用户名: 密码: 验证码:
铁纳米颗粒及体材料固液相变过程的分子动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的主要目的是研究纳米尺度Fe在固液相变过程中的热力学性质及结构变化。目前对于Fe纳米颗粒来说,研究的方向主要集中于其凝固、熔化以及烧结等过程的结构及性质变化,但对于其热力学性质的系统性研究、纳米颗粒与体材料熔点的关系、结构特征以及详细的定量的结构演化过程仍显薄弱。此外,在纳米尺度上Fe能够以fcc结构稳定存在,而现有的大部分研究均聚焦于bcc-Fe,对于fcc-Fe的研究则较少。基于上述原因,本文以分子动力学(Molecular Dynamics)作为研究手段,以键形指数(Cluster Type Index Method)作为结构分析手段,研究了Fe纳米颗粒的固液相变过程中热力学性质以及结构演化。同时在上述研究的基础上将研究体系扩展至Fe体材料,对其凝固过程中的结构特征及结构演变进行了分析。
     本论文主要包含以下三个方面的内容:
     1.Fe纳米颗粒凝固与熔化过程的热力学分析
     研究发现尺寸效应对Fe纳米颗粒的热力学性质会造成明显影响。由于表面能的存在,尺寸越小的纳米颗粒其熔点就越低,早在1909年Pawlow就对纳米颗粒的尺寸与熔点之间的关系进行了研究,并认为二者关系可以通过描述。在后续的研究中,上式逐步演化为二者均描述了纳米颗粒熔点与体材料熔点变化值与其尺寸的关系,在一定假设下这种关系可以看作是线性关系,其不同之处在于线性关系的自变量分别为1/R和N-1/3。根据我们的实验结果对比发现使用N-1/3时吻合度更高。在此基础上我们对Fe113到Fe9577的熔点(Tmcluster),凝固点(Tscluster)以及平衡相变点(Tequilibrium cluster)与N-1/3的线性关系进行了研究。通过拟合获得体材料平衡相变点Tequilibrium(∞)=1833.3K,与体材料Fe的实验值1811K十分接近,且明显好于之前的研究成果。
     此外我们还发现模拟中使用不同的变温速率(0.05~25K/ps)也会对纳米颗粒的热力学性质造成影响。在变温速率较低时(0.05~0.25K/ps),纳米颗粒具有充足的时间进行结构弛豫,因此其熔点、凝固点以及平衡相变点在较小的范围内变化,在此条件下拟合获得的体材料熔点数据更接近于实验值。
     2.Fe纳米颗粒凝固与熔化过程的结构演变
     本论文中使用CTIM-2方法对纳米颗粒凝固及熔化过程中的结构演化进行了分析,发现凝固的纳米颗粒中固相均由fcc和hcp原子组成,结构类型主要包括五重孪晶(fivefold twins)、层状结构(lamellar structure)以及介于上述二者之间的混合结构。通常认为Fe在常温常压下为bcc结构,在1185K以上时转变为fcc结构。但近年来的研究表明,纳米尺寸下的fcc-Fe是可以保持结构稳定的,我们的结果也证明了这一点。
     对五重孪晶结构的研究发现,在凝固初期,当数个呈一定夹角的hcp原子层连续生成并相交于一处时就会形成五重孪晶。在晶体生长过程中纳米颗粒中会出现多个相邻的五重孪晶结构,同时伴随有位错的形成。进入结构弛豫阶段后随着晶面及晶轴的调整,位错逐步消失。但由于五重孪晶的结构特性,凝固获得的构型中仍存在内部缺陷。而在其熔化过程中随着温度升高,内部缺陷逐步增加,随后出现表面预熔,纳米颗粒在内部外部双重作用下逐步熔化。
     对层状结构的研究发现。凝固过程中其早期的生长方式为逐层生长,在形成了带有hcp原子层的晶胚后,新生成的固相原子附着于晶胚之上,同时伴随着结构调整形成新的与原有晶面平行的hcp层。如此循环往复最终形成了由fcc和hcp原子组成的原子层交替排列而成的层状结构。最终的构型中基本没有内部缺陷,因此其在熔化过程中呈现了更好的稳定性。随着温度升高,内部缺陷早于表面熔化出现,二者同时作用加速了颗粒的熔化。
     通过对比我们认为在纳米颗粒的形核过程中存在结构的遗传性,早期晶胚的结构在很大程度上决定了纳米颗粒最终结构是五重孪晶还是层状结结构。虽然对于小尺寸的纳米颗粒来说,幻数(magic number)决定了其外形和结构,从而起到了将一些对称点群构型能降至最低的作用,但在我们实际模拟中,模拟条件的变化仍可能导致纳米颗粒形成完全不同的结构,这可以理解为结构选择的随机性。随着纳米颗粒尺寸的增加随机性会增强,完全相同的模拟条件仍可获得不同的结果。
     3. Fe体材料凝固过程中的结构分析
     在对纳米颗粒结构研究的基础上我们对体材料Fe的形核过程进行研究。通过结构研究发现模拟获得的最终构型包括带有晶界的fcc单晶结构、五重孪晶结构以及层状结构。模拟温度与最终构型间并无直接关联,说明晶体的结构选择存在一定的随机性。而从其形成机制来看,层状结构与五重孪晶的生长机制与在纳米颗粒中类似,而单晶结构则出现了两次明显的结构变化。在形核初期体系内同时出现了多个晶胚并同时生长并融合,形成大量的hcp晶面。而在体系的结构优化中大部分hcp晶面逐步萎缩并消失,只有少数得以保留,最终形成了单晶结构。
     对五重孪晶结构分析发现,其晶核外形呈不规则形状,内部由hcp原子组成的孪晶面彼此相连形成了五重孪晶结构。晶核中共有9个晶轴,晶轴间共用晶面,彼此相连形成了四面体网格。由于最终构型中非晶态原子占比高达67.59%,我们在模拟中加入温度扰动、连续降温等手段以考察其对体系结构的影响。结果表明小幅度的温度扰动无法给体系进一步凝固提供足够的驱动力。而在连续降温过程中五重孪晶发生了内部结构优化,但仍存在相当数量的非晶态原子,主要分布于数个相对完整的五重孪晶结构之间。
In this thesis, the thermaldynamic properties and structural transformation during solid-liquid phase transition of nanoscaled Fe have been studied. For Fe nanoparticles, previous studies mainly focused on the variations of thermaldynamic properties and structural transformation in solidification, melting and sintering processes. However, to our knowledge, few researchers have systematically investigated (i) the relaitonship between thermaldynamic properties of nanoparticles and bulk materials and (ii) quantitative analysis of structural evolution. Moreover, different with bcc-Fe, less attention have been paid on fcc-Fe, which is proved stable at room temperature in nanoscaled material in previous studies.
     On the basis of above considerations, the detailed solid-liquid transition process of nanoscaled Fe has been studied by molecular dynamics (MD) in this thesis. Cluster type index method (CTIM) has been employed for structure analysis. The variation of thermaldynamic properties and detailed structural evolution during liquid-solid transition process of Fe nanoparticles have been discussed. Furthermore, the detailed structural evolution during solidification process of bulk Fe have been studied.
     The major contents of this dissertation are epitomized as follows:
     1. Thermodynamics analysis of Fe nanoparticles during solidification and melting
     It is well-known that size effects may significantly affect thermodynamic properties of nanoparticles. The melting point of small nanoparticles is lower than that of larger ones due to the existance of surface energy. In1909, Pawlow investigated the relationship between melting point and particle size and modeled it The follow-up studies modified this model several times and two main versions, and have been derived. Both of these two models describe the relation between the difference of melting points of nanoparticle and bulk Fe and the size of nanoparticle. In some specific assumptions the difference is caused by the two variables1/R and N-1/3of the linear relationship. Our results indicate that the latter model is more accurate in predicting the melting points Tm/cluster, solidification points Ts/cluster and equilibrium points Tequilibrium/cluster of Fe nanoparticles in the range of Fe113~Fe9577. The equilibrium point of bulk material Tequilibrium(∞)=1833.3K obtained by fitting procedure is strikingly close to the experimental data of bulk Fe (1811K) and is much better than previous results.
     Moreover, the cooling/heating rates (0.05-25K/ps) also affected the thermaldynamics properties of nanoparticles. In low cooling/heating rates (0.05~0.25K/ps), nanoparticles have enough time to relax their structures and thus the melting points, solidification points and equilibrium points fluctuate in a small range. The melting point obtained in this condition is closer to experimental results.
     2. Structural evolution of Fe nanoparticles during solidification and melting
     CTIM-2has been employed to analyze the structural evolution of Fe nanoparticles during nucleation and melting process. The configurations obtained after solidification indicate that the solid phase in nanoparticles is mainly consisted of fcc and hcp atoms. Two main structure, fivefold twins and lamellar structure, have been found. In common belief, Fe belongs to bcc structures in ambient pressure and temperature and transforms to fcc structures at the temperature higher than1185K. Actually, researches in resent years showed that nanoscaled fcc-Fe could be stable in ambient conditions, which is in accordance with our results.
     At the early stage of nucleation of fivefold twins, we found that they are built by continuous growth of several hcp layers with the included angle fixed. Severaladjacent fivefold twins appeared and accompanied with formation of dislocations. Atthe stage of relaxation, the twinning boundaries and axes adjusted with each other andthe dislocations disappeared gradually while few internal defects remained due to itsstructural characteristics. These defects will significantly affect the melting behavior.With temperature increasing, there is an increasing number of defects insidenanoparticles, meanwhile surface premelting takes place. By the influence of bothexternal and internal defects, the nanoparticle becomes meltdown finally.
     For lamellar structures, a layer by layer growth mechanism has been found atearly stage of solidification. After the formation of nucleus with hcp layers, solid-likeatoms born from liquid attached to nucleus. This will form the new hcp layer parallelto the old ones. Few defects are observed in final configuration. For this reason,lamellar structure is more stable in heating process than fivefold twins. With theincreasing temperature, inner defects appeared accompanying to surface premeltingand both of them accelerated the melting of nanoparticles.
     The structural heredity of nanoparticles during nucleation has been found. Inother words, the structures of embryos in early stage determine the final structures toa great extent, e.g. whether it forms fivefold twins and lamellar structures. For smallnanoparticles, the magic number determines their shape and structures, and thus theirenergy minimized. However, in our simulations, completely different structuresmaybe caused by a slight change of simulation conditions. This is related with therandomness of choosing structures. With the increasing sizes of nanoparticles, therandomness enhances and thus the same simulation conditions may produce differentresults.
     3. Structural evolution of bulk Fe during solidification process
     In the simulations of bulk Fe materials, monocrystal, fivefold twins and lamellarstructure have been identified during nucleation process and their structural evolutions have been discussed in detail. Significant dependences are lacking for final atomicconfiguration on the simulation temperature, which indicates the existence ofrandomness of structure choosing. The growth mechanisms of fivefold twins andlamellar structure are similar with that in nanoparticle, while monocrystal experiencetwo obvious stages. At the early stage of nucleation several nucleus are formed andgrow, when they coalesce with each other through lots of hcp planes. At the stage ofstructure optimization, most hcp planes disappear and monocrystal finally form.
     Inside the irregular shape of the nucleus of fivefold twins, the twinningboundaries, consisting of hcp atoms, joint with each other. Several tetrahedra joinedtogether to form fivefold twins, which are formed by9twinning axes. Due to theproportion of amorphous atoms is higher than67%, temperature disturbance andcontinuous cooling process have been applied. Further study found it is difficult tosignificantly affect the atomic percentage of fivefold twins with small temperaturedisturbance (±10K), while continuous cooling process (cooling rate0.25K/ps) willlead to a remarkable change of structure and after that nearly one fourth atomsremained amorphous.
引文
1.胡汉起,金属凝固.1985:冶金工业出版社.
    2. CRC handbook of chemistry and physics. New York.2003: CRC Press.
    3. Kulkarni, A.M. and C.F. Zukoski, Nanoparticle crystal nucleation: Influence ofsolution conditions. Langmuir,2002.18(8): p.3090-3099.
    4. Abraham, F.F. and A. Zettlemoyer, Homogeneous nucleation theory. Physics Today,1974.27: p.52.
    5. Volmer, M. and A. Weber, Keimbildung in übers ttigten Gebilden. Zeitschrift fürPhysikalische Chemie,1926.119: p.277-301.
    6. Abraham, D. and C. Newman, Equilibrium Stranski-Krastanow and Volmer-Webermodels. Europhysics Letters,2009.86(1): p.16002.
    7. Pusey, P., W. Van Megen, P. Bartlett, B. Ackerson, J. Rarity and S. Underwood,Structure of crystals of hard colloidal spheres. Physical Review Letters,1989.63(25):p.2753-2756.
    8. Lomakin, A., N. Asherie and G.B. Benedek, Liquid-solid transition in nuclei ofprotein crystals. Proceedings of the National Academy of Sciences,2003.100(18): p.10254-10257.
    9. Zhu, J., M. Li, R. Rogers, W. Meyer, R. Ottewill, W. Russel and P. Chaikin,Crystallization of hard-sphere colloids in microgravity. Nature,1997.387(6636): p.883-885.
    10. Moroni, D., P.R. Ten Wolde and P.G. Bolhuis, Interplay between structure and size ina critical crystal nucleus. Physical Review Letters,2005.94(23): p.235703.
    11. Laaksonen, A. and R. McGraw, Thermodynamics, gas-liquid nucleation, andsize-dependent surface tension. Europhysics Letters,2007.35(5): p.367.
    12. Girshick, S.L. and C.P. Chiu, Kinetic nucleation theory: A new expression for the rateof homogeneous nucleation from an ideal supersaturated vapor. The Journal ofchemical physics,1990.93: p.1273.
    13. Dillmann, A. and G. Meier, Homogeneous nucleation of supersaturated vapors.Chemical Physics Letters,1989.160(1): p.71-74.
    14. Dillmann, A. and G. Meier, A refined droplet approach to the problem ofhomogeneous nucleation from the vapor phase. The Journal of chemical physics,1991.94: p.3872.
    15. Ford, I., A. Laaksonen and M. Kulmala, On the Dillmann-Meier theory of nucleation.Journal of Aerosol Science,1992.23: p.125-128.
    16. Ford, I., A. Laaksonen and M. Kulmala, Modification of the Dillmann-Meier theory ofhomogeneous nucleation. The Journal of chemical physics,1993.99(1): p.764.
    17. Laaksonen, A., I. Ford and M. Kulmala, Revised parametrization of theDillmann-Meier theory of homogeneous nucleation. Physical Review E,1994.49(6):p.5517.
    18. Grochola, G., S.P. Russo and I.K. Snook, On morphologies of gold nanoparticlesgrown from molecular dynamics simulation. The Journal of chemical physics,2007.126: p.164707.
    19. Desgranges, C. and J. Delhommelle, Molecular simulation of the nucleation andgrowth of gold nanoparticles. The Journal of Physical Chemistry C,2009.113(9): p.3607-3611.
    20. Sar, D., P. Nayak and K. Nanda, Thermodynamic model for the size-dependentmelting of prism-shaped nanoparticles. Physics Letters A,2008.372(25): p.4627-4629.
    21. Sun, J. and S. Simon, The melting behavior of aluminum nanoparticles.Thermochimica Acta,2007.463(1): p.32-40.
    22. Nanda, K., S. Sahu and S. Behera, Liquid-drop model for the size-dependent meltingof low-dimensional systems. Physical Review A,2002.66(1): p.013208.
    23. Sakai, H., How does a slab-shaped solid melt? Surface science,1996.348(3): p.387-392.
    24. Buffat, P. and J. Borel, Size effect on the melting temperature of gold particles.Physical Review A,1976.13(6): p.2287.
    25. Guisbiers, G., G. Abudukelimu, F. Clement and M. Wautelet, Effects of Shape on thePhase Stability of Nanoparticles. Journal of Computational and TheoreticalNanoscience,2007.4(2): p.309-315.
    26. Takagi, M., Electron-Diffraction Study of Liquid-Solid Transition of Thin Metal Films.Journal of the Physical Society of Japan,1954.9(3): p.359-363.
    27. Wronski, C.R.M., The size dependence of the melting point of small particles of tin.British Journal of Applied Physics,1967.18(12): p.1731.
    28. Pawlow, P., The dependency of melting point on the surface energy of a solidbody.(Supplement). Zeitschrift für Physikalische Chemie,1909.65(5): p.545-548.
    29. Hanszen, K.J., Theoretische Untersuchungen über den Schmelzpunkt kleinerKügelchen. Zeitschrift fur Physik A: Hadrons and Nuclei,1960.157(5): p.523-553.
    30. Koparde, V. and P. Cummings, Sintering of titanium dioxide nanoparticles: acomparison between molecular dynamics and phenomenological modeling. Journal ofNanoparticle Research,2008.10(7): p.1169-1182.
    31. Levchenko, E.V., A.V. Evteev, D.P. Riley, I.V. Belova and G.E. Murch, Moleculardynamics simulation of the alloying reaction in Al-coated Ni nanoparticle.Computational Materials Science,2010.47(3): p.712-720.
    32. Morrow, B.H. and A. Striolo, Supported bimetallic Pt-Au nanoparticles: Structuralfeatures predicted by molecular dynamics simulations. Physical Review B,2010.81(15): p.155437.
    33. Shim, J.H., B.J. Lee and Y.W. Cho, Thermal stability of unsupported goldnanoparticle: a molecular dynamics study. Surface Science,2002.512(3): p.262-268.
    34. Song, P. and D. Wen, Molecular Dynamics Simulation of a Core-Shell StructuredMetallic Nanoparticle. The Journal of Physical Chemistry C,2010.114(19): p.8688-8696.
    35. Song, P. and D. Wen, Molecular dynamics simulation of the sintering of metallicnanoparticles. Journal of Nanoparticle Research,2010.12(3): p.823-829.
    36. Wen, Y.H., H. Fang, Z.Z. Zhu and S.G. Sun, A molecular dynamics study of shapetransformation and melting of tetrahexahedral platinum nanoparticle. ChemicalPhysics Letters,2009.471(4-6): p.295-299.
    37. Huo, Q. and J.G. Worden, Monofunctional gold nanoparticles: synthesis andapplications. Journal of Nanoparticle Research,2007.9(6): p.1013-1025.
    38. Ray, P.C., G.K. Darbha, A. Ray, J. Walker and W. Hardy, Gold nanoparticle basedFRET for DNA detection. Plasmonics,2007.2(4): p.173-183.
    39. Jain, P.K., X. Huang, I.H. El-Sayed and M.A. El-Sayed, Review of some interestingsurface plasmon resonance-enhanced properties of noble metal nanoparticles andtheir applications to biosystems. Plasmonics,2007.2(3): p.107-118.
    40. Liu, R.-s., K.-j. Dong, J.-y. Li, A.-b. Yu and R.-p. Zou, Formation and description ofnano-clusters formed during rapid solidification processes in liquid metals. Journal ofnon-crystalline solids,2005.351(6): p.612-617.
    41. Chui, Y.H., I.K. Snook and S.P. Russo, Visualization and analysis of structuralordering during crystallization of a gold nanoparticle. Physical Review A,2007.76(19): p.195427.
    42. Alavi, S. and D.L. Thompson, Molecular Dynamics Simulations of the Melting ofAluminum Nanoparticles. The Journal of Physical Chemistry A,2006.110(4): p.1518-1523.
    43. Streitz, F.H. and J.W. Mintmire, Electrostatic potentials for metal-oxide surfaces andinterfaces. Physical Review B,1994.50(16): p.11996-12003.
    44. Qi, Y., T. Cagin, W.L. Johnson and W.A. Goddard, Melting and crystallization in Ninanoclusters: The mesoscale regime. Journal of Chemical Physics,2001.115: p.385.
    45. Puri, P. and V. Yang, Effect of particle size on melting of aluminum at nano scales.The Journal of Physical Chemistry C,2007.111(32): p.11776-11783.
    46. Ercolessi, F., E. Tosatti and M. Parrinello, Au (100) surface reconstruction. PhysicalReview Letters,1986.57(6): p.719-722.
    47. Sutton, A. and J. Chen, Long-range finnis–sinclair potentials. Philosophical magazineletters,1990.61(3): p.139-146.
    48. Lewis, L.J., P. Jensen and J.-L. Barrat, Melting, freezing, and coalescence of goldnanoclusters. Physical Review B,1997.56(4): p.2248.
    49. Kayhani, K., K. Mirabbaszadeh, P. Nayebi and A. Mohandesi, Surface effect on thecoalescence of Pt clusters: A molecular dynamics study. Applied Surface Science,2010.256(23): p.6982-6985.
    50. Shibuta, Y. and T. Suzuki, Melting and nucleation of iron nanoparticles: A moleculardynamics study. Chemical Physics Letters,2007.445(4-6): p.265-270.
    51. Shibuta, Y., Y. Watanabe and T. Suzuki, Growth and melting of nanoparticles in liquidiron: A molecular dynamics study. Chemical Physics Letters,2009.475(4-6): p.264-268.
    52. Shibuta, Y. and T. Suzuki, A molecular dynamics study of cooling rate duringsolidification of metal nanoparticles. Chemical Physics Letters,2011.502(1-3): p.82-86.
    53. Wu, L., Y. Zhang, Y.-H. Wen, Z.-Z. Zhu and S.-G. Sun, Molecular dynamicsinvestigation of structural evolution of fcc Fe nanoparticles under heating process.Chemical Physics Letters,2011.502(4): p.207-210.
    54. Ding, F., A. Rosen and K. Bolton, Size dependence of the coalescence and melting ofiron clusters: A molecular-dynamics study. Physical Review B,2004.70(7): p.075416.
    55. Volmer, M. and A. Weber, Nucleus formation in supersaturated systems. Zeitschriftfür Physikalische Chemie,1926.119(1926).
    56. Kashchiev, D., Nucleation: Basic Theory with Applications.2000: Oxford.
    57. Lee, B.S., G.W. Burr, R.M. Shelby, S. Raoux, C.T. Rettner, S.N. Bogle, K.Darmawikarta, S.G. Bishop and J.R. Abelson, Observation of the role of subcriticalnuclei in crystallization of a glassy solid. Science,2009.326(5955): p.980-984.
    58. Feynman, R., Order and Entropy. Lectures on Physics,1963.
    59. Morse, P.M., Diatomic molecules according to the wave mechanics. II. vibrationallevels. Physical Review,1929.34(1): p.57.
    60. Torrens, I.M., Interatomic potentials.1972: Academic Press, New York.
    61. Lennard-Jones, J. and B.M. Dent, Cohesion at a crystal surface. Transactions of theFaraday Society,1928.24: p.92-108.
    62. Vitek, V., Theory of the core structures of dislocations in BCC metals. Cryst. LatticeDefects,1974.5(1): p.1-34.
    63. Plimpton, S., B. Hendrickson, J. Broughton, P. Bristowe and J. Newsam. MaterialsTheory and Modeling. in Materials Research Society Proceedings.1993.
    64. Tersoff, J., New empirical approach for the structure and energy of covalent systems.Physical Review B,1988.37(12): p.6991.
    65. Brenner, D.W., Empirical potential for hydrocarbons for use in simulating thechemical vapor deposition of diamond films. Physical Review B,1990.42(15): p.9458.
    66. Finnis, M. and J. Sinclair, A simple empirical N-body potential for transition metals.Philosophical Magazine A,1984.50(1): p.45-55.
    67. Baskes, M., Modified embedded-atom potentials for cubic materials and impurities.Physical Review B,1992.46(5): p.2727.
    68. Daw, M.S. and M.I. Baskes, Embedded-atom method: Derivation and application toimpurities, surfaces, and other defects in metals. Physical Review B,1984.29(12): p.6443.
    69. Cleri, F. and V. Rosato, Tight-binding potentials for transition metals and alloys.Physical Review B,1993.48(1): p.22.
    70. Liu, Y.H., Y.Q. Wu, T. Shen and Z.K. Wang, Molecular dynamics simulation of phasetransfromation of γ-Fe→δ-Fe→liquid Fe in continus temperature-rise process (inChinese). Acta Metallurgica Sinica,2010.46(2): p.172-178.
    71. Honeycutt, J.D. and H.C. Andersen, Molecular dynamics study of melting andfreezing of small Lennard-Jones clusters. Journal of Physical Chemistry,1987.91(19):p.4950-4963.
    72.易学华,刘让苏,田泽安,侯兆阳,李晓阳,周群益, Formation and evolutionproperties of clusters in liquid metal copper during rapid cooling processes.Transactions of Nonferrous Metals Society of China,2008.1: p.008.
    73. Tian, Z.A., R.S. Liu, H.R. Liu, C.X. Zheng, Z.Y. Hou and P. Peng, Moleculardynamics simulation for cooling rate dependence of solidification microstructures ofsilver. Journal of non-crystalline solids,2008.354(31): p.3705-3712.
    74. Finney, J., Procedure for the construction of Voronoi polyhedra. Journal ofComputational Physics,1979.32(1): p.137-143.
    75. Hsu, C. and A. Rahman, Interaction potentials and their effect on crystal nucleationand symmetry. The Journal of chemical physics,1979.71: p.4974.
    76. Swope, W.C. and H.C. Andersen,10^{6}-particle molecular-dynamics study ofhomogeneous nucleation of crystals in a supercooled atomic liquid. Physical ReviewB,1990.41(10): p.7042.
    77. Brostow, W., J.-P. Dussault and B.L. Fox, Construction of Voronoi polyhedra. Journalof Computational Physics,1978.29(1): p.81-92.
    78. Brostow, W., M. Chybicki, R. Laskowski and J. Rybicki, Voronoi polyhedra andDelaunay simplexes in the structural analysis of molecular-dynamics-simulatedmaterials. Physical Review B,1998.57(21): p.13448.
    79. Steinhardt, P.J., D.R. Nelson and M. Ronchetti, Bond-orientational order in liquidsand glasses. Physical Review B,1983.28(2): p.784.
    80. Ten Wolde, P.R., M.J. Ruiz-Montero and D. Frenkel, Numerical evidence for bccordering at the surface of a critical fcc nucleus. Physical Review Letters,1995.75(14): p.2714-2717.
    81. Ten Wolde, P.R., M.J. Ruiz‐Montero and D. Frenkel, Numerical calculation of therate of crystal nucleation in a Lennard‐Jones system at moderate undercooling. TheJournal of chemical physics,1996.104(24): p.9932-9947.
    82. Auer, S. and D. Frenkel, Numerical prediction of absolute crystallization rates inhard-sphere colloids. Journal of Chemical Physics,2004.120(6): p.3015-3029.
    83.高帅,吴永全,沈通,张宁,赖莉珊, Zn-Mg合金的结构分析和Zn-Mg扩散体系的物相分布.物理化学学报,2012.28(09): p.2037-2043.
    84.高帅, Zn-Mg扩散体系的结构表征及物相分布研究[硕士学位论文].上海大学材料学院,2012.
    85. Smith, W., C. Yong and P. Rodger, DL_POLY: application to molecular simulation.Molecular Simulation,2002.28(5): p.385-471.
    86. Allen, M.P. and D.J. Tildesley, Computer simulation of liquids. Vol.18.1989: Oxforduniversity press.
    87. Berendsen, H.J.C., J.P.M. Postma, W.F. van Gunsteren, A. DiNola and J.R. Haak,Molecular dynamics with coupling to an external bath. Journal of Chemical Physics,1984.81(8): p.3684-3690.
    88. Cheng, J.W., X.M. Zhang, Y.Q. Wu, X.L. Wang, S.B. Zheng and G.C. Jiang, MDSimulation of α-Fe and γ-Fe with Long-range F-S Potential. Acta Physico-chimicaSinica,2007.23(5): p.779-785.
    89. Shibuta, Y., S. Takamoto and T. Suzuki, A molecular dynamics study of the energy andstructure of the symmetric tilt boundary of iron. ISIJ international,2008.48(11): p.1582-1591.
    90. Ling, T., L. Xie, J. Zhu, H. Yu, H. Ye, R. Yu, Z. Cheng, L. Liu, G. Yang, Z. Cheng, Y.Wang and X. Ma, Icosahedral Face-Centered Cubic Fe Nanoparticles: FacileSynthesis and Characterization with Aberration-Corrected TEM. Nano letters,2009.9(4): p.1572-1576.
    91. Wei, B., M. Shima, R. Pati, S.K. Nayak, D.J. Singh, R. Ma, Y. Li, Y. Bando, S. Nasuand P.M. Ajayan, Room‐Temperature Ferromagnetism in Doped Face‐CenteredCubic Fe Nanoparticles. Small,2006.2(6): p.804-809.
    92. Ling, T., J. Zhu, H. Yu and L. Xie, Size Effect on Crystal Morphology of FacetedFace-Centered Cubic Fe Nanoparticles. The Journal of Physical Chemistry C,2009.113(22): p.9450-9453.
    93. Zhang, Y., Y.-H. Wen, Z.-Z. Zhu and S.-G. Sun, Structure and Stability of FeNanocrystals: An Atomistic Study. The Journal of Physical Chemistry C,2010.114(44): p.18841-18846.
    94. Jiang, A., N. Awasthi, A.N. Kolmogorov, W. Setyawan, A. B rjesson, K. Bolton, A.R.Harutyunyan and S. Curtarolo, Theoretical study of the thermal behavior of free andalumina-supported Fe-C nanoparticles. Physical Review B,2007.75(20): p.205426.
    95. Luo, S.-N., A. Strachan and D.C. Swift, Nonequilibrium melting and crystallization ofa model Lennard-Jones system. The Journal of chemical physics,2004.120: p.11640.
    96. Jin, Z.H., H.W. Sheng and K. Lu, Melting of Pb clusters without free surfaces.Physical Review B,1999.60(1): p.141.
    97. Zhao, S.J., S.Q. Wang, D.Y. Cheng and H.Q. Ye, Three Distinctive MeltingMechanisms in Isolated Nanoparticles. The Journal of Physical Chemistry B,2001.105(51): p.12857-12860.
    98. Chase, M.W., NIST-JANAF thermochemical tables.1998.
    99. Ghosh, G. and G. Olson, The isotropic shear modulus of multicomponent Fe-basesolid solutions. Acta materialia,2002.50(10): p.2655-2675.
    100. Sun, D., M. Asta and J. Hoyt, Crystal-melt interfacial free energies and mobilities infcc and bcc Fe. Physical Review B,2004.69(17): p.174103.
    101. Chung, S.-Y., Y.-M. Kim, J.-G. Kim and Y.-J. Kim, Multiphase transformation andOstwald’s rule of stages during crystallization of a metal phosphate. Nature physics,2008.5(1): p.68-73.
    102. Hermann, C., Die Symmetriegruppen der amorphen und mesomorphen Phasen.1931,Akad. Verlagsges.
    103. Segall, R., Unusual twinning in annealed copper. Journal of Metals,1957.9: p.50.
    104. Melmed, A. and D. Hayward, On the occurrence of fivefold rotational symmetry inmetal whiskers. The Journal of chemical physics,1959.31(2): p.545-546.
    105. Mackay, A., A dense non-crystallographic packing of equal spheres. ActaCrystallographica,1962.15(9): p.916-918.
    106. Schlotterer, H., Electron Microscopy: Fifth International Congress for ElectronMicroscopy, Philadelphia.1962, London and New York: Academic Press.
    107. Wentorf, R. and J. Gilman, The Art and Science of Growing Crystals. Wiley, NewYork,1963: p.192.
    108. Ino, S., Epitaxial growth of metals on rocksalt faces cleaved in vacuum. II.Orientation and structure of gold particles formed in ultrahigh vacuum. Journal of thePhysical Society of Japan,1966.21: p.346-362.
    109. Allpress, J. and J. Sanders, The structure and orientation of crystals in deposits ofmetals on mica. Surface science,1967.7(1): p.1-25.
    110. Hofmeister, H., Forty years study of fivefold twinned structures in small particles andthin films. Crystal Research and Technology,1998.33(1): p.3-25.
    111. Cao, A. and Y. Wei, Formation of fivefold deformation twins in nanocrystallineface-centered-cubic copper based on molecular dynamics simulations. AppliedPhysics Letters,2006.89(4): p.041919-041919-3.
    112. Hall, C. and S. Fawzi, On the occurrence of multiply twinned particles inelectrodeposited nickel films. Philosophical Magazine A,1986.54(6): p.805-820.
    113. Gryaznov, V., J. Heydenreich, A. Kaprelov, S.A. Nepijko, A. Romanov and J. Urban,Pentagonal symmetry and disclinations in small particles. Crystal Research andTechnology,1999.34(9): p.1091-1119.
    114. Nenow, D. and B. Pamplin, Progress in crystal growth and characterization.1984,pergamon, Oxford.
    115. Kraft, T., M. Methfessel, M. Van Schilfgaarde and M. Scheffler, Effect ofsubstrate-imposed strain on the growth of metallic overlayers calculated for fcc andhcp iron. Physical Review B,1993.47(15): p.9862.
    116. Bagno, P., O. Jepsen and O. Gunnarsson, Ground-state properties of third-rowelements with nonlocal density functionals. Physical Review B,1989.40(3): p.1997.
    117. Kübler, J., Metastable magnetic ground-state of hcp-Fe. Solid state communications,1989.72(7): p.631-633.
    118. Leung, T., C. Chan and B. Harmon, Ground-state properties of Fe, Co, Ni, and theirmonoxides: Results of the generalized gradient approximation. Physical Review B,1991.44(7): p.2923.
    119. Moroni, E. and T. Jarlborg, Bcc and hcp phase competition in Fe. Europhysics Letters,2007.33(3): p.223.
    120. Wang, Y., S. Curtarolo, C. Jiang, R. Arroyave, T. Wang, G. Ceder, L.-Q. Chen andZ.-K. Liu, Ab initio lattice stability in comparison with CALPHAD lattice stability.Calphad,2004.28(1): p.79-90.
    121. Ling, T., L. Xie, J. Zhu, H. Yu, H. Ye, R. Yu, Z. Cheng, L. Liu and G. Yang,Icosahedral Face-Centered Cubic Fe Nanoparticles: Facile Synthesis andCharacterization with Aberration-Corrected TEM. Nano letters,2009.9(4): p.1572-1576.
    122. Barnard, A.S. and L.A. Curtiss, Predicting the Shape and Structure of Face‐Centered Cubic Gold Nanocrystals Smaller than3nm. ChemPhysChem,2006.7(7): p.1544-1553.
    123. Barnard, A., Modelling of nanoparticles: approaches to morphology and evolution.Reports on Progress in Physics,2010.73(8): p.086502.
    124. Zhu, Y., X. Liao and R. Valiev, Formation mechanism of fivefold deformation twins innanocrystalline face-centered-cubic metals. Applied Physics Letters,2005.86(10): p.103112-103112-3.
    125. Ostwald, W., Studies on formation and transformation of solid materials. Zeitschriftfür Physikalische Chemie,1897.22: p.289-330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700