用户名: 密码: 验证码:
磁粉对生物法处理重金属废水影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物法处理低浓度(≤100mg/L)重金属废水时,在投资、运行、操作管理和金属回收、水回用等方面,优于传统的化学法。
     本文重点研究了磁场(Fe_3O_4磁粉和固定化永磁粉)对微生物生长的影响,并探讨了磁场作用的机理,另外也对高效吸附菌菌株的筛选、絮凝性能及机理等作了一定的研究。
     实验中分别选用Fe_3O_4磁粉和永磁粉作为磁场来源投入培养基中。其中,永磁粉分别以橡胶片固定和海藻酸钠-明胶包埋的方法固定。采用的菌种为课题组前期研究中筛选的两株耐铜细菌菌A和菌B,以及本人自印染废水中筛选得到的两株高效吸附菌2#菌和7#菌。
     实验结果表明,耐铜细菌A和B在一定量的Fe_3O_4磁粉产生的磁场作用下生长旺盛,絮凝活性高。Fe_3O_4磁粉投加量为4g/L时,菌A和菌B在稳定期的菌数约为对照组的菌数的2倍,且菌B比对照组提前4个小时进入稳定期。菌A的最大去铜率为73.53%,比对照组最大去铜率高35.76%;菌B最大去铜率为66.91%,比对照组最大去铜率高23.4%。最大去铜率均出现在稳定期后期或衰亡期前期。
     对高效吸附菌2#和7#菌的实验研究表明,橡胶片固定的永磁粉对它们的生长均产生了抑制作用;当海藻酸钠-明胶包埋固定的永磁粉投加量为0.065g/L时,高效吸附菌的生长情况和絮凝活性均比对照组好。
     实验中还发现磁场对微生物生长的作用(无论是促进还是抑制),只是一种暂时改变其活力、随着磁化时间延长而逐渐趋于稳定的作用。
     絮凝活性分布实验表明,菌体及其胞外分泌物均具有较好的吸附作用,因此将菌液直接投入废水中就能达到较好的去铜效果。菌液pH值对吸附效果有很大的影响,将稳定期后期的7#菌(不加磁粉)菌液pH值调到10,用于处理含铜酸洗废水时去铜率可达88.76%。微生物对重金属的吸附符合Langmuir和Freundlich等温吸附模型。
The traditional methods for removing heavy metals have several disadvantages when metals are present in concentrations lower than 100 mg/L. Biosorption, which use s biological materials as adsorbents, has been considered as an alternative method.
    In this work, the effect of magnetic field produced by magnetic powders, such as Fe3O4, fixed permanent magnetic powders were investigated. Moreover, the mechanism of magnetic field and flocculation, and the filtration of bacterium were researched too.
    Fe3O4 and fixed permanent magnetic powders were chosen as the source of magnetic field and added into the culture medium. The permanent magnetic powders were fixed by rubber and Sodium Alginate-glutin respectively. Strain A and B were provided by the lab, while strain 7# and 2# were filtrated from the printing and dyeing wastewater.
    The results indicated that the strain A and B propagated well and had high flocculation activity under a certain concentration of Fe3O4. As the Fe3O4 concentration was 4g/L culture medium, the cell numbers of A and B with magnetic field were two times of those without magnetic field in state period. What's more, cell B with magnetic field came into state period 4 hours ahead of the comparison. The maximum copper removal rate of A was 73.53% and was 35.76% higher than the comparison. While the maximum copper removal rate of B was 66.91% and was 23.4% higher than the comparison. The maximum copper removal rate was both present in anaphase of the state period or prophase of the death period.
    The permanent magnetic powder fixed by rubber has so strong magnetic intensity that restrained the microorganism's growth.
    As the concentration of the permanent magnetic powder embedded by Sodium Alginate-glutin is 0.065g/L, it can improve microorganism's growth and flocculation activity obviously. The effect of magnetic field on microorganism's growth, no matter accelerating or restraining, is just temporarily change its activity and will gradually go steady as time goes on.
    It was demonstrated by the distribution of flocculating activity that both the biomass and the extracellular polymers have a good capacity of removing metals. It was showed that pH value of the biomass influences the flocculation apparently. The maximum copper removal rate of 88.76% was obtained as adjusted the pH value of the biomass to 10. What's more, the experimental results showed that the adsorption accorded with Langmuir and Freundlich sorption models.
引文
[1] 水利规划与战略研究简报,2000年第七期
    [2] 崔希民,李海霞,缪协兴,苏德国,《中国水资源开发利用与水环境的保护》,中国矿业2001年01期
    [3] 宋进喜,李怀恩,李琦,城市雨水资源化及其生态环境效应,生态学杂志,2003,22(2):32~35
    [4] 邢福俊,加强城市水资源需求管理的现实分析与对策探讨[J],新疆财经,2001,2:34~38
    [5] 黄继国等,重金属废水处理技术综述,世界地质,Vol.18,No.4,Dec.1999
    [6] Bake MD, et al, Toxcity for pH, heavy metal and bisulfle to a fresh water green algae. Chemo sphere, 1983,12(1):35-44
    [7] 王绍文,姜风有 重金属废水治理技术 北京冶金工业出版社,1993
    [8] 谈辉明,重金属废水处理技术的现状与展望,环境科学与技术,1997年第1期
    [9] 朱利中,酸性膨润土处理含重金属废水初探[J].环境污染与防治,1993,15(1):34
    [10] 郑礼胜等,用沸石处理含镍废水[J] 材料保护,1998,31(7):24~25
    [11] S K Ouki and Roger Perry, Journal Chem [J]. Tech. Biotechnol, 1994,59(1): 121
    [12] 马士军 微生物絮凝剂的开发及应用[J] 工业处理,1997, 12(1):7~10
    [13] 辛宝平,庄源溢,李彤等 生物絮凝剂的研究和应用[J] 环境科学进展 1998,6(5):57~62
    [14] 时进钢等,生物表面活性剂的合成与提取研究进展,微生物学通报,2003,30(1):68~72
    [15] 廖敏,谢正苗,王锐菌藻共生体去除废水中砷初探[J] 环境污染与防治,1997,19(2):11 12,38
    [16] 陈勇生,啤酒酵母菌、盐泽螺旋藻对重金属离子的吸附研究[J] 上海环境科学,1998,17(7):14 16
    [17] A. Kapooretal., Removal of heavy metals from aqueous solutions using immobilized fungal biomass in continuous mode [J] WaterRes., 1998, 32(6): 1968~1977
    [18] 赵玲等,海洋赤潮生物原甲藻对重金属的富集机理[J].环境科学,2001,22(4):42~45
    [19] 莫健伟等,海藻去除水中双偶氮染料机理及重金属离子研究[J].中国环境科学,1997,17(3):241~243.
    [20] 李明春等,酵母菌对重金菌离子吸附的研究[J]_菌物系统,1998,17(4):367~373.
    [21] 夏立江,华珞,李向东,重金属污染生物修复机制及研究进展[J],核农学报,1998,12(1):59~64.
    [22] Marios Tsezos, Bohumill Volesky. Biosorption of Uranium and Thorium [J]. Biotechnol, 1981, 23: 593~604.
    [23] Sillen J. G. Stability Cinstantsof Metal Ion Complexes [M]. London: In Special Publication, The Chemical Society, 1964:17.
    [24] 张建梅,韩志萍,王亚军 重金属废水的治理和回收综述,湖州师范学院学报,2002,Vol.24 No.3:48~52
    [25] 彭清涛 植物在环境污染治理中的应用[J].环境保护,1998,(2):24~27.
    [26] Mebarg A A. The role of the plasmalemima in metal tolerance in angiosperms Physoilogia Plantarum, 1993,88:191~198
    [27] Ma JF, Hiradate S, Matsumoto H. High aluminum resistance in buckwheat Ⅱ. Oxalic acid detoxifies aluminum internally. Plant Physiol. 1998, 117:753~759.
    [28] Sanita di ToppiL, Gabbrielli R. Response to cadmiun in higher plants. Environ. Exp. Bot.,
    
    1999,41:105~130
    [29] 蔡保松等,植物螯合肽机器在抗生素重金属胁迫中的作用,生态学报2003,23(10):2125~2132
    [30] 艾尔肯·热合曼,阿布都克里木·热合曼,吾甫尔·米吉提等利用水浮莲净化酿酒业污水的技术及其实践[J].环境科学与技术,1996,(2):41~44.
    [31] 温志良,徐海宁,毛友发 香蒲植物在环境保护中的开发利用[J].环境保护,1999,(10):39~40
    [32] Lau Arthur, et al, Metal removal by laboratory scale immobilized micro algal reactor. J Environs, 1998, 10(4): 474-478
    [33] Veera M. Krishnaiah, Jonathan L. Edgar D. Smith Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent, Environ. Sci. Technol. 2003, 37, 4449~4456
    [34] Wase, D. A. J,; Forster, C. F.; Ho, Y. S. Low-cost Biosorbent: Batch Processes in Biosorbents for Metal Ions; Taylor& Francis Ltd.: London, 1997
    [35] 李福德 微生物治理电镀废水方法,电镀与精饰,Vol.24,No.2
    [36] 吴乾菁等,微生物治理电镀废水的研究,Environmental Science,Sep.,1997
    [37] 赵明慧等,磁化学技术在水处理中的应用,环境污染治理技术与设备,2003,4(4):79—84
    [38] 朱元保等,磁化水的物理化学性能,湖南大学学报(自然科学版),1999,26(1):21—25
    [39] 陈子瑜等,磁场对共聚反应影响研究,兰州大学学报,1995,31(2):160—162
    [40] 王祥三等,磁化处理污水的生物效应试验,环境科学与技术,2000,(2):33—36
    [41] 刘国民等,电磁场对微生物影响的研究,曲阜师范大学学报,2002,28(2)
    [42] 郭峻等,快速简易的检测遗传物质的新方法—SOS显色实验[J],国外医学,卫生分册,1990.3:146—150
    [43] Dorothy M, Maron, Bruce N, Ames, Revised methods for the salmonella mutagenicity test [J], Mutation Research, 1983, 113:173—215
    [44] 周一帆等,低频磁场对微生物影响的探讨,海南师范学院学报(自然科学版),2001,14(3):34—39
    [45] 马宇林,电子技术基础[M],北京:中国铁道出版社,1989.391~392
    [46] Kimball G C. The growth of yeast in a magnetic field. [J]. Bacteriol, 1938, 35:109—122
    [47] 李国,生物磁学及应用,北京:科学出版社,1983,131;刘信,近代微生物学研究,1988(1):54:Harberdiral W. Natunre,1967,213:72
    [48] 范秋领等,磁场影响枯草杆菌蛋白酶催化活性的研究,吉首大学学报,Vol.19 No.1Mar.1998
    [49] 刘作喜等,磁场处理对香菇菌的生长影响,东北林业大学学报,Vol.25,No.2,Mar.1997
    [50] 麻海珍等,磁场对紫色非硫光合细菌脱氢酶活性的影响,环境科学,1995
    [51] 顾祖宜等,中国环境科学,1985,5(2):29;吴国庆等,环境科学,1989,10(5):46,16(3):4—7
    [52] M.Bustard, A.Rollan, A.P.Mchale, The effect of pulse voltage and capatitance on biosorption of uranium by biomass derived from whiskey distillery spent wash. Bioprocess Engineering 18(1998)59~62.
    [53] Hülya Yavuz, Serdar S. Celebi. Effects of magnetic field on activity of activated sludge in wastewater treatment. Enzyme and Microbial Technology 26(2000)22~27.
    
    
    [54] Kazuhiro Nakamura et.al. Effect of high magnetic field on the growth of Bacillus sutbitlis measured in a newly developed superconduction magnet biosystem. Bioelectrochemistry and Bioenergetics 43(1997) 123~128.
    [55] 何承英 用络合滴定法测定电镀液中的铜,环境科学技术,1994(2)
    [56] 范秀容,李广武,沈萍 微生物学实验 高等教育出版社,1996
    [57] Leusch, A.; Holan, Z.R.; Volesky, B., Biosorption of heavy metals (Cd, Cu, Ni, Pb, Zn) by chenmically-reinforced biomass of marine algae. J. Chem. Tech. Biotechnol. 62 (1995) 279~288
    [58] A. Ruiz-Manriquez, P.I. Magana, V.Lopez, R.Guzman Biosorption of Cu by Thiobacillus ferrooxidans, Bioprocess Engingeering 18(1997 ) 113~118
    [59] 孟令芝,徐容,固定化产黄青霉废菌体吸附铅与脱附平衡[J].环境科学,1998,19(4):72~75.
    [60] 杨智宽,单崇新,苏帕拉羧甲基壳聚糖对水中Cd~(2+)的絮凝处理研究[J].环境科学与技术,2000,88(1):10~12.
    [61] 布坎南R E,吉本斯N E等 伯杰氏细菌鉴定手册第八版,北京:科学出版社,1984
    [62] Luef E, Prey T, Kubicek C P. Appl Microbiol Biotechnol, 1991, 34: 688~692
    [63] 吴涓等,白腐真菌吸附铅的研究,微生物学通报,1999,Vol.39,No.1
    [64] Jain, C. K., and Daya Ram, Adsorption of lead and zinc on bed sediments of the River Kali.Wat.Res., 1996, Vol.31, No.l, 154~162
    [65] Tada, F, and Suzuki, S. Adsorption and desorption of heavy metals in bottom mud of urban rivers.Wat, Res., 1982, Vol.16, No.12, 1489~1494
    [66] E.Valdman, S.G.F.Leite, Biosorption of Cd, Zn and Cu by Sargassum sp.waste biomass, Bioprocess Engineering 22(2000) 171~173
    [67] Leusch, A.: Holan, Z.R.; Volesky, B.: Biosorption of heavy metals (Cd、Cu、Ni、Pb、Zn) by chemically-reinforced biomass of marine algae. J. Chem. Tech. Biotechnoi. 62(1995) 279~288.
    [68] 诸葛健,王正祥《工业微生物实验技术手册》中国轻工业出版社,1994年
    [69] M J Brown, J N Lester Metal removal in activated sludge the role of bacterial extracellular polymers[J] WaterRes, 1979,13:817~837
    [70] Robert J C Mclean, Diane Beauchemin, et. al Metal-binding characteristics of the gamma-glutamyl capsular polymer of Bacillus Licheniformis ATCC 9455[J]Appl. Environ. Microbiol., 1990,56( 12):36713677
    [71] 黄淑惠,吸附金(Au~(3+))的真菌筛选,微生物学通报,1991年18(1)
    [72] 周德庆,微生物学教程,高等教育出版社,1999,4
    [73] Tsezos M, Volesky B.Biosorption of Uranium and thorium [J]. Biotechol Bioeng, 1981, 23: 583~604.
    [74] YP Ting, F lawson, et al Uptake of cadmium and zinc by the alga Chlorella vulgaris:2 Multi-ion situation [J] Biotechnol Bioeng, 1991,37:445 455
    [75] B Volesky, H May, et al Cadmium biosorption by Saccharomyces cerevisiae [J] Biotechnol Bioeng, 1993,41:826 829
    [76] AM Chakrabarty, in Metallurgical Applications of Bacterial Leaching and Related Micro biological Phenomena (ed Murr, L E, Torma, A E and Brierly, J A)[M] AcademicPress, 1978
    [77] Olga Berson and Mary E Lidestrom Study of copper accumulation by the typel Methanotroph (Methylomicrobium albus BG8) [J] Environ Sci Technol, 1996,(30):802 809
    [78] 李国栋,生物磁学的最新进展,物理,第23卷第六期
    
    
    [79] 钟科军等 超氧化物岐化酶磁效应的研究,湖南大学学报,1999,26(5):18~23
    [80] 刘建荣等,磁态厌氧流化床处理印染废水,中国环境科学,1996 16(1):64~67
    [81] 顾继光,土壤磁处理效应及其对作物生长的影响,博士论文,2001.06.01
    [82] Blakemore RP, Magnetotactic bacteria,Science,1975,190:37~379 Blakemore R P,
    [83] Bazylinski D A.Structure and function of the bacterial magnetosome. ASM News, 1995, 61:337~343
    [84] Matusuda T, Endo J, Morphology and structure of biogenic magnetite particles. Nature, 1983, 302:411~412.
    [85] Blakemore N A, Bazyilnski D A, et.al. Bergey's manual of systematic bacterilogy: Vol.3,Baltimore:Williams and Wilkins, 1989.1882~1889
    [86] Matsunaga Tadashi, Sakaguchi Toshifumi, Tadokoro Fumihiko. Magnetite formation by a magnetic bacterium capable of growing aerbically. Appl Microbiol Biotech, 1991, 35(5): 651~654
    [87] 刘信,向磁微生物的开发与应用,微生物学通报,1991,18(3):188~189
    [88] 林沁瑛,黄灿灿.恒定磁场对中华弥猴桃蛋白酶生物效应初探[J].生物化学与生物物理学报,1992,24(3):253
    [89] 刘国民,贾建治,电磁场对微生物影响的研究,曲阜师范大学学报,Vol.28,No.2,2002.4:87~88
    [90] A.Mahdi, P.A. Gowland, P.Mansfield, R.E. Coupland and R.G.Lloyd, The effects of static 3.0T and 0.5T magnetic fields and the echo-planar imaging experiment at 0.5T on E.coli. Br.J.Radiol., 67(1994)983~987
    [91] Kazuhiro Nakamura, Kazumasa Okuno, Takashi Ano, Makoto Shoda, Effect of high magnetic field on the growth of Bacillus subtilis measured in a newly developed superconducting magnet biosystem, Bioelectrochemistry and Bioenergetics 13 (1997): 123~128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700