A.A., Ilchenko V.S., Matsko A.B. et al., High-order tunable filters based on a chain of coupled crystalline whispering gallery-mode resonators, IEEE Photon. Technol. Lett., 2005, 17(1): 136-138
    [66] Chan S., Horner S.R., Fauchet P. M. et al., Identification of gram negative bacteria using nanoscale silicon microcavities, J. Am. Chem. Soc., 2001, 123(47): 11797-11798
    [67] Gardner D.S., Brongersma M.L., Microring and microdisk optical resonators using silicon nanocrystals and erbium prepared using silicon technology, Opt. Materials, 2005, 27(5): 804-811
    [68] Elliot D., Integrated circuit fabrication technology, McGraw-Hill, 1989, New York
    [69] Herman M.A., Sitter, H., Molecular beam epitaxy, Springer-Verlag, 1996, Berlin
    [70] Foord J.S., Chemical beam epitaxy and related techniques, John Wiley & Son Ltd., 1997
    [71] Little B.E., Chu S.T., Pan W. et al., Vertically coupled glass microring resonator channel dropping filters, IEEE Photon. Technol. Lett., 1999, 11(2): 215-217
    [72] Tishinin D.V., Dapkus P.D., Bond A.E. et al., Vertical resonant couplers with precise coupling efficiency control fabricated by wafer bonding, IEEE Photon. Technol. Lett., 1999, 11(8): 1003-1005
    [73] Braginsky V. B., Gorodetsky M. L., Ilchenko V. S., Quality-factor and nonlinear properties of optical whispering-gallery modes, Phys. Lett. A, 1989, 137(7-8): 393-397
    [74] Sandoghdar V., Treussart F., Hare J. et al., Very low threshold whispering-gallery-mode microsphere laser. Phys. Rev. A, 1996, 54: R1777-R1780
    [75] Gorodetsky M.L., Savchenkov A.A., Ilchenko V.S., Ultimate Q of optical microsphere resonators, Opt. Lett., 1996,,21(7): 453-455
    [76] Laine J.-P., Tapalian H.C., Little B.E. et al., Acceleration sensor based on high-Q optical microsphere resonator and pedestal antiresonant reflecting, Sensors and Actuators A, 2001, 93: 1-7
    [77] Guo L.J., Recent progress in nanoimprint technology and its applications, J. Phys. D: Appl. Phys., 2004, 37: R123-R141
    [78] Vahala, K.J., Optical microcavities, Nature, 2003, 424: 839-845
    [79] Savchenkov A.A., Ilchenko V.S., Matsko A.B. et al., High-order tunable filters based on a chain of coupled crystalline whispering gallery-mode resonators, IEEE Photon. Technol. Lett., 2005, 17(1):136-138
    [80] Vernooy D. W., Ilchenko V. S., Mabuchi H. et al., High-Q measurements of fused-silica microspheres in the near infrared, Opt. Lett., 1998, 23: 247-249
    [81] Kippenberg T.J., Spillane S.M., Armani D.K. et al., Ultralow-threshold microcavity Raman laser on a microelectronic chip, Opt. Lett., 2004, 29(11): 1224-1226.
    [82] Pan Y.-L., Chang R.K., Highly efficient prism coupling to whispering gallery modes of a square μ cavity, Appl. Phys. Lett., 2003, 82(4): 487-489
    [83] Grover R., Ibrahim T.A., Kanakaraju S. et al., A tunable GaInAsP-InP optical microring notch filter, IEEE Photon. Technol. Lett., 2004, 16(2): 467-469
    [84] Zhang J.P., Chu D.Y., Wu S.L. et al., Directional light output from photonic-wire microcavity semiconductor lasers, IEEE Photon. Technol. Lett., 1996, 8(8): 968-970
    [85] Chin M.K., Ho S.T., Design and modeling of waveguide-coupled single-mode microring resonators, J. Lightwave Technol., 1998, 16(8): 1433-1446
    [86] Manolatou C., Khan M.J., Fan S. et al., Coupling of modes analysis of resonant channel add-drop filters, IEEE J. Quantum Electron., 1999, 35: 1322-1331
    [87] Hammer M., Resonant coupling of dielectric optical waveguides via rectangular microcavities: the coupled guided mode perspective, Opt.Communicat., 2002, 214(1-6): 155-170
    [88] Fong C.Y., Poon A.W., Mode field patterns and preferential mode coupling in planar waveguide-coupled square microcavities, Opt. Express, 2003, 11(22): 2897-2904
    [89] Takao Aoki, Barak Dayan, E. Wilcut, Observation of strong coupling between one atom and a monolithic microresonator, Nature, 2006, 443:671-674
    [90] Noda, S., Chutinan, A., and Imada. M., 2000, Trapping and emission of photons by a single defect in a photonic bandgap structure, Nature 407:608-510.
    [91] Foresi J.S., Villeneuve P.R., Ferrera J. et al., Photonic-bandgap microcavities in optical waveguides, Nature, 1997, 390: 143-145
    [92] Chow E., Lin S.Y., Johnson S.G. et al., Three-dimensional control of light in a two-dimensional photonic crystal slab, Nature, 2000, 407:983-986.
    [93] Savchenkov A.A., Ilchenko V.S., Handley T. et al., Second-order filter response with series-coupled silica microresonators, IEEE Photon. Technol. Lett., 2003, 15(4): 543-544
    [94] Rabiei P., Steier W. H., Zhang C. et al., Polymer micro-ring filters and modulators. J.Lightwave Technol., 2002, 20: 1968-1975
    [95] Little B.E., Foresi J.S., Steinmeyer G. et al., Ultra-compact Si-SiO_2 microring resonator optical channel dropping filters, Photon. Technol. Lett., 1998, 10: 549-551
    [96] Little B.E., Haus H.A., Foresi J.S. et al., Wavelength switching and routing using absorption and resonance, IEEE Photon. Technol. Lett., 1998, 10(6): 816-818
    [97] Absil P.P., Hryniewicz J.V., Little B.E.et al., Wavelength conversion in GaAs micro-ring resonators, Opt. Lett., 2000, 25(8): 554-556
    [98] Melloni A., Costa R., Monguzzi P. et al., Ring-resonator filters in silicon oxynitride technology for dense wavelength-division multiplexing systems, Opt. Lett., 2003, 28(17): 1567-1569
    [99] Melloni A., Morichetti F., Martinelli, M., Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures, Opt. Quantum Electron., 2003, 35: 365-379
    [100] Poon J.K.S., Scheuer J., Mookherjea S. et al., Matrix analysis of microring coupled-resonator optical waveguides, Opt. Express, 2004, 12(1): 90-103
    [101] Astratov V.N., Franchak J.P., Ashili S.P., Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder, Appl. Phys. Lett., 2004, 85(23): 5508-5510
    [102] Olivier S., Smith C., Rattier M. et al., Miniband transmission in a photonic crystal coupled-resonator optical waveguide, Opt. Lett., 2001, 26(13): 1019-1021
    [103] Heebner J.E., Lepeshkin N.N., Schweinsberg A. et al., Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators, Opt. Lett., 2004, 29(7): 769-771
    [104] Mookherjea S., Semiconductor coupled-resonator optical waveguide laser, Appl. Phys. Lett., 2004, 84(17): 3265-3267
    [105] Blair S., Chen Y., Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities, Appl. Opt., 2001, 40: 570-582
    [106] Boyd R. W., Heebner J. E., Sensitive disk resonator photonic biosensor, Appl. Opt., 2001, 40(31): 5742-5747
    [107] Krioukov E., Klunder D.J.W., Driessen A. et al., Sensor based on an integrated optical microcavity, Opt. Lett., 2002, 27: 512-514
    [108] Vollmer F., Arnold S., Braun D. et al., Multiplexed DNA quantification by spectroscopic shift of 2 microsphere cavities, Biophys. J., 2003, 85: 1974-1979
    [109] Rosenblit M., Horak P., Helsby S. et al., Single-atom detection using whispering gallery modes of microdisk resonators, Phys. Rev. A, 2004, 70(5): 053808
    [110] Purcell E.M., Spontaneous emission probabilities at radio frequencies, Phys. Rev., 1946, 69: 681
    [111] Cao J.R., Kuang W., Choi S.-J. et al., Threshold dependence on the spectral alignment between the quantum-well gain peak and the cavity resonance in InGaAsP photonic crystal lasers, Appl. Phys. Lett., 2003, 83(20): 4107-4109
    [112] Chin M.K., Chu D.Y., Ho S.-T., Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering-gallery modes, J. Appl. Phys., 1994, 75(7): 3302-3307
    [113] Fong C.Y., Poon A.W., Mode field patterns and preferential mode coupling in planar waveguide-coupled square microcavities, Opt. Express, 2003, 11(22): 2897-2904
    [114] Fujii M., Freude W., Russer P., Efficient high-spatial-order FDTD analysis of 3D optical ring resonator filters, Proc. 19th Annual Rev. Progress in Appl. Comput. Electromagnetics, Monterey, CA., 2003: 739-744
    [115] Greedy S. C., Boriskina S. V., Sewell P. et al., Design and simulation tools for optical micro-resonators, Proc. Photonics West Conference, San Jose, CA. 2001
    [116] Atkinson K.E., The numerical solution of boundary integral equations, Cambridge University Press, Cambridge., 1997
    [117] Nosich A.I., The Method of Analytical Regularization in wave-scattering and eigenvalue problems: foundations and review of solutions, IEEE Antennas Propagat. Mag., 1999, 41: 34-49
    [118] Boriskina S.V., Symmetry, degeneracy and optical confinement of modes in coupled microdisk resonators and photonic crystal cavities, J. Quantum Electron., 2005
    [119] Boriskina S.V., Benson T.M., Sewell P. et al., Q-factor and emission pattern control of the WG modes in notched microdisk resonators, to appear in IEEE J. Select. Topics Quantum. Electron., 2006,
    [120] Boriskina S. V., Efficient simulation and design of coupled optical resonator clusters and waveguides, Proc. ICTON Int. Conf., Barcelona, Spain., 2005
    [121] Liu Y., Safavi-Naeini S., Chaudhuri S. K. et al., On the determination of resonant modes of dielectric objects using surface integral equations, IEEE Trans. Antennas Propagat., 2004, 52(4): 1062-1069
    [122] Smotrova E. I., Nosich A. I., Mathematical analysis of the lasing eigenvalue problem for the WG modes in a 2-D circular dielectric microcavity, Opt. Quantum Electron., 2004, 36(1-3): 213-221
    [123] Xu Y., Lee R. K., Yariv A., Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity. Phys. Rev. A. 2000. 61: 033808
    [124] 杨建义,江晓清,王明华等,采用单环微谐振器的光滤波器特性及其局限性,光电子·激光,2003,14(1):12-15
    [125] 黄永箴,国伟华,正三角形及正方形微光学腔模式特性研究,物理,2004,33(7):515-518
    [126] 庞拂飞,韩秀友,蔡海文 等,利用有机_无机溶胶_凝胶方法制备平面波导环形谐振腔,中国激光,2006,33(5):591-594
    [127].高金山,王家帧,章诗白,1998年5月,光激励微型硅谐振器研究,电子学报,第26卷第5期:60-63
    [128].章彬,刘清,黄庆安,空气阻尼对微谐振器品质因子及其传输函数的影响,电子学报,2002,30(6):827-830
    [129] Trevor M. Benson, Svetlana V. Boriskina, Phillip Sewell et al., Micro-optical resonator for microlasera and integrated optoelectronics, http://arxiv.org/abs/physics/0607239
    [130] Deniz Armani, Ultra-High-Q Planar Microcavities and Applications, In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy, California Institute of Technology, Pasadena, California, 2005
    [131] Yun-Feng Xiao, Zheng-Fu Han, Guang-Can Guo, Quantum computation without strict strong coupling on a silicon chip, Phys. Rev. A, 2006, 73: 052324(6)
    [132] Xiao Yun-Feng, Han Zheng-Fu, Gao Jie, Generation of Multi-atom Dicke States with Quasi-unit Probability through the Detection of Cavity Decay, J. Phys. B: At. Mol. Opt. Phys., 2006, 39: 485-491
    [133] Jun-Youn Kim, Kyu Sub Kwak, Jong Sam Kim et al., Fabrication of photonic quantum laser ring using chemically assisted ion beam etching, J. Vac. Sci. Technol. B, 2001, 19(4): 1334-1339
    [134] Chao Li, Andrew W. Poon, Waveguide-coupled round-corner octagonal microresonator channel add-drop filters,
    [135] Huang Yong-zhen,Guo We-hua,等边三角形、正方形和平行四边形微光学谐振腔品质因子的比较,半导体学报,2001,22(2):117-120
    [136] 黄永箴,二维光学微腔WG模式分析,http://202.207.14.16/summerschool
    [137] 刘月明,刘君华,张少君,光激励硅微机械谐振式传感器的进展,传感器技术,1999,18(4):1-4
    [138] 王敏,王小静,刘永武 等,横向振动微谐振器的仿真分析,微纳电子技术,2006,2:98-101
    [139] Paul E. Barclay, Kartik Srinivasan, Oskar Painter, Design of photonic crystal waveguides for evanescent coupling to optical fiber tapers and integration with high-Q cavities, J. Opt. Soc. Am. B, 2003, 20(11): 2274-2284
    [140] Breck Hitz, Microring Resonators Make Efficient Add/Drop Multiplexers for WDM, Optics Letters, 2006: 2571-2573
    [141] EP. Absil, J. V. Hryniewicz, B. E. Little et al., Vertically Coupled Microring Resonators Using Polymer Wafer Bonding, IEEE Photonic technology letters, 2001, 13(1): 49-51
    [142] Andreas Vorckel, Mathias Monster, Wolfgang Henschel et al., Asymmetrically Coupled Silicon-On-Insulator Microring Resonators for Compact Add-Drop Multiplexers, IEEE Photonic technology letters, 2003, 15(7): 921-923
    [143] J. Kalkman, A. Polman, T. J. Kippenberg et al., Erbium-implanted silica microsphere laser, Nuclear Instruments and Methods in Physics Research B, 2006, 242: 182-185
    [1] Elliot D., Integrated circuit fabrication technology, McGraw-Hill, 1989, New York.
    [2] Herman M. A., Sitter, H., Molecular beam epitaxy, Springer-Verlag, 1996, Berlin
    [3] Foord J. S., Chemical beam epitaxy and related techniques, John Wiley & Son Ltd., 1997
    [4] Little B. E., Chu S. T., Pan W. et al., Vertically coupled glass microring resonator channel dropping filters, IEEE Photon. Technol. Lett., 1999, 11(2): 215-217
    [5] Tishinin D. V., Dapkus P. D., Bond A. E. et al., Vertical resonant couplers with precise coupling efficiency control fabricated by wafer bonding, IEEE Photon. Technol. Lett., 1999, 11(8): 1003-1005
    [6] Braginsky V. B., Gorodetsky M. L., Ilchenko V. S., Quality-factor and nonlinear properties of optical whispering-gallery modes, Phys. Lett. A, 1989, 137(7-8): 393-397
    [7] Sandoghdar V., Treussart F., Hare J. et al., Very low threshold whispering-gallery-mode microsphere laser. Phys. Rev. A, 1996, 54: R1777-R1780
    [8] Gorodetsky M. L., Savchenkov A. A., Ilchenko V. S., Ultimate Q of optical microsphere resonators, Opt. Lett., 1996,, 21(7): 453-455
    [9] Laine J. -P., Tapalian H. C., Little B. E. et al., Acceleration sensor based on high-Q optical microsphere resonator and pedestal antiresonant reflecting, Sensors and Actuators A, 2001, 93: 1-7
    [10] Cai M., Painter O., Vahala K. J., Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system, Phys. Rev. Lett., 2000, 85(1): 74-77
    [11] Cai M., Painter O., Vahala K. J. et al., Fiber-coupled microsphere laser, Opt. Lett. 2000, 25(19): 1430-1432
    [12] Ilchenko V. S., Gorodetsky M. L., Yao X. S. et al., Microtorus: a highfinesse microcavity with whispering-gallery modes, Opt. Lett., 2001, 26(5): 256-258
    [13] Armani D. K., Kippenberg T. J., Spillane S. M. et al., Ultra-high-Q toroid microcavity on a chip, Nature, 2003, 421: 905-908
    [14] Chao C. -Y., Guo L. J., Biochemical sensors based on polymer microrings with sharp asymmetrical resonance, 2003, Appl. Phys. Lett. 83(8): 1527-1529
    [15] Guo L. J., Recent progress in nanoimprint technology and its applications, J. Phys. D: Appl. Phys., 2004, 37: R123-R141
    [16] Vahala, K. J., Optical microcavities, Nature, 2003, 424: 839-845
    [17] Savchenkov A. A., Ilchenko V. S., Matsko A. B. et al., High-order tunable filters based on a chain of coupled crystalline whispering gallery-mode resonators, IEEE Photon. Technol. Lett., 2005, 17(1): 136-138
    [18] Kippenberg T. J., Spillane S. M., Armani D. K. et al., Fabrication and coupling to planar high-Q silica disk microcavities, Appl. Phys. Lett., 2003, 83(4): 797-799
    [19] Takao Aoki, Barak Dayan, E. Wilcut, Observation of strong coupling between one atom and a monolithic microresonator, Nature, 2006, 443: 671-674
    [20] N. Takada, H. Toyoda, Ⅰ. Murakami, Evidence of direct SiO_2 etching by fluorocarbon molecules under ion bombardment, J. Appl. Phys., 2005, 97: 013534
    [21] 刘金声 编著,离子束技术与应用,国防工业出版社,1995年第一版
    [22] A. Malinin, T. Majamaa, A. Hovinen, Anisotropic Si reactive ion etching in fluorinated plasma, Microelectronic Engineering, 1998, 43-44: 641-645
    [23] R. Knizikevius, A. Galadikas, real dimensional simulation of anisotropic etching of silicon in CF_4+O_2 plasma, Vacuum, 2002, 66: 39-47
    [24] R. Knizikevius, Real dimensional simulation of SiO_2 etching in CF_4+H_2 plasma, Vacuum, 2002, 65: 101-108
    [25] I. W. Rangelow, Reactive in etching for high aspect ratio silicon micromachining, Surface and coating technology, 1997, 97: 140-050
    [26] J. W. Coburn H. F. Winters, Ion-and electron-assisted gas-surface chemistry—an important effect in plasma etching, J. Appl. Phys., 1979, 50: 3189-3194
    [27] D.L. Flamm, Mechanisms of silicon etching in fluorine- and chlorine-containing plasmas, Rep. UCB/ERL M90/41, College of Engineering, University of California, Berkeley, 1989
    [28] I.W.Rangelow, P.Hudek, MEMS-fabrication by lithography and reactive ion etching, Microelectronic engineering, 1995, 27: 471-474
    [29] E.Gogolides, S.Grigoropoulos, A.G..Nassipoulos, High anisotropic room-temperature sub-half-micron Si reactive ion etching using Fluorine only containing gases, Microelectronic engineering, 1995, 27: 449-452
    [30] S.Hamaguchi, H.Ohta, Surface molecular dynamics of Si/SiO_2 reactive ion etching, Vacuum, 2002, 66: 189-195
    [31] Jun-Youn Kim, Kyu Sub Kwak, Jong Sam Kim et al., Fabrication of photonic quantum ring laser using chemical assisted ion beam etching, J. Vac. Sci. Technol. B, 2001, 19(4): 1334-1338
    [32] Aaron J. Fleischman, Christian A. Zorman, Mehran Mehregany, Etching of 3C/SiC using CHF_3/O_2 and CHF_3/O_2/He plasmas at 1.75 Torr, J. Vac. Sci. Technol. B, 1998, 16(2): 536-539
    [33] X. L. Fu, P.G. Li, A.Z. Jin et al., Gas-assisted focused ion beam etching character of niobum, J. Vac. Sci. Technol. B, 2005, 23(2): 585-587
    [34] C. F. Carlstro, G. Landgren, S. Anand, Low energy ion beam etching of InP using methane chemistry, J. Vac. Sci. Technol. B, 1998, 16(3):1018-1023
    [35] M. Mulot, S. Anand, M. Swillo et al., Low-loss InP-based photonic-crystal waveguides etched with Ar/Cl_2 chemically assisted ion beam etching, J. Vac. Sci. Technol. B, 2003, 21(2): 900-903
    [36] J. Daleiden, K. Czotscher, C. Hoffmann et al., Sidewall slope control of chemically assisted ion beam etched structures in InP-based materials, J. Vac. Sci. Technol. B, 1998, 16(4): 1864-1866
    [37] Achyut Kumar Dutta, Vertical etching of sick SiO2 using C_2F_6-based reactive ion beam etching, J. Vac. Sci. Technol. B, 1995, 13(4): 1456-1459
    [38] H. Toyoda, H. Morishima, R. Fukute et al., Beam study of the Si and SiO_2 etching processes by energetic fluorocarbon ions, J. Appl. Phys., 2004, 95(9): 5172-5179
    [39] A. Paskaleva, E. Atanassova, Bulk oxide charge and slow states in Si/SiO_2 structures generated by RIE-mode plasma, Microelectronics Reliability, 2000, 40: 2033-2037
    [40] M. L. Brongersma, A. Polman, K. S. Min et al., Depth distribution of luminescent Si nanocrystals in Si implanted SiO_2 films on Si, J. Appl. Phys.,1999, 86(2): 759-763
    [41] T. Sadoh, H. Eguchi, A. Kenjo, Etching characteristics of SiO_2 irradiated with focused ion beam, Nuclear Instruments and Methods in Physics Research B, 2003, 206: 478-481
    [42] Arvind Sankaran, Mark J. Kushner, Etching of porous and solid SiO_2 in Ar/c-C_4F_8, O_2/c-C_4F_8 and Ar/O_2/c-C_4F_8 plasmas, J. Appl. Phys.,1997: 023307
    [43] Evangelos Gogolidesa, Philippe Vauvert, George Kokkoris, Etching of SiO2 and Si in fluorocarbon plasmas: A detailed surface model accounting for etching and deposition, J. Appl. Phys., 2000, 88 (10): 5570-5584
    [44] George Kokkoris, Evangelos Gogolides, Andreas. G. Boudouvis, Etching of SiO_2 features in fluorocarbon plasmas: Explanation and prediction of gas-phase-composition effects on aspect ratio dependent phenomena in trenches, J. Appl. Phys., Vol. 91, No. 5, 1 March 2002: 2697-2706
    [45] Koji Yamakawa, Masaru Hori, Toshio Goto et al., Etching process of silicon dioxide with nonequilibrium atmospheric pressure plasma, J. Appl. Phys., 2005, 98: 013301
    [46] N. Takada, H. Toyoda, I. Murakami, Evidence of direct SiO_2 etching by fluorocarbon molecules under ion bombardment, J. Appl. Phys., 2005, 97: 013534
    [47] Beom-hoan OU, Se-Geun Park, Sang-Ho Rha, Improved etching characteristics of silicon-dioxide by enhanced inductively coupled plasma, Surface and Coatings Technology, 2000, 133-134: 589-592
    [48] Shuichi Noda, Nobuo Ozawa, Takashi Kinoshita, Investigation of ion transportation in high-aspect-ratio holes from fluorocarbon plasma for SiO_2 etching, Thin Solid Films, 2000, 374: 181-189
    [49] V. V. Smirnov, A. V. Stengach, K. G. Gaynullin et al., Molecular-dynamics model of energetic fluorocarbon-ion bombardment on SiO_2 Ⅰ. Basic model and CF_2~+ ion etch characterization, J. Appl. Phys. 2005, 97: 093302
    [50] V. V. Smirnov, A. V. Stengach, K. G. Gaynullin et al., Molecular-dynamics model of energetic fluorocarbon-ion bombardment on SiO2. Ⅱ. CF_x~+ (x=1, 2, 3) ion etch characterization, J. Appl. Phys. 2005, 97: 093304
    [51] Jyh-Hua Ting, Jung-Chieh Su, Shyang Su, RIE lag in diffractive optical element etching, Microelectronic Engineering, 2000, 54: 315-322
    [52] G. Kokkoris, E. Gogolides, A. G. Boudouvis, Simulation of fluorocarbon plasma etching of SiO_2 structures, Microelectronic Engineering, 2001, 57-58: 599-605
    [53] John Feldsien, Doosik Kim, Demetre J. Economou, SiO_2 etching in inductively coupled C_2F_6 plasmas—surface chemistry and two-dimensional simulations, Thin Solid Films, 2000, 374: 311-325
    [54] L. Rolland, M. C. Peignon, Ch. Cardinaud et al., SiO_2/Si selectivity in high density CHF_3-CH_4 plasmas: Role of the fluorocarbon layer, Microelectronic Engineering, 2000, 53: 375-379
    [55] Hideki Motomura, Shin-ichi Imai, Kunihide Tachibana, Surface reaction processes in C_4F_8 and C_5F_8 plasmas for selective etching of SiO_2 over photo-resist, Thin Solid Films, 2001, 390: 134-138
    [56] Yasuhiko Chinzei, Takanori Ichiki, Naokatsu Ikegami et al.,Residence time effects on SiO_2/Si selective etching employing high density fluorocarbon plasma, J. Vac. Sci. Technol. B, 1998, 16(3): 1043-1049
    [57] R. Hsiao, J. Carr, Si/SiO_2 etching in high density SF_6/CHF_3/O_2 plasma, Materials Science and Engineering B, 1998, 52: 63-77
    [58] Jae-Ho Min, Gye-Re Lee, Jin-Kwan Lee et al., Effect of sidewall properties on the bottom microtrench during SiO_2 etching in a CF_4 plasma, J. Vac. Sci. Technol. B, 2005, 23(2): 425-432
    [59] Tohru Nishibe, Fabrication of ultrafine anistropic SiO_2 mask by the combination of electron beam lithography and SF_6 reactive ion beam etching using aluminum lift-off technique, J. Vac. Sci. Technol. B, 1994, 12(4): 2356-2359
    [60] M. C. Peignon, G. Turban, C. Charles et al., Surface modelling of reactive ion etching of silicon-germanium alloys in a SF_6 plasma, Surface and Coatings Technology, 1997, 97: 465-468
    [61] Il-sup Jin, Hyung-ho park, Kwang-ko Kwon, Passivation role of sulfur and etching behavior in plasma etched TiW using SF_6 and BCl_3 gases, Microelectronic Engineering, 1997, 33: 223-229
    [62] M. Y. Jun, D. W. Kim, S. S. Choi, Fabrication of Sub-10nm Si-tip Array Coated with Si_3N_4 Thin Film For Potential NSOM and Liquid Metal Ion Source Applications, Microelectronic Engineering, 2000, 53: 399-402
    [63] M. N. A. Dewan, P. J. McNally*, T. Perova et al., Determination of SF_6 reactive ion etching end point of the SiO2/Si system by plasma impedance monitoring, Microelectronic Engineering, 2003, 65: 25-46
    [64] E. Gogolides, P. Vauvert, A. Rahallabi et al., Complete plasma physics, plasma chemistry, and surface chemistry simulation of SiO_2 and Si etching in CF_4 plasmas, Microelectronic Engineering, 1998, 41-42: 391-394
    [65] W. C. Tian, J. W. Weigold, S. W. Pang, Comparison of Cl_2 and F-based dry etching for high aspect ratio Si microstructures etched with an inductively coupled plasma source, J. Vac. Sci. Technol. B, 2000, 18(4): 1890-1896
    [66] K. H. R. Kirmse, A. E. Wendt, S. B. Disch et al., SiO_2 to Si selectivity mechanisms in high density fluorocarbon plasma etching, J. Vac. Sci. Technol. B, 1996, 14(2): 710-715
    [67] A. Paskaleva, E. Atanassova, Structural nature of the N_2 RIE plasma induced slow states and bulk traps in thin SiO_2/Si structures, Materials Science and Engineering B, 2000, 71: 115-119
    [68] Gottlieb S. Oehrleina, Yukinori Kurogi, Sidewall surface chemistry in directional etching processes, Materials Science and Engineering, 1998, 24: 153-183
    [69] W. T. Pike, W. J. Karl, S. Kumar ET AL., Analysis of sidewall quality in through-wafer deep reactive-ion etching, Microelectronic Engineering, 2004, 73-74: 340-345
    [70] 徐向东,洪义麟,傅绍军 等,全息离子束刻蚀衍射光栅,物理,2004,33(5):340-344
    [71] 王旭迪,刘颖,洪义麟 等,反应离子束刻蚀应用于光刻胶灰化技术研究,微细加工技术,2004(2):23-26
    [72] 徐向东,周洪军,洪义麟,光刻胶灰化技术用于同步辐射闪耀光栅制作,微细加工技术,2000(3):35-38
    [73] 付绍军,洪义麟,陶晓明 等,软X射线聚焦波带片制备工艺的研究,光学学报,1995,15(8):1148-1150
    [74] 刘颖,徐德权,徐向东 等,几种光学材料的离子束刻蚀特性研究,中国科学技术大学学报,2007,37(4-5):536-538
    [75] 徐向东,全息离子束刻蚀真空紫外及软X涉县衍射光栅研究,2001,中国科学技术大学博士学位论文
    [76] K.A.Jackson 主编,屠海令 校译,《半导体工艺》,科学出版社,1999
    [77] http://www.spie.org
    [78] http://www.suss.com
    [79] Ishii T., Nozawa H., Tamamura, T., C_(60)-incorporated nanocomposite resist system for practicle nanometer pattern fabrication, J.Vac.Sci.Technol., 1997, B15(6):2570-2574
    [80] T. Ishii, H. Hozawa, T. Tamamura, Nanocomposite resist system, Appl.Phys.Lett. 1997, 10(9): 1110-1112
    [81] C. A. Mack, Analytical expression for the standing wave intensity in photoresist, Applied Optical, 1986, 25(12): 1958-1961
    [82] C. A. Mack, Development of positive photoresists, J. Electrochem. Soc., 1987, 134(1): 148-152
    [83] B. De, A. Mello, I.F. Costa et al., Development profile of holografically exposed photoresist grating, Applied Optical, 1995, 34(4):597-603
    [84] S. V. Zelentsov, N. V. Zelentsova, A. N. Kolesov et al., Enhancing the dry-etch durability of photoresist masks: A review of the main approaches, Russian Microelectronics, 2007, 36(1):40-48
    [85] E.Gogolides, S.Grigpropolous, Highly Anisotropic Room-Temperature sub-half-micron Si Reactive Ion Etching using Fluorine only containing gases, Microelectronic Engineering, 1995, 27: 449-452
    [86] J.W. Coburn, H.F. Winters, Ion- and electron-assisted gas-surface chemistry: an important effect in plasma etching, J. Appl. Phys., 1979, 50: 3189-3194
    [87] H.H. Richter, A. Wolff, K. Blum et al., Damage to Si substrates during SiO_2 etching: opportunities of subsequent removal by optimized cleaning procedures, Vacuum, 1996, 47(5): 437-439
    [88] Irena Zubel, Irena Barycka, Silicon anisotropic etching in alkaline solutions Ⅰ. The geometric description of figures developed under etching Si(100) in various solutions, Sensor and Actuator A, 1998, 70: 250-259
    [89] Irena Zubel, Silicon anisotropic etching in alkaline solutions Ⅱ. On the influence of anisotropy on the smoothness of etched surfaces, Sensor and Actuator A, 1998, 70: 260-268
    [90] Irena Zubel, Silicon anisotropic etching in alkaline solutions Ⅲ: On the possibility of spatial structures forming in the course of Si(100) anisotropic etching in KOH and KOH+IPA solutions, Sensor and Actuator A, 2000, 84: 116-125
    [91] U. Streller, A.Krabbe, N. Schwentner, Selectivity in dry etching of Si(100) with XeF_2 and VUV light, Applied Surface Science, 1996, 106: 341-306
    [92] E. Gogolides, C. Boukouras, G. Kokkoris et al., Si etching in high-density SF_6 plasmas for microfabrication: surface roughness formation, Microelectronic Engineering, 2002, 73-74:312-318
    [93] Henry Jansen, Meint de Boer, Remco Wiegerink et al., RIE lag in high aspect ratio trench etching of silicon, Microelectronic Engineer, 1997,35: 45-50
    [94] Macro AR Alves, Olga Barachova, Edmund da Silva Baraga et al., Selective deposition of amorphous hydrogenated carbon films used as masks for reactive ion etching of Si using CF_4, Vacuum, 1999, 52: 313-314
    [95] A.Grigonis, R.Knizikevicius, Z.Rutkunien et al., Formation of polymeric layer during silicon etching in CF_2Cl_2 plasma, Vacuum, 2003, 70: 319-322
    [96] L. Dreeskornfeld, R. Segler, G. Haindl et al., Reactive ion etching with end point detection of microstructured Mo-Si multilayers by optical emission spectroscopy, Microelectronic Engineering, 2000, 54: 303-314
    [97] S.J. Chang, Y.Z. Juang, D.K. Nayak, Reactive ion etching of Si/SiGe in CF_4/Ar and Cl_2/BCl_3/Ar discharges, Materials Chemistry and Physics 1999, 60: 22-27
    [98] H.M. Kim, M. Shibuya, A. Yoshida et al., Gas-phase etching with ClF_3 gas at atmospheric pressure and at room temperature-anisotropic etching, Applied Surface Science, 1998, 133: 1-4
    [99] Hiroshi Tanaka, Shuichi Yamashita, Yoshitsugu Abe, Fast etching of silicon with a smooth surface in high temperature ranges near the boiling point of KOH solution, Sensors and Actuators A, 2004, 114: 516-520
    [100] M.Y. Jun, D.W. Kim, S.S. Choi, Fabrication of Sub-10nm Si-tip Array Coated with Si_3N_4 Thin Film For Potential NSOM and Liquid Metal Ion Source Applications, Microelectronic Engineering, 2000, 53: 399-402
    [101] Masanori Nakamura, Moon-bong Song, Masatoki Ito, Etching processing of Si(111) and Si(100) surfaces in an ammonium fluoride solution investigated by in situ ATR-IR, Electrochemical Acta, 1996, 41(5): 681-686
    [102] R. Knizikevicius, Enhancement of silicon etching rate in XeF_2 ambient in the presence of activated polymer, Applied Surface Science, 2004, 228:227-232
    [103] K. Y. Lee, S.J. Koester, J.O. Chu, Electrical characterization of Si/Si_(0.7)Ge_(0.3) quantum well wires fabricated by low damage CF_4 reactive ion etching, Microelectronic Engineering, 1997, 35: 33-36
    [104] Ivan Stoev, Anisotropic etching of Si (100) studied by scanning electron microscopy, Sensors and Actuators A, 1996, 51: 113-116
    [105] Irena Zubel, Malgorzata Kramkowska, The effect of isopropyl alcohol on etching rate and roughness of(100) Si surface etched in KOH and TMAH solutions, Sensor and Actuator A, 2001, 93: 138-147
    [106] C.C. Welch, A.L.Goodyear, G.Ditmer et al., Choice of Silicon Etch Processes for Opto-and Microelectronic Device Fabrication Using Inductively Coupled Plasmas, http://ieeexplore.ieee.org
    [107] V.S. Aliev, V.N. Kruchinin, Development of Si(100) surface roughness at the initial stage of etching in F_2 and XeF_2 gases— ellipsometric study, Surface Science, 1999, 442: 206-214
    [108] Koji Sugano, Osamu Tabata, Effects of etching pressure and aperture width on Si etching with XeF_2 for MEMS, International Symposium on Micromechatronics and Human Science, 2000: 89-94
    [109] Koji Sugano, Osamu Tabata, Study on XeF_2 Pulse Etching using Wagon Wheel Pattern, International Symposium on Micromechatronics and Human Science, 1999: 163-167
    [110] R. Knizikevicius, Enhancement of silicon etching rate in XeF_2 ambient in the presence of activated polymer, Applied Surface Science, 2004, 228: 227-232
    [111] Eiichi Kobayashi, Kouji Isari, Kazuhiko Mase, Excitation site-specific ion desorption study of Si(111) surfaces fluorinated by XeF_2 using photoelectron photoion coincidence spectroscopy, Surface Science, 2003, 528: 255-260
    [112] Joon-Shik Park, Hyo-Derk Park, Sung-Goon Kang, Fabrication and properties of PZT micro cantilevers using isotropic silicon dry etching process by XeF_2 gas for release process, Sensors and Actuators A, 2005, 117: 1-7
    [113] B. Li, U. Streller, H. P. Krause et al., SR-induced dry etching of semiconductors for microstructuring, Nuclear Instruments and Methods in Physics Research B, 1995, 97: 412-415
    [114] 尉伟,吴晓伟,吕凡 等,XeF_2对SiO_2/Si的干法刻蚀,中国科学技术大学学报,审稿中
    [115] H. F. Winter, J. W. Cobum, The etching of silicon with XeF_2 vapor, Appl. Phys. Lett., 1979, 34(1): 70-73
    [116] Patrick B. Chu, Jeffrey T. Chen, Richard Yeh et al., Controlled Pulse-Etching with Xenon Difluoride, Int. Conf. Solid-state Sensors and actuators, Transducers'97, 1(2), 1997: 665-668
    [117] M. J. M. Vugts, G. J. RJoosten, A. van. Oosterum et al., Spontaneous etching of Si(100) by XeF_2: Test case for a new beam surface experiment, J. Vac. Sci. Technol. A, 1994, 12(5): 2999-3011
    [118] Koji Sugano, Osamu Tabata, Reduction of surface roughness and aperture size effect for etching of Si with XeF_2, J. Micromech. Microeng., 2002, 12: 911-916
    [119] J.H.Simons 主编,路之康 等译,氟化学:科学出版社,1961
    [120] V. S. Aliev, M. R. Baklanov, V. I. Bukhtiyarov, Silicon surface cleaning using Xe_2 gas treatment, Applied Surface Science, 1995, 90: 191-194
    [121] Cao J. R., Kuang W., Choi, S. -J. et al., Threshold dependence on the spectral alignment between the quantum-well gain peak and the cavity resonance in InGaAsP photonic crystal lasers, Appl. Phys. Lett., 2003, 83(20): 4107-4109
    [122] Chao C. Y. and Guo L. J., Biochemical sensors based on polymer microrings with sharp asymmetrical resonance, Appl. Phys. Lett., 2003, 83(8): 1527-1529.
    [123] S. M. Spillane, T. J. Kippenberg, O. J. Painter, Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics, Phys. Rev. Lett., 2003, 91(4): 3902(4)
    [124] Yun-Feng Xiao, Zheng-Fu Han, Guang-Can Guo, Quantum computation without strict strong coupling on a silicon chip, Phys. Rev. A, 2006, 73: 052324(6)
    [125] Xiao Yun-Feng, Han Zheng-Fu, Gao Jie, Generation of Multi-atom Dicke States with Quasi-unit Probability through the Detection of Cavity Decay, J. Phys. B: At. Mol. Opt. Phys., 2006, 39: 485-491
    [126] A. M. Armani, D. K. Armani, B. Min et al., Ultraohigh-Q microcavity operation in H_2O and D_2O, Appl. Phys. Lett., 2005, 87: 151118
    [127] T. J. Kippenberg, S. M. Spillane, D. K. Armani et al., Ultralow-threshold microcavity Raman laser on a microelectronic chip, Optical letters, 2004, 29(11): 1224-1226
    [128] J. Kalkman, A. Polman, T. J. Kippenberg et al., Erbium-implanted silica microsphere laser, Nuclear Instruments and Methods in Physics Research B, 2006, 242: 182-185
    [1] S. M. Spillane, T. J. Kippenberg, K. J. Vahala, Ultralow-threshold Raman laser using a spherical dielectric microcavity, Nature, 2002, 415: 621-623
    [2] R. E. Slusher, Optical Processes in Microcavities, Semicond. Sci. Technol., 1994, 9: 2025-2030
    [3] F. Vollmer, D. Braun, A. Libchaber, Protein detection by optical shift of a resonant microcavity, Applied Physics Letters, 2002. 80(21): 4057-4059
    [4] Serpenguzel A., S. Arnold, G. Griffel, Excitation of Resonances of Microspheres on an Optical-Fiber, Optics Letters, 1995, 20(7): 654-656
    [5] Yun-Feng Xiao, Zheng-Fu Han, Guang-Can Guo, Quantum computation without strict strong coupling on a silicon chip, Phys. Rev. A, 2006, 73: 052324(6)
    [6] Xiao Yun-Feng, Han Zheng-Fu, Gao Jie, Generation of Multi-atom Dicke States with Quasi-unit Probability through the Detection of Cavity Decay, J. Phys. B: At. Mol. Opt. Phys., 2006, 39: 485-491
    [7] Kippenberg T. J., Spillane S. M., Armani D. K. et al., Fabrication and coupling to planar high-Q silica disk microcavities, Appl. Phys. Lett., 2003, 83(4): 797-799
    [8] Takao Aoki, Barak Dayan, E. Wilcut, Observation of strong coupling between one atom and a monolithic microresonator, Nature, 2006, 443: 671-674
    [9] Armani D. K., Kippenberg Y. J. Spillane S. M. et al., Ultra-high-Q toroid microcavity on a chip, Nature, 2003, 421: 905-908
    [10] S. M. Spillane, T. J. Kippenberg, O. J. Painter, Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics, Phys. Rev. Lett., 2003, 91(4): 3902(4)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700