用户名: 密码: 验证码:
一体式膜生物反应器的运行研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜生物反应器是生物处理技术与膜技术的有机结合,以及对污染物的高效去
    除、较少的剩余污泥产量和优质稳定的出水水质等优点,成为一种新型的污水处
    理回用技术,所以对膜生物反应器工艺的基本理论和性能研究有利于这种工艺的
    应用和推广。
    本实验采用的一体式膜生物反应器主要是用活性污泥生物反应器与中空纤维
    膜组件相结合,处理生活污水。实验研究表明,当污泥浓度为6000mg/L,DO值
    为3mg/L以上,HRT为6h时,膜生物反应器对CODcr、BOD5、SS、NH3-N、TN、
    TP的去除效率分别达到95%-98%、98%-995%、100%、92%-100%、60%-
    84%、和34%-64%。针对膜生物反应器除磷效果差的特点,在实验中选用铝盐
    作为化学除磷剂,能获得较好的效果,在Al/TP(摩尔比)=15-20时,系统除
    磷效率可达72%-86%。
    在研究温度、pH值、HRT和DO值对膜生物反应器处理效果的影响时发现,
    DO为15mg/L以上时,DO值的变化对CODcr、BOD5、NH3-N的去除效果影响不
    大,但当DO为05mg/L时,系统对CODcr、BOD5、NH3-N的去除率迅速下降。
    DO值为15mg/L时,系统对TN的效率可达92%-98%,DO为其他值时则去除
    效率迅速下降。HRT对系统处理效果的影响主要是水力停留时间过短会造成废水
    与微生物来不及反应就从系统中排出,而当水力停留时间足够长的时候,HRT对
    系统去除率的影响不大,但对TP的去除则随这HRT的增加先增加后下降。温度
    和pH值的变化对系统处理效果无影响。
    在研究同步硝化反硝化作用时发现,C/N、pH值和温度对同步硝化反硝化作
    用无影响,DO是影响系统同步硝化反硝化的关键因素。在C/N为8-18,pH值
    为70-85,温度为7℃-11℃,DO值为15mg/L时,同步硝化反硝化在系统中
    起到了很好的作用,这一条件为同步硝化反硝化的最佳条件。通过对膜生物反应
    器中同步硝化反硝化的机理分析发现,膜生物反应器中同步硝化反硝化的发生符
    合反应器溶解氧分布不均理论以及缺氧微环境理论,系统反应器的结构以及系统
    中污泥浓度也在一定程度上间接影响同步硝化反硝化的进行。
    在研究膜污染时,实验采用膜抽吸压力的上升速率表征运行过程中膜过滤性
    能的变化。正交实验结果表明,缩短抽吸时间或延长停抽时间和增加曝气量均有
    利于减缓膜污染,但过短的抽吸时间、过长的停抽时间和过大的曝气量不能进一
    
    
    摘要
    步的减轻膜污染。因此应在确保一定产水率的前提下确定适宣的抽吸时间、停抽
    时间和曝气量。在污泥浓度为6000mg/L左右,通量恒定为SL/(mZ·d)的条件下,
    最佳组合操作条件为抽吸时间10min,停抽时间4min,曝气量005m3/h。三个因
    素中抽吸时间对膜抽吸压力上升速率影响最大,曝气量次之,停抽时间最小。
Membrane bioreactor(MBR) was a reasonable combination of biological treatment technology and membrane technology with many advantages such as high removal efficiency of pollutants,little surplus sludge,stable and high quality of effluent,so it was becoming a new and raqid developing wastewater treatment and reclamation technology,so the research on the basic theory and the performance of MBR would benefit to the application and spread of this process.
    The integrative membrane bioreactor that was maked up of the activated sludge bioreactor and membrane treated the domestic wastewater in the experiment.When the concentration of sludge was 6000mg/L,the concentration of DO was beyond 3mg/L,and HRT was 6 hours in the experiment, the CODcr,BOD5,SS,NH3-N,TN,TP removal efficiencies were 95%~98%,98%~99.5%,100%,92%~100%,60%~84%and 34 %~64%,respectively.With a view to the unconspicuous TP removal efficiency by membrane bioreactor, TP was removed efficiently by chemic medicine of aluminate,and when the rate of Al and TP(mol) equal to 1.5~2.0,the TP removal efficiency was 72%~86%.
    With the study of temperature,pH value,HRT and Doconcentration,it was therefore found that it was not obvious to the influence of DO concentration on the CODcr,BOD5 and NH3-N removal efficiencies when the concentration of DO was beyond 1.5mg/L,and the influence was large when the concentration of DO was 0.5mg/L.When the concentration of DO was 1.5mg/L,the influence of DO concentration on the TN removal efficiency was 92%~98%,otherwise the TN removal efficiency decline. The influence of HRT on the system removal efficiency was that microbe haven't the sufficient reactiving time with wastewater which was expelled from the system,and it wasn't obvious when HRT was enough. Along with increasing of HRT,the influence of HRT on TP removal efficiency enhanced firstly and then declined. It wasn't obvious to the influence of temperature and pH value on the contamination removal efficiency.
    When studying simultaneous nitrification and denitrification in membrane
    
    
    
    
    bioreactor,it was foud that the concentration of DO was a key factor and the influence of C/N,pH value and temperature were unconspicuous.When C/N,pH value, temperature and DO concentration were 8~ 18,7.0~8.5,7 13 and 1.5mg/L, simultaneous nitrification and denitrification might proceed smoothly and this was the optimal condition. With analysing the mechanism of simultaneous nitrification and denitrification,it was founded that it was related with the theory of DO odds in reactor and micro-evironment,and it was effcted indirectly by the configuration of reactor and sludge concentration that simultaneous nitrification and denitrification might proceed.
    When studying membrane fouling,the increasing rate of suction pressure of membrane was used to evaluate the membrane filtration characteristics of membrane bioreactor process.Through a group of test by means of orthogonal table,influence of suction time,suction suspended time and aeration rate on membrane filtration was investigated. Shorter suction time,longer suction suspended time and larger aeration rate could alleviate membrane fouling.which influenced accumulation and back transportation of pollutants an and from membrane surface.The optimum operation parameters were 10 minutes of suction time,4 minutes of suction suspended tim and aeration rate of 0.05m3/h under the condition of sludge concentration 6000mg/L and flux of membrane 5L/(m2 ?h).Suction time was the key factor among these three factors,and suction suspended time had the least impact on membrane fouling.
引文
[1]顾国维,何义亮,膜生物反应器,北京:化学工业出版社,2002年
    [2]StepHensonT,JuddS,JeffersonB,etalMembranebioreactorsforwastewatertreatment[M]London:IWAPublishing,2000,59-111
    [3]CicekN,MacomberJ,DavelJetalEffectofsolidsretentionontheperformanceandbiologicalcharacteristicsofamembranebioreactor[J]WatSciTech,2001,43(11):43-50
    [4]WisniewskiC,GrasmickAFlocsizedistributioninamembranebioreactorandconsequencesformembranefouling[J]ColloidsandSurfacesA:PHysicochemicalandEngineeringAspects,1998,138:403-411
    [5]CicekN,FranceJP,SuidanMT,etalCharacterizationandcouparisonofamembranebioreactorandaconventionalactivated-sludgesysteminthetreatmentofwastewatercontaininghigh-molecular-weightcompounds[J]WaterEnvionmentResearch,1999,71(1):64-70
    [6]CunderBThemembrane-coupledactivatedsludgeprocessinmunicipalwastewatertreatment[M]TechnomicPublishingCo,IncUSA,2001
    [7]WeiYSSludgereductioninmembranebioreactor(MBR)andconventionalactivatedaludge(CAS)processeswith01igochacta[R]TNOreport,Netherland:TNOEnvironment,EnergyandProcessInnovation,theNetherlands,2002
    [8]WitzigR,ManzW,RosenbergerS,etalMicrobiologicalaspectsofabioreactorwithsubmergedmembranesforaerobietreatmentfomunicipalwastewater[J]WatRes,2002,36:394-402
    [9]MullerEB,StouthamerAH,VerseveldHWvan,etalAerobiedomesticwastewatertreatmentinapilotplantwithcompletesludgeretentionbycross-flowfiltration[J]WatRes,1995,29(4):1179-1189
    [10]RosenburgerSKraumeMSzewzykUSludgefreemanagementofmembranebioreactors[C]The2ndSymposiumonMembraneBioreactorsforWastewaterTreatment,CranfieldUniversity,UK1999
    [11]RosenburgerSWitzigRManzW,etalOperationofdifferentmembranebioreactors;experimentalresultsandpHysiologicalstateofthemicrogrganisms[J]WatSciTech,2000,41(10-11):269-277
    [12]RosenbergerS,KrugerU,WitzingR,etalPerformanceofabioreactorwithsubmergedmembranesforaerobietreatmentofmunicipalwastewater[J]WatRes,2002,(36):413-420
    [13]WagnerJ,RosenwinkelKHSludgeproductioninmembranebioreactorsunderdifferentconditions[J]WatSciTech,2000,41(10-11):251-258
    [14]KorosWJ,MaYH,ShimizvTTerminologyformembranesandmembraneprocess-IUPACrecommendations1996[J]JMembSci,1999,120:149-159
    [15]RoordaJH,JHJMvanderGraafNewparameterformonitoringfouling
    
    duringultrafiltrationofWWTPeffluent[J]WatSciTech,2001,43(10):241-248
    [16]BouhbilaEH,AimRB,BuissonHFoulingCharacterisationinmembranebioreactor[J]SeparationandPurifictionTechnology,2001,22-23:123-132
    [17]WisniewskiC,GrasmickAFlocsizedistributioninamembranebioreactorandconsequencesformembranefouling[J]ColloidsandSurfacesA:PHysicochemicalandEngineeringAspects,1998,138:403-411
    [18]ChangIS,KimJS,LeeCHTheeffectsofEPSonmembranefoulinginaMBRprocess[C]GranfieldUniversity,UK,2001,19-28
    [19]TardieuE,GrasmickA,GeugeyV,etaiInfluenceofhydrodynamicsonfoulingvelocityinarecirculatedMBRforwastewatertreatment[J]JMembSci,1999,156:131-140
    [20]BoubbilaEH,AimRB,BuissonH,Microfiltrationofactivatedsludgeusingsubmergedmembranewithairbuebbling(applicationtowastewatertreatment)[J]Dessalination,1998,118:315-322
    [21]JuddSJ,Le-ClechP,TalaT,etalTheoreticalandexperimentalrepresentationofasubmergedMBRsystem[C]CranfieldUniversity,UK,20011-13
    [22]吴志超,王土芬,高延耀膜生物工艺和活性污泥法处理巴西基酸生产废水的对比实验[J]中国给水排水,2000,16(3):57-60
    [23]金漫彤,陈晨宇中空纤维膜生物反应器处理造纸废水[J]环境污染与防治,2001,23(3):126-127
    [24]韩怀芬膜生物反应技术处理造纸废水实验[J]水处理技术,2001,27(2):96-98
    [25]樊耀波,王菊恩,姜兆春膜生物反应器净化石油化工废水的研究[J]环境科学学报,1997,11(1):68-74
    [26]仉春华,齐济,李光浩膜生物反应器法处理调味品生产废水[J]环境污染治理技术与设备,2004,5(1):88-90
    [27]王敏,雷易一体式膜生物反应器处理中药废水[J]中国给水排水,2003,19(12):88-89
    [28]刘锐,黄霞,刘若鹏等膜-生物反应器和传统活性污泥工艺的比较[J]环境科学,2001,22(3):20-24
    [29]陈卫文,顾平,刘锦霞MBR对不同分子质量有机物的去除规律[J]中国给水排水,2003,19(2):43-45
    [30]张西旺,金奇庭一体式MBR处理高氨氮小区生活污水中试研究[J]环境工程,2003,21(1):23-26
    [31]周建仁,白稻光膜-生物反应器处理高浓度生活污水的中试研究[J]环境工程,2002,20(1):17-19
    [32]封莉,张立秋,王宝贞一体式膜生物反应器底HRT确定[J]中国给水排水,2002,18(11):62-64
    [33]张立秋,封莉,何胜兵等膜生物反应器中最佳排泥时间的确定方法[J]哈尔滨建筑大学学报,2001,34(5):68-71
    [34]樊耀波,王菊思,姜兆春膜生物反应器中膜的最佳反冲洗周期[J]环境科学学报,1997,17(4):439-444
    [35]刘锐,汪诚文,钱易影响一体式好氧膜生物反应器膜清洗周期的几个因素
    
    [J]环境科学,1998,19(4):26-28
    [36]刘锐,黄霞,汪诚文等一体式膜-生物反应器长期运行中的膜污染控制[J]环境科学,2000,21(1),58-61
    [37]莫罹,黄霞,吴金玲等混凝-微滤膜净水工艺的膜污染特征极其清洗[J]中国环境科学,2002,22(3):258-262
    [38]桂萍,莫罹,黄霞一体式膜生物反应器中膜污染过程的动态分析[J]环境污染治理技术与设备,2004,5(2):22-26
    [39]莫罹,黄霞,吴金玲混凝-微滤组合净水工艺中膜过滤特性及其影响因素[J]环境科学,2002,23(2):45-49
    [40]桂萍,黄霞,钱易三种型式膜-生物反应器工艺运行特性研究[J]给水排水,1999,25(3):24-27
    [41]黄霞,莫罹MBR在净水工艺中的膜污染特征及清洗[J]中国给水排水,2003,19(5):8-12
    [42]张萍,刘强超滤膜在污水回用过程中清洗的方法[J]环境卫生工程,2002,10(2):89-91
    [43]董秉直,曹达文,范瑾初粉末活性炭-超滤膜处理黄浦江原水的研究[J]上海环境科学,2003,22(11):731-733
    [44]YamamotoK,HiasaM,MahmoodTetalDirestSolidLiquidSeparationUsingHollowFibermembraneinanActivatedSludgeAerationTank[J]WatSciTech,1989,21:43-54
    [45]TatsuklUeda,KlnjiHataetalEffectsofaerationonsuctionpressureinasubmergedmembrane[J]WatResl997,31(3):489-494
    [46]HKishino,HIshidaetalDimesticwastewaterreuseusingasubmergedmembranebioreactor[J]Desalination,1996,106:115-119
    [47]BoranZhangandKazuoYamamotoSeasonalchangofmicrobialpopulatioaandactivitiesinabuildingwastewaterreusesystemusingamembraneseparationactivatedsludgeprocess[J]WatSciTech,1996,34(6):295-302
    [48]刘锐,黄霞,钱易等一体式膜-生物反应器处理生活污水的中试研究[J]给水排水,1999,25(1):1-4
    [49]MarshellA,etalNitrate4removalbyacombinationofelementalsulfur-baseddenifitrificationandmembranefiltration[J]Desalination,1993,91:65-73
    [50]郑样,樊耀波膜生物反应器运行条件的优化及膜污染的控制[J]给水排水,2001,27(4):41-44
    [51]桂萍,黄霞,陈颖,等膜生物反应器运行条件对膜过滤特性的影响[J]环境科学,1999,20(3):38-41
    [52]MagaraYetalTheeffectofoperationalfactorsonsohd-liquidseparationbyultra-membranefiltrationinabiologicaldenitrificationsystemforcollectedhumanexcretatreatment[J]WatSciTech,1991,23:1583-1590
    [53]刘锐,黄霞,陈吕军等一体式膜-生物反应器处理洗浴污水[J]中国给水排水,2001,17(1):5-7
    [54]温东辉,陈吕军膜-生物反应器处理生活杂排水的实验研究[J]环境工程,2002,20(2):30-31
    [55]尹艳华,徐文国,赵毅等膜生物反应器处理餐饮废水的实验研究及经济核算[J]工业水处理,2004,24(1):30-32
    [56]张云霞,邢国平,朱文亭等膜生物反应器处理洗浴废水的中试研究[J]中国给水排水,2003,19(11):49-51
    
    
    [57]张军,王宝贞,聂梅生复合淹没式中空膜生物反应器处理生活污水的特性研究[J]中国给水排水,1999,15(9):13-16
    [58]常颖,王宝贞,高欣复合式膜生物反应器的小区污水回用实验研究[J]哈尔滨工业大学学报,2003,35(2):152-156
    [59]CatePBulssonH,PraderieMImmersedmembranesactivatedsludheprocessappliedtothetreatmentofmunicipalwastewater[J]WatSciTech,1998,38(4-5):437-442
    [60]GunderB,KrauthKReplacementofsecondaryclarificationbymembraneseparation-resultewithplateandhollowfibremodules[J]WatSciTech,1998,38(4-5):383-393
    [61]HollerS,TroschWTreatmentofurbanwastewatertreatmentinamembranebioreactorathighorganicloadinfrates[J]JournalofBiotechnology,2001,92:95-101
    [62]刘锐,黄霞,钱易等一体式膜-生物反应器处理生活污水的中试研究[J]给水捧水,1999,25(1):1-4
    [63]王猛,柴小利膜生物反应器处理生活污水的工艺及膜材料的选择[J]环境科学与技术,2001,95(3)1-4
    [64]BertholdGunderetalReplacementofsecondaryclarificationbymembraneseparationresultswithtubular,plateandhollowfibermodules[J]watscitech,1999,40(4):311-320
    [65]邹联沛,刘旭东,王宝贞等MBR中影响同步硝化反硝化的生态因子[J]环境科学,2001,22(4):51-55
    [66]邹联沛,张立秋,王宝贞等MBR中DO对同步硝化反硝化的影响[J]冲国给水排水,2001,17(6):10-14
    [67]齐唯,李春杰,何义亮浸没式膜生物反应器的同步硝化反硝化效应[J]中国给水排水,2003,19(7):8-11
    [68]杨殿海,王峰,夏四清废水处理工艺中的同步硝化/反硝化研究进展[J]上海环境科学,2003,22(12):878-882
    [69]马文漪,杨柳燕环境微生物工程南京:南京大学出版社,1998年
    [70]迟军,王宝贞,吕斯濠一体化复合式膜生物反应器除磷研究[J]水处理技术,2003,29(1):47-49
    [71]邹联沛,薛罡,王宝贞膜生物反应器中化学除磷的研究[J]中国给水排水,2002,18(11):19-21
    [72]许振良污水处理膜分离技术的研究进展(二)[J]净水技术,2000,19(4):3-7
    [73]彭跃莲,刘忠洲稳定膜透水串的新方法--恒流控制[J]水处理技术,2001,27(4):214-216
    [74]郑样,樊耀波膜生物反应器运行条件的优化及膜污染的控制[J]给水排水,2001,27(4):41-44
    [75]桂萍,黄霞,陈颖,等膜生物反应器运行条件对膜过滤特性的影响[J]环境科学,1999,20(3):38-41
    [76]MagaraYItohMTreatmentofdomesticsewagefromruralsettlementbyamembranebioreactor[J]watSciTech,1991,23:1583-1591
    [77]DevereuxNHoareMImmersedmembraneactivatedsludgeprocessappliedtothetreatmentofmunicipalwastewater[J]Biotechnol,1986,28:422-428

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700