用户名: 密码: 验证码:
城市生活垃圾在O_2/N_2及O_2/CO_2气氛下的燃烧特性及焚烧炉水冷壁腐蚀研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的快速发展,城市化进程不断加速,垃圾处理问题成为困扰我国城市发展的一大难题。城市生活垃圾焚烧发电处理以其占地面积小、处理量大、处理周期短、能够有效实现资源化利用成为目前我国城市生活垃圾处理的现实选择。我国垃圾焚烧处理技术起步较晚,国外垃圾的组分与热值与我国垃圾差别较大,直接套用国外技术难以完全契合我国垃圾焚烧的实际。O_2/CO_2燃烧技术能够有效为碳捕捉技术创造条件,为碳减排和社会低碳发展作出贡献。研究城市生活垃圾的O_2/CO_2燃烧技术,将能丰富和发展我国的垃圾焚烧处理技术。
     本文对城市生活垃圾热解、燃烧进行了理论和实验研究,探讨了CO_2替代N_2对热解和燃烧特性及生成气态产物的影响。同时针对机械式垃圾焚烧炉排炉水冷壁受热面腐蚀严重的问题,对重点腐蚀区域进行采样测试,结合热力计算、理论分析、数值模拟等手段,研究了水冷壁受热面积灰、腐蚀的机理和影响因素。
     (1)采用热重分析平台研究了不同N_2/CO_2气氛下,城市生活垃圾的热解行为特性,并对其动力学参数进行了求解。热重分析和动力学的研究结果表明:650℃以下时,DTG曲线随气氛的变化不明显。但是650℃以上时,峰的位置和机理则受气氛的影响而不同:80%N_2/20%CO_2气氛下,DTG曲线出现明显的两个峰,而其他气氛则出现一个明显的峰值。CO_2替代N_2能够促进焦炭在高温区的反应,同时影响残余质量。适当提高CO_2浓度有助于降低残余质量(100%N_2气氛下残余质量为39.2%,而60%N_2/40%CO_2气氛下降至33.2%),但是当CO_2浓度上升至60%以后,残余质量趋于稳定。多步独立的连续n级反应模型能够很好的模拟城市生活垃圾的热解过程。
     (2)采用热重分析平台对城市生活垃圾进行了O_2/N_2气氛和O_2/CO_2气氛下,不同氧气浓度的燃烧实验,并对典型气氛的燃烧实验数据进行了动力学参数求解。结果表明:样品失重均主要集中在200℃至540℃温度段。氧气浓度的提高有助于促进燃烧。在相同氧气浓度下,O_2/CO_2气氛下的峰值较O_2/N_2气氛下的峰值小,600℃以后,O_2/CO_2气氛失重峰出现的温度远高于O_2/N_2气氛,表明CO_2对燃烧的抑制作用高于N_2。对在不同氧气浓度下的垃圾燃烧过程,3步独立的n级反应模型对实验曲线的拟合度很高。
     (3)在热重分析平台上对城市生活垃圾的典型组分进行实验研究,重点探寻了O_2/N_2气氛和O_2/CO_2气氛下的燃烧特性,同时对其动力学参数进行求解。研究显示:无论是单一物料还是物料混合物,将混合气氛中所含的80%N_2替换成80%CO_2均会给燃烧带来不利影响,燃尽率会下降;同时N_2替代CO_2对固定碳阶段的燃烧影响远大于对挥发份燃烧段。将O_2/CO_2气氛中的氧气浓度提高到30%,能得到类似于空气中燃烧的表现。因此,发展城市生活垃圾O_2/CO_2燃烧技术需要富氧燃烧技术的支持。不同类别,同一类别中不同的细分组分的燃烧特性均存在一定的差异,如在纺织物中,化纤类的点燃温度比棉类高100℃左右。为此垃圾焚烧炉的设计及运行要充分考虑燃料适应性。
     (4)在管式炉烟气分析平台上,对纸张混合物、果皮混合物、植物残体混合物、纺织物等典型垃圾组分燃烧气态产物的排放规律进行了研究,重点分析了生成气体中的CO,H_2,SO_2和NO_x变化规律。结果如下:纸张混合物、果皮混合物、植物残体混合物、纺织物在不同气氛下生成气态产物的变化规律具有相似性。O_2/N_2气氛和O_2/CO_2气氛下,NO_x排放均出现随温度先减后增的趋势,其转折温度约为800℃。出现该现象可能是由于随着温度上升,反应的主导由还原反应变为氧化反应所致。CO_2替代N_2能够增加还原性气体的生成,促进还原反应的进行,从而降低高温阶段的NO_x排放。燃料氮含量与燃烧的NO_x排放之间无明显的关联,而高非挥发含量可能导致较高的NO_x排放。
     (5)对城市生活垃圾焚烧炉的水冷壁受热面重点腐蚀区域进行了积灰、腐蚀物的采集,采用SEM、XRF、XDR等手段对其表观形态、成分等进行分析。研究发现:SEM图发现全部积灰中都或多或少含有熔融(球形)和半熔融(半球形、类球形)的物质。三种积灰中K,Na,Cl,Fe含量均高于飞灰,飞灰含有更多的Ca,S,Si和Al,其原因主要是元素来源和沉积机理的差异性所导致。垃圾三种积灰的碱酸比都大于2.5,垃圾积灰呈明显的碱性,与燃煤炉相比,垃圾焚烧炉积灰易发性更高。XRF和XRD分析表明垃圾积灰含有较多容易引起腐蚀的氯化物和碱金属化合物。
     (6)结合热力计算、数值模拟、理论分析等方法,对城市生活垃圾焚烧炉水冷壁受热面的腐蚀减薄机理进行了探讨。CFD模拟结果显示,在第一烟道顶部与顶棚前部结合区域(Ⅰ#区域)、第二烟道前墙上部区域(Ⅱ#区域)形成两个较强的旋流区域,容易导致烟气停留时间过长,导致积灰积聚和生长。且Ⅰ#区域与炉内高水分区域重合,进一步加速积灰积聚和腐蚀速率。尿素溶液热分解形成的HNCO可能随烟气流动进入烟气回旋区域,在高水汽浓度作用下,容易形成腐蚀性很强的酸雾,直接对水冷壁受热面造成腐蚀。在不同的工况下,腐蚀速率是磨损速率的60~200倍。为避免高温腐蚀,同时有效防止二噁英的生成,必须控制炉温,本文所研究的炉型在实际运行中,第一烟道出口的烟温须控制在850℃~972℃范围内;保证一次风风压,保证一次风比例不小于85%。
With the development of economy and the expansion of urban, the wastetreatment becomes a big problem of city development in China. The wasteincineration has become a realistic choice of municipal solid waste (MSW) treatmentowing to its characteristics of small occupation, big capacity, short period and energyrecovery. The waste incineration technology starts relatively late in China, and thecomponents and calorific value of foreign MSW differ from domestic MSW, therefore,the direct adoption of foreign incineration technology don't fit the domestic conditionwell. O_2/CO_2combustion technology is one of the several promising new technologiesassociated with carbon capture and contributes to carbon reduction and sociallow–carbon development. The study on the MSW O_2/CO_2combustion technology canenrich and develop the waste incineration technology.
     The present study aimed at investigating the pyrolysis and combustioncharacteristics theoretically and experimentally, and discussing the effects ofReplacement of N_2by CO_2on pyrolysis and combustion characteristics and gasemissions. The corrosion of water-wall tubes in a MSW mechanical grate incineratoris also studied. The severe corrosion zone is sampled and tested to analyze the depositcorrosion mechanism of water-wall tubes and influencing factors, combined withthermal calculation, theoretical analysis and numerical simulation.
     (1) The thermal decomposition behavior and kinetic characteristics of the MSWwere studied at different N_2/CO_2atmospheres in a thermogravimetric analyzer. TheTGA and kinetic study revealed the following conclusions: The DTG curves below650℃changed with atmosphere indistinctively, but the location and mechanism ofthe peak in the high temperature range were affected by atmosphere. Above650℃,the DTG curve showed two peaks in80%N_2/20%CO_2atmosphere obviously, whereasonly an obvious peak in other atmospheres. Replacement of N_2by CO_2promoted thechar gasification in high temperature range and influenced the residual mass. Theresidual mass decreased from39.2%(in100%N_2) to36.9%(in80%N_2/20%CO_2) and33.2%(in60%N_2/40%CO_2). But when the CO_2concentration was over60%, theresidual mass almost remained the same (32.2%). Several independent fractions of nthorder reaction model fitted the weight loss well.
     (2) The oxygen-enriched combustion characteristics and kinetic behavior of theMSW are studied at different O_2/N_2and O_2/CO_2atmospheres. The following conclusions can be drawn as a result of TGA and kinetic study: All the samples losemost their weight between200℃-540℃. Higher oxygen concentration promotescombustion. The conversion rate curves and DTG curves shift to lower temperaturewithout significant change in its shape as the oxygen concentration increases. At thesame oxygen concentration, the peak values in O_2/CO_2atmosphere are lower thanthose in O_2/N_2atmosphere, indicating that CO_2has a higher inhibitory effect than N_2on MSW combustion. Above600℃, the weight loss peak appears much later inO_2/CO_2atmosphere than it dose in O_2/N_2atmosphere. The three-step reaction of nthorder reaction model could fit the weight loss very well.
     (3) The thermal decomposition behavior and kinetic characteristics of the typicalcomponents of the MSW were studied at different O_2/N_2and O_2/CO_2atmospheres in athermogravimetric analyzer. The TGA and kinetic study revealed the followingconclusions: Regardless of individual material or mixture, replacement of80%N_2by80%CO_2influenced combustion negatively and decreased the burnout rate. Thereplacement of N_2by CO_2had more obvious effect on combustion of fixed carbonthan volatiles. An oxygen content of30%in the O_2/CO_2atmosphere achieved asimilar combustion performance as air. Therefore, the development of MSW oxy–fuelcombustion technology required support from oxygen-enriched combustiontechnology. The combustion characteristics of different materials of a kind hadgenerality and individuality. For example, among textiles, the ignition temperature ofchemical fiber was higher than cotton textile by100℃. Therefore, when designingand operating MSW oxy–fuel combustion equipments, the applicability of specifickinds of material that would be used must be taken into consideration.
     (4) The gases emissions from the combustion of paper mixture, plant residuemixture, fruit waste and textiles were studied using a lab-scale electrically heated tubefurnace. The variations of CO, H2, SO_2and NO_xwere analyzed. The followingconclusions can be drawn: For the variations of gases emissions concentration withatmosphere, the similarity was observed for paper mixture, pericarp mixture andfoliage mixture. In O_2/CO_2and O_2/N_2atmospheres, CO, H2, SO_2and NO_xconcentration first increased and then decreased with the increase of heating time.Below800℃, the emissions of CO, H2, and NO_xall decreased with temperature underboth atmospheres, but above800℃, the increment of temperature increased NO_xemissions from800℃to1000℃. NO_xemission first decreased and then increased, because the dominant role changed from reduction reaction to oxidation reaction withthe increment of temperature. Replacement of N_2by CO_2increased reducing gases(CO and H2), promoted reduction reaction, and reduced NO_xemissions at hightemperatures. There was no clear correlation between the nitrogen content and theNO_xemission. Instead, fuels with higher volatile content lead to higher NO_xemission.
     (5) Various deposits and corrosion product were taken from the main corrosionareas on the water-wall tubes in a MSW grate incinerator and their morphologicalcharacteristics and component analysis were conducted using SEM-EDS, XRF andXDR. The following conclusions can be drawn: SEM showed that all of the depositscontain more or less molten (spherical) or semi-molten (hemispherical, globe-like)materials. The molten materials are due to the chemical reaction heat during thesulphation, the existence of low melting point compounds and molecular cramming.The content of K, Na, Cl or Fe in the deposits is bigger than in fly ash, but fly ashcontain more Ca, S, Si and Al, due to their different source and deposition mechanism.The alkali-acid ratio of three deposits are greater than2.5, indicating that MSWdeposit is obviously alkaline and has a high deposition trend. XRF and XRD provedeposits contain chlorides and alkali metal compounds, and are therefore consideredrisky materials prone to causing corrosion.
     (6) The corrosion mechanism of water-wall tubes is discussed using thermalcalculation, theoretical analysis and numerical simulation. As shown in the CFDresults, two rotational flow zones appeared in the junction of top of first pass and theforward part of ceiling (Ⅰ#zone) and in the top of front second pass (Ⅱ#zone). Therotational flow zones extended the residence time of flue gas and resulted in theaccumulation and growth of deposit. Ⅰ#zone coincided with the wet areas in thefurnace, and it accelerated deposit growth and corrosion rate. The urea solution wasseparated into NH3and HNCO rapidly. HNCO is lowly reactive in the actualoperation temperature range. The unreacted HNCO came into the rotational flow zone,formed corrosive acid fog in wet condition and resulted in direct corrosion ofwater-wall tubes. Under different conditions, the corrosion rate was60~200timesfaster than the depreciation rate. In actual operation, we should separated chlorineeffectively from the sources, chose appropriate spray location of SNCR reducingagent, apply highly alloyed materials, chose appropriate soot blower and addappropriate additives (such as kaolinite), in order to decrease the corrosion rate of water-wall tubes. In order to mitigate high–temperature corrosion and prevent theformation of dioxins, the furnace temperature should be controlled and thetemperature of the exit of the first pass must be held within850℃~972℃. Theproportion of primary air should be not less than85%to assure primary air pressure.
引文
[1]国务院办公厅.“十二五”全国城镇生活垃圾无害化处理设施建设规划[R].
    [2]蒋满元,唐玉斌.垃圾填埋的生态环境问题及治理途径[J].城市问题,2006,(07):76-80.
    [3]谢文垠.城市垃圾填埋场地下水有机污染物迁移模拟[D].成都理工大学,2009.
    [4]史东晓,张小忆,陈益琴,等.生活垃圾填埋处理成本分析与控制——以常州市生活废弃物处理中心为例[J].环境卫生工程,2012,(01):37-39.
    [5]龙焰.生活垃圾快速降解并原位脱氮的生物反应器填埋技术及机理研究[D].浙江大学,2008.
    [6]宁尚晓.城市生活垃圾堆肥腐熟度试验与评价研究[D].新疆大学,2012.
    [7]王艳,沈春红,李国学,等.倒仓破碎对缩短发酵周期后生活垃圾堆肥腐熟度的影响[J].农业环境科学学报,2009,(05):1053-1059.
    [8]秦莉,李玉春,尹莉,等.城市生活垃圾工厂化堆肥过程中理化指标的变化研究[J].农业环境科学学报,2006,(02):501-506.
    [9]王华伟.青岛市生活垃圾和污泥联合堆肥技术研究[D].青岛理工大学,2010.
    [10]谢冰.东北地区垃圾堆场的垃圾降解行为及稳定化研究[D].哈尔滨工业大学,2010.
    [11]张健美,徐立生.垃圾堆肥的资源化利用[J].污染防治技术,2008,(05):54-56+88.
    [12]邹德勋,汪群慧,隋克俭,等.餐厨垃圾与菌糠混合好氧堆肥效果[J].农业工程学报,2009,(11):269-273.
    [13]尚谦.城市生活垃圾好氧堆肥过程参数的探讨[D].湖南大学,2002.
    [14]杨双全.高效生物增温剂的制备及其在垃圾堆肥处理中的应用[D].贵州大学,2006.
    [15]文昊深.城市生活垃圾高温好氧堆肥工艺优化研究[D].重庆大学,2004.
    [16]闫涛.循环流化床焚烧炉中生活垃圾燃烧特性研究[D].清华大学,2004.
    [17]徐梦侠.城市生活垃圾焚烧厂二恶英排放的环境影响研究[D].浙江大学,2009.
    [18]秦宇飞.大型城市生活垃圾焚烧炉焚烧过程仿真及控制[D].华北电力大学(北京),2011.
    [19]江建方.城市生活垃圾外热式热解技术的研究[D].华中科技大学,2006.
    [20]沈祥智.生活垃圾中主要可燃组分热解特性的试验研究[D].浙江大学,2006.
    [21]陈翀.生活垃圾固定床热解气化特性的实验研究及其过程模拟[D].浙江大学,2011.
    [22]温俊明.城市生活垃圾热解特性试验研究及预测模型[D].浙江大学,2006.
    [23]王艳.城市生活垃圾中低温热解特性研究[D].天津大学,2005.
    [24]吴挺.医疗垃圾热解气化理论与实验研究[D].天津大学,2005.
    [25]颜杰,刘科财,杨虎,等.垃圾微波裂解处理工艺研究[J].广州化工,2012,(09):150-153.
    [26]肖刚.城市垃圾流化床气化与旋风燃烧熔融特性研究[D].浙江大学,2006.
    [27]胡建杭.城市生活垃圾直接气化熔融焚烧过程应用基础研究[D].昆明理工大学,2007.
    [28]王海瑞.密闭式城市生活垃圾直接气化熔融焚烧过程控制策略研究[D].昆明理工大学,2007.
    [29]彭好义,周孑民,彭庚.城市生活垃圾高温富氧空气熔融焚烧技术研究[J].工业炉,2009,(02):28-30+37.
    [30]王华.无害化城市生活垃圾熔融焚烧技术的研究进展[J].工业加热,2002,(06):1-6.
    [31] A J CHANDLER S E SAWELL, T T EIGHMY, J HARTLEN,0HJELMAR,,H A VAN DERSLOOT,J VEHLOW D KOSSON. An international, perspective on the characterisation andmanagement of residues from msw incinerators[J]. BiOmam and Bioencrgy,1995,9(1-5):377-386.
    [32] D. A. Rani,A. R. Boccaccini,D. Deegan,et al. Air pollution control residues from wasteincineration: Current UK situation and assessment of alternative technologies[J]. WasteManagement,2008,28(11):2279-2292.
    [33] M. E. Sanchez,M. Otero,X. Gomez,et al. Thermogravimetric kinetic analysis of thecombustion of biowastes[J]. Renewable Energy,2009,34(6):1622-1627.
    [34] D. Vamvuka,E. Kakaras,E. Kastanaki,et al. Pyrolysis characteristics and kinetics of biomassresiduals mixtures with lignite[J]. Fuel,2003,82(15-17):1949-1960.
    [35] P. Grammelis,P. Basinas,A. Malliopoulou,et al. Pyrolysis kinetics and combustioncharacteristics of waste recovered fuels[J]. Fuel,2009,88(1):195-205.
    [36] G. Liuzzo, N. Verdone, M. Bravi. The benefits of flue gas recirculation in wasteincineration[J]. Waste Management,2007,27(1):106-116.
    [37] J. C. Chen,J. S. Huang. Partitioning characteristics and particle size distributions of heavymetals in the O-2/RFG waste incineration system[J]. Journal of Hazardous Materials,2009,172(2-3):826-832.
    [38] V. I. Sharypov,N. Marin,N. G. Beregovtsova,et al. Co-pyrolysis of wood biomass andsynthetic polymer mixtures. Part1: influence of experimental conditions on the evolution ofsolids, liquids and gases[J]. Journal of Analytical and Applied Pyrolysis,2002,64(1):15-28.
    [39] V. I. Sharypov,N. G. Beregovtsova,B. N. Kuznetsov,et al. Co-pyrolysis of wood biomassand synthetic polymers mixtures. Part III: Characterisation of heavy products[J]. Journal ofAnalytical and Applied Pyrolysis,2003,67(2):325-340.
    [40] V. I. Sharypov,N. G. Beregovtsova,B. N. Kuznetsov,et al. Co-pyrolysis of wood biomassand synthetic polymers mixtures-Part IV: Catalytic pyrolysis of pine wood and polyolefinicpolymers mixtures in hydrogen atmosphere[J]. Journal of Analytical and Applied Pyrolysis,2006,76(1-2):265-270.
    [41] L. Sorum,M. G. Gronli,J. E. Hustad. Pyrolysis characteristics and kinetics of municipal solidwastes[J]. Fuel,2001,80(9):1217-1227.
    [42] T. Loulou,S. Salvador,J. L. Dirion. Determination of reaction parameters for cardboardthermal degradation using experimental data[J]. Chemical Engineering Research&Design,2003,81(A9):1265-1270.
    [43] C. David,S. Salvador,J. L. Dirion,et al. Determination of a reaction scheme for cardboardthermal degradation using thermal gravimetric analysis[J]. Journal of Analytical and AppliedPyrolysis,2003,67(2):307-323.
    [44] W.C. Fan N.A. Liu, J. Kinetic modeling of thermal decomposition of natural cellulosicmaterials in air atmosphere[J]. Journal of Analytical and Applied Pyrolysis,2002,63(2):303-325.
    [45] M. Leskens,L. B. M. van Kessel,O. H. Bosgra. Model predictive control as a tool forimproving the process operation of MSW combustion plants[J]. Waste Management,2005,25(8):788-798.
    [46] G. McKay. Dioxin characterisation, formation and minimisation during municipal solid waste(MSW) incineration: review[J]. Chemical Engineering Journal,2002,86(3):343-368.
    [47]金余其.城市生活垃圾燃烧特性及新型流化床焚烧技术的研究[D].浙江大学,2002.
    [48]曹玉春.流化床垃圾焚烧炉内流动和燃烧污染物生成数值模拟研究[D].浙江大学,2005.
    [49]郑皎.生活垃圾流化床气化特性的实验研究与模型预测[D].浙江大学,2009.
    [50]陈彤.城市生活垃圾焚烧过程中二噁英的形成机理及控制技术研究[D].浙江大学,2006.
    [51]尤孝方.燃烧过程中多环芳烃的生成与数值模拟[D].浙江大学,2006.
    [52]陆胜勇.垃圾和煤燃烧过程中二噁英的生成、排放和控制机理研究[D].浙江大学,2004.
    [53]石谊双.硫对垃圾焚烧过程中二噁英生成的抑制作用的研究[D].浙江大学,2005.
    [54]彭政.垃圾焚烧飞灰二噁英的控制技术研究[D].浙江大学,2007.
    [55]张东平.城市生活垃圾流化床焚烧过程酸性气体排放及其人工神经网络预测[D].浙江大学,2003.
    [56]李润东.城市垃圾焚烧飞灰熔融过程的机理研究[D].浙江大学,2002.
    [57]马晓茜,卢苇,张笑冰,等.垃圾焚烧炉热力模型研究[J].化学工程,2000,(04):36-40+4.
    [58]马晓茜.硫和氯及其化合物对垃圾焚烧炉的高温腐蚀与对策[J].电站系统工程,1997,(05):39-43.
    [59]马晓茜.垃圾焚烧污染物的生成与控制[J].电站系统工程,1998,(03):38-40.
    [60]马晓茜.回转窑式医院垃圾焚烧炉设计[J].工业锅炉,1999,(04):10-12.
    [61]马晓茜.城市垃圾焚烧过程分析[J].动力工程,1999,(04):74-79.
    [62]马晓茜.垃圾焚烧炉设计新思路[J].工业加热,2000,(04):29-31.
    [63]马晓茜.双回转式固体废弃物焚烧系统设计[J].锅炉技术,2001,(02):14-18.
    [64]马晓茜,刘国辉,余昭胜.基于CFD的城市生活垃圾焚烧炉燃烧优化[J].华南理工大学学报(自然科学版),2008,(02):101-106.
    [65]马晓茜,沈文生,李敏,等.垃圾焚烧炉炉内环境与入炉垃圾间的传热分析[J].电站系统工程,1999,(01):45-48.
    [66]马晓茜,谢泽琼.基于BP神经网络的垃圾热值预测模型[J].科技导报,2012,(23):46-50.
    [67]马晓茜,杨泽亮,罗军.几种垃圾焚烧方式的比较[J].重庆环境科学,1998,(04):34-36.
    [68]马晓茜,张凌,胡娟,等.垃圾燃料与燃烧特性数据库管理系统设计[J].电站系统工程,1999,(06):55-57.
    [69]马晓茜,张笑冰,卢苇,等.垃圾焚烧层燃炉与CAO系统的分析比较[J].工业炉,1999,(03):12-13+20.
    [70]梁增英.城市生活垃圾焚烧炉SNCR脱硝技术研究[D].华南理工大学,2011.
    [71]姜娟,马晓茜,余昭胜.基于遗传算法优化BP神经网络的垃圾焚烧炉结渣预测模型[J].可再生能源,2010,(04):80-84.
    [72]林海,马晓茜.大型城市生活垃圾焚烧炉燃尽风的优化布置[J].华东电力,2011,(11):1911-1915.
    [73]林海,马晓茜,余昭胜.大型城市生活垃圾焚烧炉的数值模拟[J].动力工程学报,2010,(02):128-132.
    [74]卢苇,马晓茜.垃圾焚烧炉热平衡与稳燃技术分析[J].锅炉制造,1998,(04):1-5.
    [75]唐玉婷,马晓茜.垃圾炉排焚烧炉及余热锅炉热力计算修正方法[J].工业炉,2009,(06):33-36.
    [76]王毅,马晓茜,廖艳芬.垃圾焚烧炉的分层模糊控制系统[J].工业炉,2004,(06):29-34.
    [77]周春艳,马晓茜,毛恺.配风方式对垃圾焚烧炉燃烧效率的影响分析[J].煤气与热力,2003,(07):395-399.
    [78]陈梅倩,张衍国,蒙爱红,等.典型垃圾基元高温干燥过程的动力学特性[J].工程热物理学报,2010,(01):133-135.
    [79]李清海,甘超,蒙爱红,等.干燥对乏垃圾热值影响的实验研究[J].清华大学学报(自然科学版),2011,(12):1865-1869.
    [80]李清海,张衍国,陈昌和,等.水分对垃圾焚烧影响的实验研究[J].中国电机工程学报,2008,(08):58-64.
    [81]李清海,张衍国,陈梅倩,等.炉排-循环床复合垃圾焚烧炉内干燥和燃烧过程[J].中国科学(E辑:技术科学),2009,(05):980-986.
    [82]李清海,张衍国,党文达,等.炉排-循环床复合垃圾焚烧炉中垃圾模拟干燥实验[J].清华大学学报(自然科学版),2008,(05):824-827.
    [83]李清海,张衍国,任钢炼.1MW循环流化床垃圾焚烧的试验研究[J].锅炉技术,2005,(05):66-70.
    [84]蒙爱红,李清海,张衍国,等.垃圾焚烧炉干燥床垃圾干燥过程研究和分析[J].燃烧科学与技术,2008,(06):518-522.
    [85]陈国艳,张衍国,朱九龙,等.垃圾焚烧过程中NO_x排放控制研究进展[J].四川环境,2011,(04):140-143.
    [86]张衍国,李海明,李清海,等.垃圾焚烧炉内传热计算方法[J].清华大学学报(自然科学版),2001,(12):95-98.
    [87]张衍国,王亮,王智微,等.城市生活垃圾典型组分燃烧特性的TG-FTIR研究[J].热力发电,2007,(06):23-28.
    [88]张衍国,武俊,李清海,等.垃圾焚烧重金属迁移特性及其影响因素[J].环境污染治理技术与设备,2005,(12):6-12.
    [89]李清海.层燃—流化复合垃圾焚烧炉燃烧与排放研究[D].清华大学,2007.
    [90]鲁玺梦.垃圾焚烧炉炉温控制系统的探讨[J].山东电力技术,2009,(04):56-59.
    [91]胡兴武.垃圾焚烧发电厂燃烧智能控制系统的研究[D].华北电力大学(北京),2011.
    [92]张方杰.垃圾焚烧炉炉温控制策略及其研究[D].华北电力大学(北京),2009.
    [93]冉景煜.固态医疗垃圾循环流化床气固流动与燃烧特性数值分析及实验[D].重庆大学,2003.
    [94]吕军.垃圾焚烧发电中半干法尾气净化塔结构与流场研究[D].重庆大学,2008.
    [95]唐国华. SITY2000垃圾焚烧技术及烟气净化工艺在重庆同兴发电项目中的应用[D].重庆大学,2008.
    [96]许明磊.垃圾焚烧过程受热面积灰烧结特性实验研究[D].浙江大学,2007.
    [97] Krause H. H. Vaugham D. A., Boyd W. D., Chloride corrosion and its inhibition in refusefiring[C]. The International Conference on Ash Deposits and Corrosion from Impurities inCombusrion, Henniker, New Hampshire,1997.
    [98] Frandsen F. J. Nielsen H. P., Dam-Johanson K., Baxter L. L. The implications ofchlorine-associated corrosion on the operation of biomass fired boilers[J]. Progress in Energyand Combustion Science,2000,23(3):283-298.
    [99] A. Phongphiphat,C. Ryu,K. N. Finney,et al. Ash deposit characterisation in a large-scalemunicipal waste-to-energy incineration plant[J]. Journal of Hazardous Materials,2011,186(1):218-226.
    [100] A. Phongphiphat,C. Ryu,Y. B. Yang,et al. Investigation into high-temperature corrosionin a large-scale municipal waste-to-energy plant[J]. Corrosion Science,2010,52(12):3861-3874.
    [101] B. J. Skrifvars,R. Backman,M. Hupa,et al. Corrosion of superheater steel materials underalkali salt deposits-Part1: The effect of salt deposit composition and temperature[J].Corrosion Science,2008,50(5):1274-1282.
    [102] B. J. Skrifvars,M. Westén-Karlsson,M. Hupa,et al. Corrosion of superheater steel materialsunder alkali salt deposits-Part2: SEM analyses of different steel materials[J]. CorrosionScience,2010,52:1011-1019.
    [103] P. Viklund,A. Hjornhede,P. Henderson,et al. Corrosion of superheater materials in awaste-to-energy plant[J]. Fuel Processing Technology,2013,105:106-112.
    [104] Frandsen F. Michelsen H. P, Johansen K. D,Larsen O. H. Deposition and high temperaturecorrosion in a IO MW straw fired boiler[J]. Fuel Processing Technology,1998,54(1-3):95-108.
    [105]沈祥智,严建华,白丛生,等.垃圾焚烧中污染物生成与受热面腐蚀及其控制[J].热力发电,2006,(07):24-28+75-76.
    [106]祝建中,陈烈强,甘轲.垃圾焚烧气氛中碱金属氯化物的腐蚀机理[J].华南理工大学学报(自然科学版),2005,(03):78-82.
    [107]蒋旭光,王忠民.垃圾焚烧烟气高温腐蚀机理的研究[J].电站系统工程,2002,(02):53-55.
    [108]李远士,牛焱,刘刚,等.金属材料在垃圾焚烧环境中的高温腐蚀[J].腐蚀科学与防护技术,2000,(04):224-227.
    [109]李远士.几种金属材料的高温氧化、氯化腐蚀[D].大连理工大学,2001.
    [110]潘葱英.垃圾焚烧炉内过热器区HCI高温腐蚀研究[D].浙江大学,2004.
    [111]孙巍.流化床垃圾焚烧积灰特性研究及冷态积灰模拟实验[D].浙江大学,2006.
    [112] Y. W. Tan,E. Croiset,M. A. Douglas,et al. Combustion characteristics of coal in a mixtureof oxygen and recycled flue gas[J]. Fuel,2006,85(4):507-512.
    [113] X. Y. Huang,X. M. Jiang,X. X. Han,et al. Combustion Characteristics of Fine-andMicro-pulverized Coal in the Mixture of O-2/CO2[J]. Energy&Fuels,2008,22(6):3756-3762.
    [114]蔡灿稳,金晶,路遥,等. O_2/CO_2混合富氧燃烧技术探讨[J].能源研究与信息,2011,(02):81-86.
    [115]王贲,苏胜,孙路石,等. O_2/CO_2条件下煤焦-NO生成特性的实验研究[J].煤炭学报,2012,(10):1743-1748.
    [116]钟孝蛟,刘豪,赵然,等. O_2/CO_2气氛下火焰传播速度影响因素分析[J].中国电机工程学报,2011,(23):54-60.
    [117] L. M. Zhou,Y. P. Wang,Q. W. Huang,et al. Thermogravimetric characteristics and kineticof plastic and biomass blends co-pyrolysis[J]. Fuel Processing Technology,2006,87(11):963-969.
    [118] N. Marin,S. Collura,V. I. Sharypov,et al. Copyrolysis of wood biomass and syntheticpolymers mixtures. Part II: characterisation of the liquid phases[J]. Journal of Analytical andApplied Pyrolysis,2002,65(1):41-55.
    [119] K. Celis,I. Van Driessche,R. Mouton,et al. Kinetics of consecutive reactions in the solidstate: Thermal decomposition of oxalates.[J]. Euro Ceramics Vii, Pt1-3,2002,206-2:807-810.
    [120] C. H. Wu,C. Y. Chang,C. H. Tseng,et al. Pyrolysis product distribution of waste newspaperin MSW[J]. Journal of Analytical and Applied Pyrolysis,2003,67(1):41-53.
    [121] A. Saffarzadeh,T. Shimaoka,Y. Motomura,et al. Petrogenetic characteristics of molten slagfrom the pyrolysis/melting treatment of MSW[J]. Waste Management,2009,29(3):1103-1113.
    [122]张亚丽,王丽云,林勤.热分析仪器发展简况[J].现代科学仪器,1998,(05):24-26.
    [123]王家龙,骆东淼,姜著成.我国热分析仪的现状和发展[J].中国仪器仪表,2008,(10):28-30.
    [124]陆昌伟,奚同庚.热分析质谱法的发展历史沿革、现状和展望[J].上海计量测试,2002,(02):8-11.
    [125] W. K. Buah,A. M. Cunliffe,P. T. Williams. Characterization of products from the pyrolysisof municipal solid waste[J]. Process Safety and Environmental Protection,2007,85(B5):450-457.
    [126] A. G. Barneto,J. A. Carmona,J. E. Martin,et al. Kinetic models based in biomasscomponents for the combustion and pyrolysis of sewage sludge and its compost[J]. Journal ofAnalytical and Applied Pyrolysis,2009,86(1):108-114.
    [127] M. Betancur,J. D. Martinez,R. Murillo. Production of activated carbon by waste tirethermochemical degradation with CO2[J]. Journal of Hazardous Materials,2009,168(2-3):882-887.
    [128] A. Marcilla,A. N. Garcia,M. Leon,et al. Study of the influence of NaOH treatment on thepyrolysis of different leather tanned using thermogravimetric analysis and Py/GC-MSsystem[J]. Journal of Analytical and Applied Pyrolysis,2011,92(1):194-201.
    [129] P. Thipkhunthod,V. Meeyoo,P. Rangsunvigit,et al. Pyrolytic characteristics of sewagesludge[J]. Chemosphere,2006,64(6):955-962.
    [130] Y. F. Liao,X. Q. Ma. Thermogravimetric analysis of the co-combustion of coal and papermill sludge[J]. Applied Energy,2010,87(11):3526-3532.
    [131] Q. Z. Li,C. S. Zhao,X. P. Chen,et al. Comparison of pulverized coal combustion in air andin O-2/CO2mixtures by thermo-gravimetric analysis[J]. Journal of Analytical and AppliedPyrolysis,2009,85(1-2):521-528.
    [132] K. Erhard H. Wolfgang. On the suitability of agricultural by-products for the manufacture ofgranular activated carbon[J]. Fuel,1995,74(12):1786-1791.
    [133] V. Minkova,S. P. Marinov,R. Zanzi,et al. Thermochemical treatment of biomass in a flowof steam or in a mixture of steam and carbon dioxide[J]. Fuel Processing Technology,2000,62(1):45-52.
    [134] C. Jindarom,V. Meeyoo,T. Rirksomboon,et al. Thermochemical decomposition of sewagesludge CO2and N-2atmosphere[J]. Chemosphere,2007,67(8):1477-1484.
    [135] K. S. Lin,H. P. Wang,S. H. Liu,et al. Pyrolysis kinetics of refuse-derived fuel[J]. FuelProcessing Technology,1999,60(2):103-110.
    [136] Ma BG Li XG, Li X, Hu ZW, Wang XG. Thermogravimetric analysis of the co-combustionof the blends with high ash coal and waste tyres[J]. THERMOCHIMICA ACTA,2006,441(1):79-83.
    [137] G. H. Liu,X. Q. Ma,Z. S. Yu. Experimental and kinetic modeling of oxygen-enriched aircombustion of municipal solid waste[J]. Waste Management,2009,29(2):792-796.
    [138] M. Muthuraman,T. Namioka,K. Yoshikawa. A comparison of co-combustion characteristicsof coal with wood and hydrothermally treated municipal solid waste[J]. BioresourceTechnology,2010,101(7):2477-2482.
    [139] M. X. Fang,D. K. Shen,Y. X. Li,et al. Kinetic study on pyrolysis and combustion of woodunder different oxygen concentrations by using TG-FTIR analysis[J]. Journal of Analyticaland Applied Pyrolysis,2006,77(1):22-27.
    [140] C. H. Wu,C. Y. Chang,J. P. Lin,et al. Thermal treatment of coated printing and writingpaper in MSW: pyrolysis kinetics[J]. Fuel,1997,76(12):1151-1157.
    [141] Xavier Py Beno t Cagnon, AndréGuillot, Fritz Stoeckli, Gérard Chambat. Contributions ofhemicellulose, cellulose and lignin to the mass and the porous properties of chars and steamactivated carbons from various lignocellulosic precursors[J]. Bioresource Technology,2009,100(1):292-298.
    [142] Y. T. Tang,X. Q. Ma,Z. Y. Lai. Thermogravimetric analysis of the combustion ofmicroalgae and microalgae blended with waste in N-2/O-2and CO2/O-2atmospheres[J].Bioresource Technology,2011,102(2):1879-1885.
    [143] Petarca L Cozzani V, Tognotti L. Devolatilisation and pyrolysis of refuse derived fuels:characterization and kinetic modelling by a thermogravimetric and calorimetric approach[J].Fuel,1995,74:903-912.
    [144] P. A. Bejarano,Y. A. Levendis. Single-coal-particle combustion in O-2/N-2and O-2/CO2environments[J]. Combustion and Flame,2008,153(1-2):270-287.
    [145] Colomba Di Blasi. Modeling and simulation of combustion processes of charring andnon-charring solid fuels [J]. Progress in Energy and Combustion Science,1993,19(1):71-104.
    [146] A. Molina,C. R. Shaddix. Ignition and devolatilization of pulverized bituminous coalparticles during oxygen/carbon dioxide coal combustion[J]. Proceedings of the CombustionInstitute,2007,31:1905-1912.
    [147] Y. Hu,S. Naito,N. Kobayashi,et al. CO2, NOx and SO2emissions from the combustion ofcoal with high oxygen concentration gases[J]. Fuel,2000,79(15):1925-1932.
    [148] H. Liu,R. Zailani,B. M. Gibbs. Comparisons of pulverized coal combustion in air and inmixtures of O-2/CO2[J]. Fuel,2005,84(7-8):833-840.
    [149] D. C. Park,S. J. Day,P. F. Nelson. Nitrogen release during reaction of coal char with O-2,CO2, and H2O[J]. Proceedings of the Combustion Institute,2005,30:2169-2175.
    [150] T. Wall,Y. H. Liu,C. Spero,et al. An overview on oxyfuel coal combustion-State of the artresearch and technology development[J]. Chemical Engineering Research&Design,2009,87(8A):1003-1016.
    [151] P.Szabo G.Varhegyi, E. Jakab, F. Till, J.R.Richard. Mathematical modeling of char reactivityin Ar-O2and CO2-O2mixtures[J]. Energy and fuels,1996,10(6):1208-1214.
    [152] M. B. Toftegaard,J. Brix,P. A. Jensen,et al. Oxy-fuel combustion of solid fuels[J]. Progressin Energy and Combustion Science,2010,36(5):581-625.
    [153] H. Stadler,D. Christ,M. Habermehl,et al. Experimental investigation of NOx emissions inoxycoal combustion[J]. Fuel,2011,90(4):1604-1611.
    [154] P. Glarborg,A. D. Jensen,J. E. Johnsson. Fuel nitrogen conversion in solid fuel firedsystems[J]. Progress in Energy and Combustion Science,2003,29(2):89-113.
    [155] Omata K Kimura N, Kiga T, Takano S, Shikisima S. The characteristics of pulverized coalcombustion in O2/CO2mixtures for CO2recovery[J]. Energy Convers Manage,1995,36(6-9):805-808.
    [156] T. Nozaki,S. Takano,T. Kiga,et al. Analysis of the flame formed during oxidation ofpulverized coal by an O-2-CO2mixture[J]. Energy,1997,22(2-3):199-205.
    [157] E. Croiset,K. Thambimuthu,A. Palmer. Coal combustion in O-2/CO2mixtures comparedwith air[J]. Canadian Journal of Chemical Engineering,2000,78(2):402-407.
    [158] Y. Q. Hu,N. Kobayashi,M. Hasatani. Effects of coal properties on recycled-NOx reductionin coal combustion with O-2/recycled flue gas[J]. Energy Conversion and Management,2003,44(14):2331-2340.
    [159] K. Andersson,F. Normann,F. Johnsson,et al. NO emission during oxy-fuel combustion oflignite[J]. Industrial&Engineering Chemistry Research,2008,47(6):1835-1845.
    [160] L. G. Zheng,E. Furimsky. Assessment of coal combustion in O-2+CO2by equilibriumcalculations[J]. Fuel Processing Technology,2003,81(1):23-34.
    [161] Fredrik Niklasson Anita Pettersson, Farzad Moradian. Reduced bed temperature in acommercial waste to energy boiler—Impact on ash and deposit formation[J]. FuelProcessing Technology,2012, In Press
    [162] S. Arvelakis,B. Folkedahl,F. J. Frandsen,et al. Studying the melting behaviour of fly ashfrom the incineration of MSW using viscosity and heated stage XRD data[J]. Fuel,2008,87(10-11):2269-2280.
    [163] Anders Hj rnhede Peter Viklund, Pamela Henderson, Annika St lenheim, Rachel Pettersson.Corrosion of superheater materials in a waste-to-energy plant[J]. Fuel Processing Technology,2012, In Press
    [164] M. Dorri,D. Harandizadeh. Failure analysis of perforation in salty water-wall tubes of apower plant[J]. Engineering Failure Analysis,2012,19:87-96.
    [165] S. Jimenez,J. Ballester. Influence of operating conditions and the role of sulfur in theformation of aerosols from biomass combustion[J]. Combustion and Flame,2005,140(4):346-358.
    [166] Bryers,R.W., Examination of fouling of convective heat transfer surface by calcium andsodium using micro-analytical techniques[C]. ASME/Joint Power Generation Conference.,ASME: Portland, Oregon,1986.
    [167] R. W. Bryers, Fireside behavior of minerals in high-calcium/low-sodium western low-rankcoals[C].1991International Joint Power Generation Conference, San Diego, California,1991.
    [168] Wibberley L. J.,Wall T. F. Alkali-ash reactions and deposit formation in pulverized coalfiredboilers: experimental aspects of sodium silicate formation and the formation of deposits[J].Fuel,1982,61(1):93-99.
    [169] Attar A.,Baker D. C. Sulfur pollution from coal combustion: effect of mineral componentson coal and the thermal stabilities of sulfated ash and calcium sulfate[J]. EnvironmentalScience and Technology,1981,15(3):233-366.
    [170] Hurley J. P,Zygarlicke C. J. Henson S. A., Studies on calcium-based ash deposition inutility boilers[C]. EPRI conference on the effects of coal quality on power plants, Atlanta,Georgia.,1982.
    [171] E. J. Anthony,L. Jia. Agglomeration and strength development of deposits in CFBC boilersfiring high-sulfur fuels[J]. Fuel,2000,79(15):1933-1949.
    [172] C.C. Wiles. Municipal solid waste combustion ash: state-of-the-knowledge[J]. J. Hazard.Mater.,1996,47:325-344.
    [173] L. Martínez M.A. Fernández, M. Segarra, J.C. Garcia, F. Espiell. Behavior of heavy metalsin the combustion gases of urban waste incinerators[J]. Environ. Sci. Technol,1992,26:1040–1047.
    [174] Sand U Sandberg J, Bel Fdhila F. Numerical simulation of fouling on superheater tubewalls[J].10th Workshop on two-phase flow predictions,2002, Meersburg
    [175] F. J. Frandsen. Utilizing biomass and waste for power production-a decade of contributingto the understanding, interpretation and analysis of deposits and corrosion products[J]. Fuel,2005,84(10):1277-1294.
    [176] H. P. Nielsen,L. L. Baxter,G. Sclippab,et al. Deposition of potassium salts on heat transfersurfaces in straw-fired boilers: a pilot-scale study[J]. Fuel,2000,79(2):131-139.
    [177] M. S. Bashir,P. A. Jensen,F. Frandsen,et al. Ash transformation and deposit build-upduring biomass suspension and grate firing: Full-scale experimental studies[J]. FuelProcessing Technology,2012,97:93-106.
    [178] M. Theis,B. J. Skrifvars,M. Zevenhoven,et al. Fouling tendency of ash resulting fromburning mixtures of biofuels. Part2: Deposit chemistry[J]. Fuel,2006,85(14-15):1992-2001.
    [179] J. Pettersson N. Folkesson, C. Pettersson, L. G. Johansson, E. Skog, B.A. Andersson, et al.Fireside corrosion of stainless and low alloyed steel in a waste-fired CFB boiler; the effect ofadding sulphur to the fuel[J]. Materials Science Forum,2008,595-598:289–297.
    [180] H gberg J. Andersson C. Fouling and slagging problems at recovered wood fuelcombustion[J]. Report nr.821, V rmeforsk Service AB,2001,
    [181] Sj blom R. Hypotheses and mechanisms for development of deposits containing zinc andlead in conjugation with combustion of wood waste[J]. Report nr.734, V rmeforsk ServiceAB,2001,
    [182] Andersson M. Deposit trends in biomass fired boilers. Report M4-204, V rmeforsk ServiceAB[J].2003,
    [183] M. A. Uusitalo,P. M. J. Vuoristo,T. A. Mantyla. High temperature corrosion of coatings andboiler steels below chlorine-containing salt deposits[J]. Corrosion Science,2004,46(6):1311-1331.
    [184] J. Sandberg,C. Karlsson,R. B. Fdhila. A7year long measurement period investigating thecorrelation of corrosion, deposit and fuel in a biomass fired circulated fluidized bed boiler[J].Applied Energy,2011,88(1):99-110.
    [185] A. Zahs,M. Spiegel,H. J. Grabke. Chloridation and oxidation of iron, chromium, nickel andtheir alloys in chloridizing and oxidizing atmospheres at400-700degrees C[J]. CorrosionScience,2000,42(6):1093-1122.
    [186] E. Reese and M. Spiegel H. J. Grabke. The effects of chlorides, hydrogen chloride, andsulfur dioxide in the oxidation of steels below deposits[J]. Corrosion Science,1995,37:1023-1043.
    [187] H. P. Nielsen, F. J. Frandsen, K. Dam-Johansen, et al. The implications ofchlorine-associated corrosion on the operation of biomass-fired boilers[J]. Progress in Energyand Combustion Science,2000,26(3):283-298.
    [188] K. Salmenoja. Field and Laboratory Studies on Chlorine-induced Corrosion in Boilers Firedwith Biofuels, Academic dissertation[J]. bo Academi, Turku, Finland,2000,
    [189] K. Persson,M. Brostrom,J. Carlsson,et al. High temperature corrosion in a65MW wasteto energy plant[J]. Fuel Processing Technology,2007,88(11-12):1178-1182.
    [190] T. S. Sidhu,R. D. Agrawal,S. Prakash. Hot corrosion of some superalloys and role ofhigh-velocity oxy-fuel spray coatings-a review[J]. Surface&Coatings Technology,2005,198(1-3):441-446.
    [191] R. Rota,D. Antos,E. F. Zanoelo,et al. Experimental and modeling analysis of the NOxOUTprocess[J]. Chemical Engineering Science,2002,57(1):27-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700