用户名: 密码: 验证码:
节能型轮胎胎面胶料的结构与性能及防静电性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着国家节能减排战略目标的实施,汽车安全、舒适、节能的要求逐年提高,与其配套的轮胎要求具有优异的抗湿滑性能、耐磨性、低滚动阻力特性等,但这三项性能难以同时改善,往往其中的一项或两项性能改进的同时会引起另一项或两项性能的损失,人们常将这三项性能称为“魔鬼三角”。为平衡该三种性能,必须在橡胶的分子结构的设计改性以及填料补强结构上有新的突破。众所周知,橡胶分子间的内摩擦损耗和松弛特性是制约其低滚阻和高抗湿滑性能的主要因素,因此节能橡胶的分子结构设计及实施是研究的热点课题之一。在轮胎工业中,大量白炭黑用于补强胎面,收到了显著的节能和高抗湿滑效果,但带来的另一问题是易积蓄静电。因此,通过分子结构设计和纳米填料增强以及添加其他导电填料,来提高填料分散性及复合材料的抗静电性,并平衡轮胎的“魔鬼三角”性能的目标是本论文致力研究的方向。
     论文的第一部分,主要研究了五种胎面用丁苯橡胶/炭黑复合材料的结构-性能及防静电特性。结果表明,四种溶聚丁苯橡胶的力学性能和湿抓着性能与乳聚丁苯橡胶相近,但生热性和低滚动阻力特性明显优于乳聚丁苯橡胶;四种溶聚丁苯橡胶相比,星形SSBR的力学性能优异,内摩擦损失最低,抗湿滑性好且滚动阻力低,其次为SL552,2305和YL950,表明偶联结构的SSBR具有显著的节能特征。但YL950的门尼粘度低,加工性能优异,硫化时间短,且胶料的防静电性能优异。还研究了高分子量充油SSBR胶料的结构-性能及防静电性,充油SSBR表现出良好的炭黑分散性和较低的滚动阻力特性。对于50份炭黑填充上述丁苯胶料的电阻率均能满足防静电性要求,说明分子结构参数变化和端基改性技术对SSBR胶料的防静电性能影响不大。根据本章的结论,有助于选择新型胎面用丁苯橡胶,并对本论文后几章研究具有指导意义。
     论文的第二部分,研究了节能,高性能且防静电胎面用胶的配方。首先研究了炭黑及白炭黑填充SSBR胶料的防静电性和白炭黑填充胶料的加工工艺,发现50份炭黑可使胶料具有抗静电性和良好的力学性能,而SSBR/SiO2胶料则表现出绝缘特性。其次,分别研究了SiO2/CB不同并用比填充SSBR YL950和ESBR 1500复合材料的结构与性能关系及防静电特性。实验结果表明,在填充量为70phr的橡胶基体中,炭黑由约30nm的较透明的球状颗粒形成珠链状网络结构。该胶料的Payne效应高,动态损耗高,但具有优异的抗静电性能;SiO2粉体在橡胶中为黑色20-40nm的不规则颗粒,胶料表现出优异的湿抓着性能,低的内摩擦损耗,但静电积累量大。SiO2/CB并用填充SSBR复合材料的力学性能呈现“协同效应”,尤其当SiO2/CB并用比为20/50时,复合材料的物理机械性能、低生热性、磨耗性能、抗湿滑性和滚动阻力均达到较佳水平,且满足防静电性要求。而SiO2/CB(35/35)为复合材料防静电性的渝渗阈值,而当填料总量变化,SiO2/CB (1/1)填充SSBR胶料,由于粒子间距较远或纳米填料的分散性差,均未达到防静电要求。接着研究了导电炭黑部分取代炭黑和四针状氧化锌晶须填充SSBR/SiO2/CB复合材料的防静电性,力学性能及生热性等,得出导电炭黑用量增加,防静电性能提高,但力学性能降低,填料的分散性变差,且生热高的结果,对于SiO2/CB并用比为40/30时,满足防静电性的导电炭黑最小用量为3 phr;而防静电氧化锌晶须,虽然具有独特立体四针状显微结构,但在加工过程中,易折断,不利于导电网络的形成,而且填充补强效果差,所以在加工工艺上还有待改善。此外,硫化胶的不同停放时间对复合材料的电阻率的影响不大,高芳油加入对复合材料力学性能和生热性有所改善,但对防静电性能的不利。
     论文的第三部分,研究了端基改性SSBR的结构与性能及其与炭黑的相互作用。其一,从分子结构设计角度出发,在阴离子活性聚合反应末期加入大体积官能团,叔丁基二苯基氯硅烷进行封端改性,制备出分子链末端可以吸附炭黑,并起到钝化大分子链自由末端作用的溶聚丁苯橡胶,通过核磁技术证明了端基改性溶聚丁苯橡胶的反应结果,并根据核磁谱图中相关特征峰的峰面积计算了封端效率(即带有大体积官能团的大分子链末端数与总的分子链末端数之比)。大体积官能团封端后的胶料经过炭黑补强,填料-聚合物作用大大增强,填料分散性也显著提高,分子链自由末端明显减少,因此复合材料的力学性能和回弹性提高,生热和滞后损失明显降低,高抗湿滑和低滚动阻力等特性也得到明显的改善,并将其与星形溶聚丁苯橡胶和普通溶聚丁苯橡胶进行对比,由于大体积官能团可以钝化分子链末端(减少内摩擦损耗和增加在外立场中的取向度)和吸附炭黑的作用,其综合性能优异,适合作为节能型胎面胶料应用到轮胎工业中。其二,还研究了用对苯醌做模型化合物,来模拟Sn-C键向炭黑表面的键接反应机理,采用DSC, FTIR, GPC-UV联用等技术,追踪自合成的模型化合物-锡偶联聚丁二烯与对苯二醌的反应过程,并鉴定了反应产物,研究发现偶联型SSBR在空气和氮气气氛中分别于180和198℃出现化学键的断裂吸热峰,Sn-C键键能比C-C键弱,在热、力或化学催化作用下易断裂生成自由基,之后被醌基捕捉,形成端部带完整苯环结构的化合物。从而揭示了Sn偶联SSBR的Sn-C键向炭黑表面的键接转移机理以及Sn偶联SSBR内耗低的本质所在,为端基改性技术在SSBR中的应用提供了理论基础。
Recently, with the demand of energy conservation and emission reduction in our country and the increased requirements of security, energy-saving, and comfort for cares, their high-performance tires should have good wet-skid resistance, abrasion resistance and low rolling resistance. However, The three performances are hard to be improved simultaneously, (i.e., one or two properties are improved whereas another two or one property will be decreased), which are often called "magic triangle" in the tire industry. Accordingly, it is a hard problem for the researchers all over the world to develop an ideal tread compound to balance the "magic-triangle" properties. It should have new breakthrough in molecular structure and reinforced structure of rubber. As is well-known to us, the internal friction losses among macromolecular chains and relaxation characteristics are the main factors. Therefore, the design of molecular structure of energy-saving rubber is one of research focuses. Besides, SiO2 is widely used in the tire tread compound for reinforcing function and the significant energy-saving effect and high wet-skid resistance are obtained. However, another problem comes, that is, it is easy to accumulate static. Therefore, how to get better filler dispersion and antistatic property and balance the "magic triangle" properties of the tire tread through molecular structure design, nano-filler reinforcement and adding other conductive fillers is the main research direction of this thesis.
     In the first part, we mainly studied the structure-property and antistatic characteristics of five kinds of tread compounds, SBR/CB composites. The results showed that the mechanical properties and wet-skid resistance of the four SSBR are similar with those of ESBR, however, the lower heat build-up and rolling resistance are superior to those of ESBR. By comparation of these four kinds of SSBR, the mechanical properties the star-shaped SSBR are excellent, its internal friction loss is the lowest, its wet-skid resistance is high and its rolling resistance is low, followed by SL552,2305 and YL950. Mooney viscosity of YL950 is low, its processing ability is better and vulcanization time is short, with excellent antistatic properties. It indicated that Sn-coupled SSBR have significant energy saving characteristics. In addition, we also studied the structure-property relationship and its antistatic characteristics of oil-extended SSBR with high molecular weight, which exhibited better CB dispersion and lower rolling resistance. The resistivity of all the researched SSBR composites with 50 phr pure CB could meet the antistatic requirements, therefore, the changes of molecular structure parameters and end-modification technologies have less effect on the antistatic property. The conclusions of this part are in favor of selecting novel tire tread compounds and have significance on the subsequent parts.
     In the second part, we mainly studied the formulations of energy-saving, high-performance and antistatic tread compounds. First of all, we investigated the antistatic characteristics of SSBR with pure CB or SiO2 and the technics of SSBR composites filled with SiO2. It was found that SSBR composites with 50 phr CB exhibited excellent antistatic and mechanical properties, however, the SSBR/SiO2 composites displayed insulation property. Secondly, we studied the structure-property and antistatic characteristics of SSBR YL950 and ESBR 1500 composites filled with different ratios of SiO2/CB. The experimental results showed that CB is 30 nm transparent and spherical particles and form bead-chain network structure. Its Payne effect and dynamic loss are high, and have excellent antistatic property; SiO2 powder exhibited 20-40 nm black and irregular particles, and SSBR/SiO2 composites displayed excellent wet-skid resistance, lower internal friction loss, however, larger static accumulation. SSBR/SiO2/CB composites presented "synergistic effect" effect, especially when the ratio of SiO2/CB is 20/50, the mechanical properties, lower heat build-up, wear resistance, wet-skid resistance and rolling resistance are well balanced, and the antistatic requirement could be met. SiO2/CB (35/35) is the percolation threshold of the composites for antistatic property. Furthermore, when the total amount of fillers is changed, with SiO2/CB in 1/1, the SSBR composites could not meet the antistatic requirements, because of the long distance of fillers or poorer dispersion of the nano-fillers. Then we investigated the CB and ZnO-W effect on the antistatic property, mechanical properties and heat build-up of the SSBR/SiO2/CB composites. It could be found that when the amount of conductive CB was rising, the antistatic property was improved, however, the mechanical properties were decreased, the filler dispersion was poorer and the heat build-up was higher. As for SiO2/CB (40/30), the least amount of the conductive CB is 3 phr in order to meet the antistatic requirement. Nevertheless, ZnO-W was easy to be broken during processing, which went against the formation of conductive networks and presented poor reinforcement. Therefore, the technics should be improved. Moreover, the different storage time of the vulcanizates have less effect on the antistatic property and high aromatic oil could improve the mechanical properties and lower heat generation, however, did harm to the antistatic property.
     In the third part, we studied the structure-property of end-modified SSBR and its interaction with CB. On one hand, SSBR with tert-Butylchlorodiphenylsilane (TBCSi, large-volume functional groups) at the two ends of macromolecular chains (T-SSBR) were prepared by anionic polymerization. The molecular structure parameters of T-SSBR and SSBR were characterized and the ratio of the amount of macromolecular chain ends connected with TBCSi to total macromolecular chain ends (i.e., end-capping efficiency) was calculated. The results showed that T-SSBR composites presented lower better CB dispersion than those of SSBR composites, which led to decrease in hardness, internal friction, dynamic compression heat built-up and permanent set of T-SSBR composites, significant increase in tensile strength, elongation at break, tear strength and resilience of T-SSBR composites, and excellent balance between wet-skid resistance and rolling resistance. All the above, owing to the end-capping of TBCSi, which could immobilize the free chain ends of T-SSBR (i.e., to reduce the friction loss of molecular chains and create a greater degree of orientation in the force field), and adsorb CB, the comprehensive performances of T-SSBR were better than those of SSBR, therefore the former was suitable for the tread of green tires. On the other hand, we used p-benzoquinone to simulate the transferring of Sn-C bond to CB surface and DSC, FTIR, GPC-UV and 1H NMR technologies were adopted to trace the reaction mechanism of star-shaped PB and p-benzoquinone. It could be found that Sn-C bond of Sn-coupled SSBR is more instable than C-C bond and easy to be broken in 180℃(air) and 198℃(nitrogen). The free radical was produced and caught by p-benzoquinone, and then the molecular chain with benzene-ring structure on the end was formed. Thus the transfer mechanism of Sn-C bond of Sn-coupled SSBR to CB surface and its internal loss essence were achieved. The theoretical principle for the application of end-modification SSBR could be provided.
引文
[1]Bond R, Morton G F. A tailor-made polymer for tyre applications[J]. Polymer,1984,25: 132-140
    [2]Rodgers M B. Heavy duty truck tire materials and performance[J]. Kautsch Gummi Kunstst, 1993,46:718-726
    [3]Pan X D. Wet sliding friction of elastomer compounds on a rough surface under varied lubrication conditions [J]. Wear,2007,262(6):707-717
    [4]Monclal K S, Basu D K. Reactive Compounds for Effective Utilization of Silica[J]. Rubber Chemistry and Technology,1994,6(7):40-46
    [5]Krokhin O V, Svintsova N V, Obrezkov N O, et al. Modified Silica Gel for the Determination of Anions by Single-colmn Ion Chromatography[J]. Department of chemistry,1997,52(11):46-52
    [6]刘力,张立群,冯予星,等.绿色轮胎研究的发展[J].橡胶工业,1999,46(4):245-248
    [7]Wang W J, Mahmud K, Murphy L J, et al. Carbon-silica dual phase filler, a new generation reinforcing agent for rubber:Part Ⅰ characterization[J]. Kautsch Gummi Kunstst,1998,51: 348-360
    [8]Vera D G. The enviromental tire[R]. In:Rubber Division, ACS,141st MRD Symposium,1976
    [9]Zhang L Q, Wang Y Z, Wang Y Q, et al. Morphology and mechanical properties of clay/styrene-butadiene rubber nanocomposites[J]. Journal of Applied Polymer Science,2000,78: 1873-1878
    [10]潘大海,梅周蟒.低滚动阻力轮胎胎面胶的研究[J].轮胎工业,2000,20(9):534-537
    [11]陈士朝.轮胎性能的发展和要求[J].橡胶工业,1997,44(1):45-49
    [12]赵素合,张兴英,严荣华,金关泰.胎面材料锡偶联型溶聚丁苯橡胶的研究[J].合成橡胶工业,1995,18(4):212-215
    [13]张逸周,赵果鲜.SSBR F375取代ESBR 1502在轮胎上的应用研究[J].茂名学院学报,2001,11(1):28-31
    [14]王真,赵素合,张建明.溶聚丁苯橡胶研究进展[J].橡胶工业,1999,46(7):425-430
    [15]Roch P. Compouding for wet grip[J]. Kautsch Gummi Kunstst,1995,48:430-434
    [16]Tsutsumi F, Sakakibrar M, Oshima N. Structure and dynamic properties of solution SBR coupled with tin compounds[J]. Rubber Chemistry and Technology,1989,63:8-21
    [17]宋武,王雅珍,高悦,等.高分子材料抗静电技术的研究进展[J].化工时刊,2005,19(12):63-66
    [18]赵素合,张兴英,金关泰,等.锡偶联型溶聚丁苯胶性能评价[J].弹性体,1995,5(3):25-29
    [19]昌焰.溶聚丁苯橡胶结构与性能的研究[J].弹性体,1994,4(4):35-39
    [20]金关泰,张兴英,赵素合,等.锡偶联型集成橡胶S-SIBR的合成表征与性能的研究[J].橡胶工业,2000,47:662-666
    [2l]李汉堂.轮胎橡胶技术的发展[J].化工新型材料,1997,9:7-10
    [22]李炜东,李大为,莫定英,等.低滞后炭黑在轮胎胎面胶中的应用[J].轮胎工业,2001,21(2):95-96
    [23]易玉华,马铁军.PU胎面/橡胶胎体复合结构绿色轮胎及其制造方法[J].橡胶工业,2005,52(1):38-40
    [24]尹绍明,李望明,梁红文,等.一种含共轭二烯烃的选择氢化方法[P].中国发明专利,CN 97108079.8
    [25]Yang W S, Hsieh H C C, Tsiang R C C. Efficiencies of various metallocene/reducing agent catalyst systems in the hydrogenation of polystyrene-b-polybutadiene-b-polystyrene block copolymers[J]. Journal of Applied Polymer Science,1999,72:1807-1815
    [26]邓毅.炭黑表面的纳米结构对橡胶的补强作用[J].轮胎工业,2003,23(7):387-391
    [27]李炳炎.低滞后炭黑及其在轮胎工业中的应用[J].中国橡胶,2002,18(20):22-26
    [28]张镭,郝喜财,张建华,等.不加抗静电剂的防静电胶料配方[J].化学研究,1999,10(3):61-64
    [29]熊佳.新型炭黑的发展及其在轮胎工业中的应用[J].合成橡胶工业,2004,27(6):387-390
    [30]周宏斌.纳米级炭黑[J].世界橡胶工业,2001,28(3):5-10
    [31]宁凯军,贾德民,胡国栋,等.Si69对炭黑增强NR/BR/NBR共混物性能的影响[J].合成橡胶工业,2001,24(4):222-224
    [32]Mooibroek H, Cornish K. Alternative sources of natural rubber[J]. Applied Microbiology and Biotechnology,2000,53(3):355-365
    [33]马来西亚橡胶研究所.天然橡胶的性质和利用[M].北京:农业出版社,1965
    [33]McNeish A, Byers J. Low rolling resistance tread compounds:Some compounding solutions[R]. In:CA, ACS, Rubber Division,151st Meeting, Anaheim:Calif, USA,1997
    [34]Brantley H L. Improved tire performance with solution SBR type polymers. Kautschuk Gummi Kunststoffe,1987,40 (2):122-125
    [35]Giannelis E P, Krishnamoorti R, Manias E. Polymer-silica nanocomposites:model systems for confined polymers and polymer brushes[J]. Advances in Polymer Science,1999,118: 108-147.
    [36]Ridwan M. Pilot scale experiments on radiation vulcanization of NR latex[J]. Radiation Physics and Chemistry,1985,25(4):904-910
    [37]Yan A, Guo Z T, Li L, et al. The mechanical properties of radiation-vulcanized NR/BR blend system[J]. Radiation Physics and Chemistry,2002,63(3):497-500
    [38]Koklas S N, Gravalos K G, Kalfoglou K. N. Effect of block copolymer architecture on compatibility:2. Epoxidized styrene-butadiene star block copolymers with chlorinated polymers[J]. Polymer,1994,35(7):1425-1432
    [39]Yagci Y, Duz A B, Onen A. Controlled radical polymerization initiated by stable radical terminated polytetrahydrofuran[J]. Polymer,1997,38(11):2861-2863
    [40]Bang D Y, Shin D Y, Lee S. Characterization of functionalized styrene-butadiene rubber by flow field-flow fractionation/light scattering in organic solvent[J]. Journal of Chromatography A, 2007,1147(2):200-205
    [41]Zhang A Q, Wang L S, Zhou Y Y. A study on rheological properties of carbon black extended powdered SBR using a torque rheometer[J]. Polymer Testing,2003,22:133-141
    [42]Hao P T, Ismail H, Hashim A S. Study of two types of styrene butadiene rubber in tire compounds[J]. Polymer Testing,2001,20:539-544
    [43]李花婷,李迎.不同牌号ESBR的性能特点及应用[J].轮胎工业,2007,27(4):214-218
    [44]曹建明,李晶,赵玉中.我国乳聚丁苯橡胶现状及发展建议[J].2007,35(1):87-89
    [45]代云水,张萍,赵树高.SSBR在高性能轮胎胶料中的应用[J].弹性体,2007,17(4):23-26
    [46]宋力航,许秋华,王钧周,等.齐鲁充油丁苯橡胶SBR1778的应用[J].2001,11(3):27-30
    [47]马红新,成洪波.国外乳聚丁苯橡胶品种及生产技术[J].齐鲁石油化工,2004,32,52-55
    [48]李花婷,蔡尚脉,颜晋钧.乳聚丁苯橡胶SBR 1507基本性能试验研究[J].橡胶科技市场,2007,4,21-25
    [49]昌焰.溶聚丁苯橡胶结构与性能的研究[J].弹性体,1994,4(4):35-39
    [50]薛广智,涂学忠.在胎面胶料中使用白炭黑降低滚动阻力[J].轮胎工业,1996,16(2):74-79
    [51]Cochet P H, Petit D, Barriquand L, et al.高分散性沉淀法白炭黑在轮胎中的应用研究[J].轮胎工业,2001,21(8):482-489.
    [52]陈红,陈丽,李花婷,等.SSBR2535基本性能的研究[J].橡胶工业,2006,53(9):539-541
    [53]陈英林,张海涛,宁艳梅.丁苯橡胶胎面胶性能比较[J].2004,27(3):179-181
    [54]代云水,张萍,赵树高.SSBR在高性能轮胎胶料中的应用[J].弹性体,2007,17(4):23-26
    [55]张新军,李花婷,马维德,等.高结苯丁苯橡胶SBR1516的性能研究[J].橡胶科技市场,2006,21:14-17
    [56]陈英林.丁苯橡胶胎面胶性能比较[J].合成橡胶工业,2004,27(3):179-181
    [57]李传清,李伟,闫冰.国产SSBR的性能研究[J].轮胎工业,2007,27(12):740-742
    [58]蔡尚脉,李花婷,李伟,等.溶聚丁苯橡胶T2530基本性能的研究[J].轮胎工业,2007,37(7):408-411
    [59]闫家宾.溶聚丁苯橡胶的品种和性能[J].橡胶橡胶工业,1999,26(2):14-16
    [60]Choi S S. Improvement of properties of silica-filled natural rubber compounds using polychloroprene[J]. Journal of Applied Polymer Science,2002,83:2609-2616
    [61]Rattanasom N, Poonsuk A, Makmoon T. Effect of curing system on the mechanical properties and heat aging resistance of natural rubber/tire tread reclaimed rubber blends[J]. Polymer Testing,2005,24,728-732
    [62]Choi S S, Park B H, Song H. Influence of filler type and content on properties of styrene-butadiene rubber (SBR) compound reinforced with carbon black or silica[J]. Polymers for Advanced Technologies,2004,15:122-127
    [63]马维德.充油丁苯橡胶SBR1721实用配方的实验研究[J].中国橡胶,2002,21(2):24-25
    [64]Ren H, Qu Y X, Zhao S H. Reinforcement of styrene-butadiene rubber with silica modified by silane coupling agents:experimental and theoretical chemistry study[J]. Chinese J Chem. Eng. 2006,14 (1):93-98
    [65]李锦山,黄强,赵玉中.溶聚丁苯橡胶技术现状及发展建议[J].弹性体,2007,17(4):69-73
    [66]梁爱民,计福春,李伟.多锂引发剂制备充油SSBR[J].合成橡胶工业,2002,25(6):361-363
    [67]Sierra C A, Fatou J M G, Quiteria V R S, et al. Dynamic mechanical properties of tin-coupled SBRs [J]. Rubber Chemistry and Technology,1995,68(2):259-266
    [68]郝雁钦,王燕飞,阎铁良,等.多锂引发剂合成星形SSBR[J].中外能源,2007,12(5):90-93
    [69]罗丽华,王兰洁.星形聚合物的合成方法综述[J].精心石油化工进展,2006,7(8):45-47
    [70]张兴英,赵素合,金关泰.星形聚合物的发展近况[J].合成橡胶工业,1999,22(2):116-119
    [71]孙健.溶聚丁苯橡胶的技术进展[J].合成橡胶工业,2002,25(5):274-276
    [72]段咏欣,赵素合.锡偶联型SSBR的动态行为[J].合成橡胶工业,2000,23(1):20-23
    [73]Shohi H, Sawamoto M, Higashimura T. End-functionalized polymers of p-alkoxystyrenes by living cationic polymerization.1. p-methoxystyrene[J]. Macromolecules,1992,25:53-57
    [74]陈士朝.溶聚丁苯橡胶的技术进展[J].合成橡胶工业,1997,20(1):6-9
    [75]Ueda J, Kamigaito M, Sawamoto M. Calixarene-core multifunctional initiators for the Ruthenium-mediated living radical polymerization of methacrylates[J]. Macromolecules,1998,31: 6762-6768
    [76]Gehman S D. Relationship between molecular structure and physical properties[J]. Industrial and engineering chemistry 1952,44(4):731-739
    [77]Chung T C, Xu G. Metallocene-mediated olefin polymerization with B-H chain transfer agents:synthesis of chain-end functionalized polyolefins and diblock copolymers[J]. Macromolecules,2001,34(23):8040-8050
    [78]Aydan D, Hakan D, Gurkan H, et al. Preparation of 3-arm star polymers (A3) via diels-alder click reaction [J]. Journal of Polymer Science:Part A:Polymer Chemistry,2008,46:302-313
    [79]Akira H, Mieko T, Seiichi N. Synthesis of end-functionalized polymers by means of living anionic polymerization.8. Reactions of living anionic polymers with α,ω-dihaloalkanes[J]. Macromolecules,1997,30:3484-3489
    [80]Akira H, Naoki H. Synthesis of branched polymer by means of living anionic polymerization. 12. Anionic synthesis of well-defined star-branched polymers by using chain-end-functionalized polystyrenes with dendritic benzyl bromide moieties[J]. Macromolecules,2002,35:7224-7231
    [81]王作龄.分子末端改性丁苯橡胶[J].1999,26(2):53-58
    [82]Tomoya H, Mayumi H, Akira H. Radical coupling reaction of 1,1-diphenylethylene-functionalized polymers with potassium naphthalenide and its application to syntheses of in-chain-functionalized polymers and star-branched polymers[J]. Macromol. Chem. Phys.2002,203(1):166-175
    [83]Quirk R P, Tsai Y. Trifunctional Organolithium Initiator Based on 1,3,5-Tris(1-Phenylethenyl)benzene. Synthesis of Functionalized, Three-Armed, Star-Branched Polystyrenes[J]. Macromolecules,1998,31:8016-8025
    [84]Akira H, Akira M, Kazushi M, et al. Synthesis of heteroarm star-branched polymers by means of anionic living polymerization [J]. Polymers for Advanced Technologies,2001,12:680-686
    [85]Bielawski C W, Benitez D, Morita T, et al. Synthesis of end-functionalized poly(norbornene)s via ring-opening metathesis polymerization [J]. Marcromolecules,2001,34(25):8610-8618
    [86]Xue H, Ji F C, Wang J, et al. Modification of SSBR with a kind of Schiff bases terminator[J]. China synthetic rubber industry,1999,22(6):370
    [87]Ciardelli F, Aglietto M, Passaglia E, et al. Controlled functionalization of olefin/styrene copolymers through free radical processes[J]. Polymer for Advanced Technologies,2000,11: 371-376
    [88]Hirao A, Matsuo A. Synthesis of chain-end-functionalized poly(methyl methacry late)s with a definite number of benzyl bromide moieties and their application to star-branched polymers[J]. Macromolecules,2003,36:9742-9751
    [89]Fernyhough C M, Young R N, Tack R D. Synthesis and characterization of polyisoprene-poly(methyl methacrylate) AB diblick and A2B2 heteroarm star copolymers[J]. Macromolecules,1999,32:5760-5764
    [90]Li X L, He M L, Zhang X Y. Synthesis of solution-polymerized styrene-butadiene rubber with alkoxysilyl group ont two ends[J]. China synthetic rubber industry,2008,31(2):155
    [91]Jitkarnka S, Chusaksri B, Supaphol P, et al. Influences of thermal aging on properties and pyrolysis products of tire tread compound[J]. Journal of Analytical and Applied Pyrolysis,2007, 80(1):269-276
    [92]Wang Y, Chen W J, Mu R F, et al. Study on styrene-butadiene block copolymer for the modification of tire tread[J]. Chinese journal of polymer science,1996,14(1):34-40
    [93]Zhang H, Datta R N, Talma A G, et al. Maleic-anhydride grafted EPM as compatibilising agent in NR/BR/EPDM blends[J]. European Polymer Journal,2010,46(4):754-766
    [94]Kern W J, Futamura S. Effect of tread polymer structure on tyre performance[J]. Polymer, 1988,29(10):1801-1806
    [95]王小萍,贾德民,宁凯军,等.白炭黑在NR/BR/SSBR并用胶中的应用[J].橡胶工业,2003,50(11):664-666
    [96]Mostafa A, Abouel-Kasem A, Bayoumi M R, et al. Effect of carbon black loading on the swelling and compression set behavior of SBR and NBR rubber compounds[J]. Materials and design,2009,30:1561-1568
    [97]郭莠奎.国际市场上的炭黑新品种[J].橡胶科技市场,2006,9:18-20
    [98]赵志正.导电橡胶用新牌号炭黑[J].世界橡胶工业,2005,32(5):9-11
    [99]Stamhnis J E, Groenewoud W M, Raadsen J. Two types of SSBR blends for tire tread application. Plastics and Rubber Processing and Application,1989,11 (2):93-98
    [100]纪豪.炭黑的发展趋势[J].现代橡胶技术,2006,32(3):7-11
    [101]金鑫.纤维级炭黑导电母粒的研究进展[J].合成橡胶工业,2005,28(1):54-56
    [102]Rios S, Chicurel R, Castillo L F. Potential of particle and fibre reinforcement of tyre tread elastomers[J]. Materials and Design,2001,22(5):369-374
    [103]Schwartza G A, Cervenya S, Marzoccaa A J, et al. Thermal aging of carbon black filled rubber compounds. Ⅰ. Experimental evidence for bridging flocculation [J]. Polymer,2003,44: 7229-7240
    [104]马舒文.并用导电橡胶[J].世界橡胶工业,2004,32(7):34-41
    [105]宋武.高分子材料抗静电技术的研究进展[J].化工时刊,2005,19(12):63-66
    [106]王文福.导电橡胶制品[J].世界橡胶工业,2002,29(6):15-20
    [107]王韶辉,赵树高,张萍.橡胶纳米复合材料制备研究进展[J].特种橡胶制品,2001,23:58-62
    [108]游长江,贾德民,赵旭升,等.高性能轮胎用橡胶复合材料应用理论研究进展[J].轮胎工业,2000,20(7):387-395
    [109]李炳炎.白炭黑生产应用现状和趋势[J].无机盐工业,2000,32(6):26-28
    [110]许莹,沈毅.盐酸沉淀法制备纳米白炭黑[J].应用化工,2004,11(33):22-25
    [111]胡庆福,李国庭,王金阁,等.CO2沉淀法制取高补强白炭黑[J].现代化工,2000,20(6):31-33
    [112]李汉堂.绿色轮胎的开发及其发展前景(上)[J].橡塑机械与装备,2007,33(6):18-25
    [113]Liu C C, Walters A B, Vannice M A. Measurement of electrical properties of a carbon black [J]. Carbon,1995,33(12):1699-1708
    [114]Yu J H, Park G W, Lee S, et al. Microstructural effects on the electrical and mechanical properties of Ni-YSZ cermet for SOFC anode [J]. Journal of Power Sources,2007,163,926-932
    [115]Takino H, Nakayama R, Yamada Y, et al. Viscoelastic properties of elastomers and tire wet skid resistance[J]. Rubber Chemistry and Technology,1997,70:584-594
    [116]Kim K J, John V K.Temperature effects of silane coupling on moisture treated silica surface [J]. Journal of Applied Polymer Science,2005,95:623-633
    [117]贾红兵,文威,刘卫东,等.填充剂表面改性对硫化胶磨耗性能及形态的影响[J].高分子材料科学与工程,2002,18(2):151-153
    [118]Fultz W C, Evans L R. Tire tread compounds with silica/carbon black blends[C]. The 151st meeting of rubber division, ACS,1997
    [119]Konishi Y, Cakmak M. Nanoparticle induced network self-assembly in polymer-carbon black composites [J]. Polymer,2006,47, 5371-5391
    [120]John T B. Fillers for balancing passenger tire tread properties[J]. Rubber Chemistry and Technology,2002,75:527-547
    [121]Sae-oui P, Sirisinha C, Hatthapanit K, et al. Comparison of reinforcing efficiency between Si-69 and Si-264 in an efficient vulcanization system[J]. Polymer Testing,2005,24:439-446
    [122]贾红兵,金志刚,文威,等.纳米白炭黑/炭黑并用对SBR硫化胶性能的影响[J].橡胶工业,2000,47(9):515-519
    [1]Liu X, Zhao S H. Measurement of the Condensation Temperature of Nanosilica Powder Organically Modified by a Silane Coupling Agent and Its Effect Evaluation[J]. Journal of Applied Polymer science,2008,108:3038-3045
    [2]Wang M J, Lu S X, Mahmud K. Carbon-Silica Dual-Phase Filler, A New-Generation Reinforcing Agent for Rubber. Part VI. Time-Temperature Superposition of Dynamic Properties of Carbon-Silica-Dual-Phase-Filler-Filled Vulcanizates[J]. Journal of Polymer Science,2000,38: 1240-1249
    [3]Liu X, Zhao S H. Study on Structure and Properties of SSBR/SiO2 Co-coagulated Rubber and SSBR Filled with Nanosilica Composites[J]. Journal of Applied Polymer science 2008,109: 3900-3907
    [4]曹建明,李晶,赵玉中.我国乳聚丁苯橡胶现状及发展建议[J].化工新型材料,2007,35(1):87-89
    [5]陈英林,张海涛,宁艳梅,等.丁苯橡胶胎面胶性能比较[J].合成橡胶工业,2004,27(3): 179-181
    [6]代云水,张萍,赵树高.SSBR在高性能轮胎胶料中的应用[J].弹性体,2007,17(4):23-26
    [7]李锦山,黄强,赵玉中.溶聚丁苯橡胶技术现状及发展建议[J].弹性体,2007,17(4):69-73
    [8]杨健,戴桂英,赵玉中.溶聚丁苯橡胶发展状况分析[J].合成橡胶工业,2007,30(4):245-248
    [9]任美红,孙慧,赵玉中.我国溶聚丁苯橡胶现状及发展建议[J].化工新型材料,2007,35(3):84-86
    [10]赵素合,张建明,张兴英,等.星形SSBR的偶联程度与性能的关系[J].合成橡胶工业,2002,25(4):223-226
    [11]Feng H D, Zhang X Y, Zhao S H. Tin-Coupled Star-Shaped Block Copolymer of Styrene and Butadiene (Ⅰ) Synthesis and Characterization [J]. Journal of Applied Polymer Science,2008,110, 228-236
    [12]Feng H D, Zhang X Y, Zhao S H. Tin-Coupled Star-Shaped Block Copolymer of Styrene and Butadiene (Ⅱ) Properties and Application [J]. Journal of Applied Polymer Science,2009,111, 602-611
    [13]Liu X, Zhao S H, Zhang X Y. Structure and properties of solution-polymerized styrene-butadiene rubber with alkoxysilane groups on two ends/silica nanocomposites[J]. China Synthetic Rubber Industry,2008,31 (6):482
    [14]王真,赵素合,张建明.溶聚丁苯橡胶研究进展[J].橡胶工业,1999,46(7):425-430
    [15]段咏欣,赵素合,张兴英,等.溶聚丁苯橡胶的结构与性能[J].橡胶工业,2002,49(11):645-649
    [16]Brantley H L. Improved tire performance with solution SBR type polymers[J]. Kautschuk Gummi Kunststoffe,1987,40 (2):122-125
    [17]International Rubber Study Group (IRSG). World synthetic rubber capacities [J]. Rubber Statistical Bulletin,2005,59 (8):53
    [18]Bortolotti M, Busetti S, Mistrali F, et al. Dynamic properties of batch polymerized SSBR based compounds[J]. Kautschuk Gummi Kunststoffe,1998,151 (5):331-335
    [19]赵素合,张兴英,金关泰.锡偶联型溶聚丁苯胶性能评价[J].弹性体,1995,5(3):25-29.
    [1]Liu X, Zhao S H. Measurement of the Condensation Temperature of Nanosilica Powder Organically Modified by a Silane Coupling Agent and Its Effect Evaluation[J]. Journal of Applied Polymer science,2008,108:3038-3045
    [2]Wang M J, Lu S X, Mahmud K. Carbon-Silica Dual-Phase Filler, A New-Generation Reinforcing Agent for Rubber. Part VI. Time-Temperature Superposition of Dynamic Properties of Carbon-Silica-Dual-Phase-Filler-Filled Vulcanizates[J]. Journal of Polymer Science,2000,38: 1240-1249
    [3]Liu X, Zhao S H. Study on Structure and Properties of SSBR/SiO2 Co-coagulated Rubber and SSBR Filled with Nanosilica Composites [J]. Journal of Applied Polymer science 2008,109: 3900-3907
    [4]Ren H, Qu Y X, Zhao S H. Reinforcement of styrene-butadiene rubber with silica modified by silane coupling agents:experimental and theoretical chemistry study[J]. Chinese J Chem. Eng. 2006,14 (1):93-98
    [5]Suzuki, N.; Ito, M.; Yatsuyanagi, F. Effects of rubber/filler interactions on deformation behavior of silica filled SBR systems[J]. Polymer,2005,46:193-201
    [6]Karasek L, Meissner B, Asai S, et al. Percolation Concept:Polymer-Filler Gel Formation, Electrical Conductivity and Dynamic Electrical Properties of Carbon-Black-Filled Rubbers[J]. Polymer Journal,1996,28(2):121-126
    [7]Sumita M, Sakata K, Asai S, et al. Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black[J]. Polymer bulletin,1991,25(2):265-271
    [8]Medalia A I. Electrical conduction in carbon black composites[J]. Rubber Chemistry and Technology,1986,59(3):433-454
    [9]Sircar A K, Lamond T G. Effect of carbon black particle size distribution on electrical conductivity [J]. Rubber Chemistry and Technology,1978,51:126-131
    [10]Pan X D. Wet sliding friction of elastomer compounds on a rough surface under varied lubrication conditions [J]. Wear,2007,262(6):707-717
    [11]王登祥,Ken Immel.绿色轮胎[J].轮胎工业,1990,19(4):195-199
    [12]Byers J T. Nonenzymatic Turnover of an Erwinia[J]. Journal of Bacteriology,2002,184(4): 1163-1171
    [13]Wagner M P. Rubber Chemistry and Technology,1976,49:703
    [14]Suzuki N, Yatsuyanagi F, Ito M, et al. Effects of surface chemistry of silica particles on secondary structure and tensile properties of silica-filled rubber systems [J]. Journal of Applied Polymer Science,2002,86:1622-1629
    [15]Ge H Q, Zhao S H, Wang Y. Structure and properties of solution-polymer ized styrene-butadiene rubber f illed with modif ied nano-silicon dioxide/carbon black by dynamic reaction blending[J]. China Synthetic Rubber Industry,2007,30(5):369-373
    [16]Panenka R.降低轮胎生热-轮胎工业正在应对的一项挑战[J].轮胎工业,2003,23(3):141-146
    [17]El-Sabbagh S H, Ahmed N M. Preparation and characterisation of highperformance rubber vulcanizates loaded withmodified aluminium oxide[J]. Kautsch Gummi Kunstst,2006,35(3), 119-131
    [18]Wang M J, Kutsovsky Y, Zhang P, et al. Using carbon-silica dual phase filler improve global compromise between rolling resistance, wear resistance and wet skid resistance for tires[J]. Kautsch Gummi Kunstst,2002,55:33-40
    [19]Payne A R. The Dynamic Properties of Carbon-black Loaded Natural Rubber Vulcanizates. Part Ⅰ[J]. Journal of Applied Polymer Science,1962,6:57-63
    [20]Payne A R, Whittaker R E. Low strain dynamic properties of filled rubbers[J]. Rubber Chemistry and Technology,1971,44(2):440-478
    [21]Wang M J, Wolff S, Freund B. Filler-elastomer interactions. Ⅺ:Investigation of the carbon-black surface by scanning tunneling microscopy[J]. Rubber Chemistry and Technology, 1994,67(1):169-206
    [22]Wang M J, Kutsovsky Y, Zhang P, et al. New generation carbon-silica dual phase filler. Part I. Characterization and application to passenger tire[J]. Rubber Chemistry and Technology,2002,75: 247-263
    [23]Saito, Y. New polymer development for low rolling resistance tyres[J]. Kautsch Gummi Kunstst,1986,39(1):30-32
    [24]Wang M J. The role of filler networking in dynamic properties of filled rubber[J]. Rubber Chemistry and Technology,1998,71(3):520-589
    [25]Nordsiek K H. The <> concept-an approach to an ideal tire tread rubber[J]. Kautsch Gummi Kunstst,1985,38:178-185
    [26]肖建斌.炭黑补强NR硫化胶疲劳破坏特性的研究[J].橡胶工业,2006,53(1):16-19.
    [27]Fetterman M. Q. The unique properties of precipitated silica in the design of high performance rubber[J]. Elastomerics,1984,116(9):18-31
    [28]Ruschau G R, Yoshikawa S, Newnham R E. Resistivities of conductive composites [J]. Journal of Applied Physics,1992,72:953-960
    [29]Lee H H, Chou K S, Shih Z W. Effect of nano-sized silver particles on the resistivity of polymeric conductive adhesives[J]. Int J Adhes Adhes 2005,25:437-441
    [30]Simmons, J. G. Electric Tunnel Effect between Dissimilar Electrodes Separated by a Thin Insulating Film[J]. Journal of Applied Physics,1963,34:1158-1168.
    [31]杨波,陈晓浪,陈光顺,郭少云.导电炭黑填充PP-EAA复合材料的形态及电性能[J].中国塑料,2007,24(3):78-83.
    [32]Rosner R B. Conductive Materials for ESD Applications:An Overview [C]. Electrical Overstress/Electrostatic Discharge Symposium Proceedings,2000,9:121-131
    [33]M. Narkis, A. Ram, F. Flashner. Polyethylene/Carbon Black Switching Materials [J]. Journal of Applied Polymer Science,1978,22:1163-1165
    [34]Flandin L, Prasse T. Anomalous Percolation Transition in Carbon-black-epoxy Composite Materials[J]. Physical Review B,1999,59(22):14349-14355
    [35]Wycisk R, Pozniak R, Pasternak A. Conductive Polymer Materials with Low Filler Content [J]. Journal of Electrostatics,2002,56:55-66
    [36]Schueler R, Petermann J U. Agglomeration and Electrical Percolation Behavior of Carbon Black Dispersed in Epoxy Resin [J]. Journal of Applied Polymer Science,1997,63:1741-1746
    [37]Narkis M, Lidor G. New Injection MoldableElectrostatic Dissipative (ESD) Composites Based on VeryLow Carbon Black Loadings[J]. Journal of Electrostatics,1999,47:201-214
    [38]Miyasaka K, Watanabe K. Electrical Conductivity of Carbon-polymer Composites as a Function of Carbon Content[J]. Journal of Materials Science,1982,77:1610-1616
    [39]Chan C M, Cheng C L. Electrical Properties of Polymer Composites Prepared by Sintering a Mixture of Carbon Black and Ultrahigh Molecular Weight Polyethylene Powder[J]. Polymer Engineering and Science,1997,37 (7):1127-1136
    [40]李莹,王仕峰,张勇,等.不同炭黑对聚丙烯/炭黑复合材料导电性能的影响[J].中国塑料,2004,18(10):63-66
    [41]张洁,冯圣玉.导电硅橡胶理论研究进展[J].功能高分子学报,2002,15(1):87-90
    [1]Wang Lei, Zhao Suhe. Study on the Structure-Mechanical Properties and Antistatic Property of SSBR Composites Filled with SiO2/CB. Journal of applied polymer science,2010. (In Press)
    [2]王雷,赵素合.白炭黑/炭黑/SBR复合材料的结构和抗静电性研究,橡胶工业,2009,56(12):709.
    [1]Liu X, Zhao S H. Measurement of the Condensation Temperature of Nanosilica Powder Organically Modified by a Silane Coupling Agent and Its Effect Evaluation[J]. Journal of Applied Polymer science,2008,108:3038-3045
    [2]Wang M J, Lu S X, Mahmud K. Carbon-silica dual-phase filler, a new-generation reinforcing agent for rubber. Part VI. Time-temperature superposition of dynamic properties of carbon-silica-dual-phase-filler-filled vulcanizates[J]. J Polym Sci Pol Phys,2000,38(9): 1240-1249
    [3]Liu X, Zhao S H. Study on Structure and Properties of SSBR/SiO2 Co-coagulated Rubber and SSBR Filled with Nanosilica Composites[J]. Journal of Applied Polymer science 2008,109: 3900-3907
    [4]Bond R, Morton G.F. A tailor-made polymer for tyre applications [J]. Polymer,1984,25, 132-140
    [5]Mosnacek J, Yoon J A, Juhari A, et al. Synthesis, morphology and mechanical properties of linear triblock copolymers based on poly(α-methylene-γ-butyrolactone)[J]. Polymer,2009,50(9): 2087-2094
    [6]Jaramillo-Soto G, Garcia-Moran P R, Enriquez-Medrano F J, et al. Effect of stabilizer concentration and controller structure and composition on polymerization rate and molecular weight development in RAFT polymerization of styrene in supercritical carbon dioxide[J]. Polymer,2009,50(21):5024-5030
    [7]Passaglia E, Donati F. Functionalization of a styrene/butadiene random copolymer by radical addition of 1-cysteine derivatives[J]. Polymer,2007,48(1):35-42
    [8]Halasa A F, Prentis J, Hsu B, et al. High vinyl high styrene solution SBR[J]. Polymer,2005, 46(12):4166-4174.
    [9]Nagata N, Kobatake T, Watanabe H, et al. Effect of chemical modification of solution-polymerized rubber on dynamic mechanicalproperties in carbon-black-filled vulcanizates[J]. Rubber Chemistry and Technology,1987,60(5):837-855
    [10]Cheong I W, Fellows C M, Gilbert R G. Synthesis and cross-linking of polyisoprene latexes[J]. Polymer,2004,45:769-781
    [11]Bortolotti M, Busetti S, Mistrali F, et al. Dynamic properties of batch polymerized SSBR based compounds[J]. Kautsch Gummi Kunstst,1998,51(5):331-334
    [12]Kobayashi N, Tadaki T, Akema H. Jpn Kokai Tokkyo Koho 2000; EP 1000970B1
    [13]Sierra CA, Galan C, Gomez FJM. Danymic-mechanical properties of Tin-coupled SBRS[J]. Rubber Chemistry and Technology,1995,68(2):259-266
    [14]Kawanaka T, Watanabe H. US 5001 196; 1991
    [15]Ueda A, Akita S, Namizuka T. US 4555 547; 1985
    [16]Ueda A, Akita S, Chida T. US 4555 548; 1985
    [17]王真,赵素合,张建明.溶聚丁苯橡胶研究进展[J].合成橡胶工业,1999;46(7):425-430
    [18]段咏欣,赵素合,张兴英,等.溶聚丁苯橡胶的结构与性能[J].合成橡胶工业,2002,49(11):645-649
    [19]郝雁钦,王燕飞,阎铁良,等.多锂引发剂合成星形SSBR[J].中外能源,2007,12(5):90-93
    [20]Xiao Liu, Suhe Zhao, Xingying Zhang. Structure and properties of solution-polymerized styrene-butadiene rubber with alkoxysilane groups on two ends/silica nanocomposites[J]. China Synthetic Rubber Industry,2008,31 (6):482
    [21]Li X L, He M L, Zhang X Y. Synthesis of solution-polymerized styrene-butadiene rubber with alkoxysilyl group ont two ends[J]. China synthetic rubber industry,2008,31(2):155
    [22]Morita K. Jpn Kokai Tokkyo Koho 1999; JP 349 632
    [23]Kim E, Lee E, Park I, et al. End Functionalization of Styrene-Butadiene Rubber with Poly(ethylene glycol)-poly(dimethylsiloxane) Terminator[J]. Polymer Journal,2002,34(9): 674-681
    [24]Djordjevic I, Choudhury N R, Dutta N K, et al. Synthesis and characterization of novel citric acid-based polyester elastomers[J]. Polymer 2009,50(7):1682-1691
    [25]Payne A R. The Dynamic Properties of Carbon-black Loaded Natural Rubber Vulcanizates. Part Ⅰ[J]. Journal of Applied Polymer Science,1962,6:57-63
    [26]Payne A R, Whittaker R E. Low strain dynamic properties of filled rubbers[J]. Rubber Chemistry and Technology,1971,44(2):440-478
    [27]Wang M J. The role of filler networking in dynamic properties of filled rubber[J]. Rubber Chemistry and Technology,1998,71(3):520-589
    [28]Yang Z L, Wicks D A, Hoyle C E, et al. Newly UV-curable polyurethane coatings prepared by multifunctional thiol-and ene-terminated polyurethane aqueous dispersions: Photopolymerization properties [J]. Polymer 2009,50(7):1717-1722
    [29]薛广智,涂学忠.在胎面胶料中使用白炭黑降低滚动阻力[J].轮胎工业,1996,16(12):74-79
    [30]Sarva S S, Hsieh A J. The effect of microstructure on the rate-dependent stress-strain behavior of poly(urethane urea) elastomers[J]. Polymer,2009,50(13):3007-3015
    [31]张兴英,金关泰,赵素合.多官能团有机碱金属引发剂及其合成方法[p].中国专利,ZL95 1 16575.5
    [32]张兴英,金关泰,赵素合.星形溶聚丁苯橡胶的合成方法[p].中国专利,ZL 95 1 16576.3
    [33]Kyong L, Bomjin L. Solution polymerization for manufacture of styrene-butadiane rubber or butadiene rubber[P]. Jpn Kokai Tokkyo Koho, JP 248 014,2000
    [34]Shmurak I L. Interaction Between Functional Groups in Some Rubber and Carbon Black[J]. Kautschuk Gummi Kunststoffe,2001,54(9):464
    [35]Fsutsumi F, Sakakibara M, Oshima N. Structure and Dynamic Properties of Solution SBR Coupled with Tin Compound[J]. Rubber Chemical and Technology,1989,63(1):8-22
    [36]姚明,张兴英,赵素合,等.一种阴离子聚合用多功能团有机碱金属引发剂的制备方法[P].中国专利,200610066233.7
    [37]张志远,谷晓昱.利用凝胶渗透色谱示差-紫外检测器联用测定丁苯共聚物的组成分布 [J].分析试验室,2007,26(4):104-107.
    [38]谷晓昱,张志远.采用凝胶渗透色法确定PVC中增塑剂的种类和含量[J].聚氯乙烯,2009,37(2):29-31.
    [39]于世林,李寅蔚.波普分析法[M].重庆:重庆大学出版社,1994,103-114.
    [1]Wang Lei, Zhao Suhe. Study on the Structure and Properties of SSBR with Large-Volume Functional Groups at the End of Chains. Polymer,2010,51(9): 2084-2090

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700