用户名: 密码: 验证码:
协同ATRP、点击化学及超临界二氧化碳技术制备基于水凝胶和聚苯胺的复合材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文应用原子转移自由基聚合(ATRP)、点击化学及超临界二氧化碳(scCO2)技术制备了基于水凝胶(hydrogel)和聚苯胺(PANI)的复合材料,选取以下几种结构体系进行研究,从各个角度阐述了ATRP和点击化学技术在合成两亲稳定剂方面独具的优势,并且拓展了scCO2介质在特殊材料制备过程中的应用范围,证明了scCO2并非惰性的溶剂,而是具有显著功效的反应媒介。
     第一章调研了当前国内外对于水凝胶、聚苯胺、scCO2、ATRP以及点击化学的研究现况,分析了利用以上技术合成hydrogel-PANI复合材料的可行性和优越性。
     第二章联合链转移聚合和ATRP技术合成了分子量可控的,分子量分布较窄并且原料来源丰富、价格低廉的聚醋酸乙烯酯-聚甲基丙烯酸二甲氨基乙酯嵌段共聚物(PVAc-b-PDMAEMA),以此为稳定剂,在scCO2中分散聚合制备了粒径及粒径分布比较理想的聚甲基丙烯酸羟乙酯-聚甲基丙烯酸缩水甘油酯-聚N-乙烯基吡咯烷酮(P(HEMA-GMA-NVP))微球,再以这种微球的水凝胶薄膜HMM为基材,scCO2介质中沉积一层聚苯胺-全氟辛酸(PANI-PFOA),通过摩尔引力常数的方法从理论上探讨了PANI-PFOA在scCO2中形成胶束的可行性,并且同时比较了水相中和异辛烷相中的情况,发现scCO2介质中以PFOA为掺杂剂和分散剂的PANI在HMM上沉积可以得到比较均匀致密,并且具有微观束状结构的表面。
     第三章使用价廉易得的琥珀酸二异辛酯磺酸钠(AOT)和聚醚接枝的硅油(PeSi)作为H2O/CO2反相乳液的表面活性剂,聚合制备了PANI-SC,与异辛烷介质中合成的PANI-CON相比较,PANI-SC具有更多络合的AOT,更高的结晶度,更好的乙醇分散性以及更高的电导率,同时应用合成的含氟蒙脱土(FMMT)及含不同化学基团的蒙脱土,以H2O/CO2反相乳液的方法制备各种PANI-MMT复合插层材料,发现片层中含有胺基的蒙脱土(NHMMT)和FMMT即使在高蒙脱土含量下也能在PANI聚合中被完全剥离,均匀分散在基体中,得到的PANI-MMT具有较高的热稳定性和室温导电性。
     第四章应用ATRP技术合成了三臂刷状氟化侧链季铵聚合物(PF-PHEMA)3-TAI-Q,以此作为大分子表面活性剂,在H2O/CO2反相乳液中对壳聚糖(CS)进行聚2-丙烯酰胺基-2-丙磺酸(PAMPS)的接枝反应,得到的CS-g-PAMPS具有接枝率高,水乳液稳定性好、胶束粒径较小等优点;将CS-g-PAMPS和PANI-FMMT导电微粒复合,制得了具有优良导电性能、较高的力学强度以及比CS水凝胶更大溶胀度和更快溶胀速率的功能复合体。
     第五章应用点击化学反应联结炔基改性的nylon纤维和叠氮改性的樟脑磺酸-聚苯胺(CSA-ANI),制备了表面负载CSA-ANI单体的nylon-CSA-ANI纤维,然后以此纤维作为基质,以合成的全氟壬烯氧基苯磺酸(PFNOBSA)为掺杂酸和稳定剂,在scCO2介质中其表面成功聚合包覆了PANI-CSA和PANI-PFNOBSA成为复合纤维,最后在scCO2介质中,复合纤维上包覆羧甲基纤维素钠(CMC)水凝胶层,制备了三层复合的功能纤维。
     第六章应用点击化学反应联结乙二胺四乙酸(EDTA)的丙炔醇(Pg-OH)酯化产物EDTA-4C≡CH和叠氮化的全氟辛基碘代烷PFO-N3,再进行季铵化,制备了具有四枝状含氟侧链Gemini型表面活性剂EDTA-4PFO-2Q,同时应用ATRP方法制备了两亲嵌段聚磺化苯乙烯-聚甲基丙烯酸全氟辛基乙酯(PSS-b-PFOMA),应用EDTA-4PFO-2Q和PSS-b-PFOMA在scCO2为介质中,分别依次对玻璃基片GS实施了PAMPS和聚甲基丙烯酸乙酯基二甲基苄基溴化铵(PEMAQ)水凝胶膜的交替层层自组装和PANI的负载,得到表面疏水且导电的复合功能基片。并且通过比较正己烷介质中的反相乳液沉积自组装,发现在scCO2介质中更容易得到表面具有细致颗粒结构的凝胶薄膜。
     第七章应用ATRP方法,将甲基丙烯酸甲酯(PMMA)和甲基丙烯酸八氟戊酯(PFPMA)链段引入β环糊精(β-CD)的表面,得到β-CD-PMMA-r-PFPMA,以此为稳定剂和交联剂在scCO2介质中进行甲基丙烯酸叔丁酯(tBMA)的聚合,得到β-CD包含某几个tBMA链节的具有拓扑活动交联环的PtBMA弱凝胶微球,并分析了其形成过程及呈现的特殊性能如超疏水性,然后将转化后的聚丙烯酸(PAAc)弱凝胶微球作为内核在scCO2介质中把PANI包覆到其表面,溶蚀内核弱凝胶部分,最终得到了具有中空结构的PANI微球。
     第八章应用ATRP方法制备了不同分子量且含有端炔基的聚丙烯酸叔丁酯(Pg-PtBA),与通过叠氮改性的二氧化硅包覆四针状氧化锌晶须微粒(T-ZnOw-SiO2-N3)进行了点击反应联结,得到不同分子量聚合物链接枝的杂化T-ZnOw-SiO2·PtBA微粒,保持T-ZnOw所特有的四针状结构,表面接枝聚合物含量也较高,并且相比纯PtBA具有更高的热稳定性,PtBA水解中和之后,利用PANa分子链的水溶性,得到在水中能优良分散的T-ZnOw-SiO2·PANa微粒,能在水凝胶合成体系中作为增强组分。
     第九章实施酯化反应合成出丙烯酸丙炔酯(PA),然后分别将其与VAc和DMAEMA共聚,得到带有多个炔基侧基的PVAc-r-PPA和PDMAEMA-r-PPA共聚物;另外利用衰减链转移聚合和叠氮化制备了带有叠氮端基的PVAc-N3和PDMAMEA-N3聚合物,通过点击化学将PVAc-r-PPA与PDMAMEA-N3联结,PDMAEMA-r-PPA与PVAc-N3联结,再经季铵化,制备出一种主链为亲CO2的PVAc,侧链为亲水的PDMAQ,另一种主链为亲水的PDMAQ,侧链为亲CO2的PVAc两种梳形共聚物PVAc-c-PDMAQ和PDMAQ-c-PVAc,并且通过1H NMR和GPC表征了梳形共聚物的分子结构,再以这两种梳形聚合物为CO2/H2O体系的表面活性剂,利用正相乳液模板制备了轻质多孔水凝胶PAAc-gel,最后在scCO2中将ANI渗入PAAc-gel基体,通过控制反应时间、CO2压力以及ANI浓度制备出具有不同PANI渗入深度、不同导电率的渐变导电功能复合凝胶。
     第十章对全文作了总结,展望了下一步的研究工作。
A series of hydrogel-polyaniline-based composites have been prepared by atom transfer radical polymerization (ATRP), click chemistry and supercritical carbon dioxide (scCO2) techniques, some following composite systems were selected to expound the unique advantages of ATRP and click chemistry in synthesis of amphiphilic stabilizer, on the other hand, scCO2 technique has also been developed in fabrication of some specialty materials, which indicated that scCO2 was a reaction media with outstanding functions, instead of an inert solvent.
     In the first chapter, the recent research achievements and development trends on hydrogels、polyaniline(PANI)、scCO2、ATRP and click chemistry were described in great details, the feasibility and advantages of utilization of these techniques to synthesize hydrogel-PANI composites were also analyzed.
     In the second chapter, firstly, a sort of poly(vinyl acetate)-poly(2-(dimethylamino) ethyl methacrylate) block copolymer (PVAc-b-PDMAEMA) with controlled molecular weight and narrow molecular weight distribution from abundant, widely available, and inexpensive raw materials were synthesized. In the presence of the copolymer stabilizer, poly(2-hydroxyethyl methacrylate)-poly(glycidylmethacrylate)-poly(N-vinyl-2-pyrrolidone)(P(HEMA-GMA-NVP ))microspheres were synthesized by dispersion polymerization in scCO2 and these microspheres showed ideal particle size and narrow particle size distribution. Polyaniline-pentadecafluorooctanoic acid (PANI-PFOA) was also deposited on HMM hydrogel membranes which were prepared by microspheres mentioned above. Theoretic calculation result of the molar attraction constant revealed the formation process of PANI-PFOA micelle in scCO2. At the same time, the scCO2 preparation system was compared with that in water and isooctane media, the deposition using PFOA as dopant and dispersant in scCO2 could form a more uniform and compact PANI surface with fine fasciculate structure.
     In the third chapter, PANI nanoparticles were prepared in H2O/scCO2 inverse emulsion (denoted as PANI-SC) with bis(2-ethylhexyl)s-sodium sulfosuccinate (AOT) and polyether graft silicone oil (PeSi) as surfactants. Compared to PANI prepared in isooctane(denoted as PANI-CON), PANI-SC incorporated more AOT component, exhibited higher crystallinity, better dispersibility in ethanol and excellent conductivity. On the other hand, different polyaniline-montmorillonite (PANI-MMT) composites were prepared employing fluorinated-MMT and different chemical group modified MMT in H2O/CO2 inverse emulsion. The characterization results showed that aminated MMT and fluorinated-MMT could been completely exfoliated and dispersed in PANI matrix uniformly even with high MMT loading, the PANI-MMT composites revealed high thermal stability and excellent room temperature conductivity.
     In the fourth chapter, firstly, three-arm-like polymer quaternary ammonium salt with fluorinated side chains (PF-PHEMA)3-TAI-Q was synthesized, with this amphiphilic polymer as surfactant, chitosan (CS) grafted poly(2-acrylamide-2-methylpropanesulfonic acid) (PAMPS) was synthesized in H2O/CO2 inverse emulsion. The product CS-g-PAMPS exhibited high graft ratio and excellent water dispersion stability. CS-g-PAMPS hydrogels could be modified by adding PANI-MMT nanoparticles and showed more excellent conductivity, more remarkable mechanical strength, better gel swelling and higher swelling speed than pure CS and CS-g-PAMPS without PANI-MMT.
     In the fifth chapter, firstly, functionalized nylon fiber coated with camphorsulfonic acid-aniline (CSA-ANI) was prepared via click reaction, then CSA-PANI and p-perfluorous nonenoxybenzenesulfonate acid-polyaniline (PFNOBSA-PANI) were grafted on functionalized nylon fiber surface by in-situ polymerization in scCO2 with PFNOBSA as dopant and stabilizer. Carboxymethyl cellulose sodium salt (CMC) hydrogel layer could also be loaded on PANI-nylon composite fiber to be nylon-PANI-CMC three layers composite fiber.
     In the sixth chapter, firstly, four-branch-like gemini surfactant EDTA-4PFO-2Q with fluorinated side chains was prepared via click reaction to combine propynyl group modified ethylenediaminetetraacetic acid (EDTA) and azide group modified 1-Iodo-1H,1H,2H,2H-perfluorodecane (PFO), followed by quaternization. At the same time, poly(sulfonated styrene)-poly(perfluoroalkylethyl acrylate) block copolymer (PSS-b-PFOMA) was synthesized by ATRP technique. Self-assembly layer by layer process of PAMPS and poly(methacrylatoethyl dimethyl benzyl ammonium bromide) (PEMAQ) hydrogel membranes with EDTA-4PFO-2Q as emulsifier were performed on glass substrates (GS) in H2O/CO2 inverse emulsion. Finally, PANI-PSS-b-PFOMA was coated on glass GS-hydrogel membranes with PSS-b-PFOMA as stabilizer in scCO2 media, and superhydrophobic conducting composite functional substrates (CFS-sc) was obtained. Compared to CFS prepared in hexane media, CFS-sc revealed finer surface granule structure.
     In the seventh chapter, firstly, poly(methyl methacrylate)(PMMA) and poly(1H,1H,5H-octafluoropentyl methacrylate)(PFPMA) molecular chains were introduced ontoβ-cyclodextrin by ATRP random copolymerization, the productβ-CD-PMMA-r-PFPMA could be employed to stabilize dispersion polymerization of tert-butyl methacrylate (tBMA) scCO2 media and PtBMA weak gel microspheres were obtained in whichβ-CD-PMMA-r-PFPMA served as mobile crosslink "ring". The formation process and special function of weak gel microspheres were also analyzed, such as their superhydrophobic property, then PtBMA microspheres were converted into poly(acrylic acid) (PAAc) weak gel microspheres and acted as the core of composite microspheres which were coated by PANI performed in csCO2 media, finally the hollow PANI microspheres were obtained after corrosion of PAAc core.
     In the eighth chapter, firstly, a series of poly(tert-butyl acrylate) (Pg-PtBA) containing propargyl end group with different molecular weight were synthesized by ATRP, then were incorporated to azide group modified zinc oxide whisker (T-ZnOw-SiO2-N3) via click chemisty and the product T-ZnOw-SiO2·PtBA hybrid particles with high content grafted PtBA were obtained, which exihibited better thermal stability than pure PtBA. The hydrolyzed product T-ZnOw-SiO2·PANa also showed excellent water dispersibility and could serve as component added to enhance the mechanical strength of hydrogel matrix in next research stage.
     In the ninth chapter, firstly, copolymers of propargyl acrylate (PA) and VAc or DMAEMA, PVAc-r-PPA or PDMAEMA-r-PPA with a certain number of propargyl side groups were synthesized. At the same time, PVAc-N3 and PDMAMEA-N3 with azide end group were also prepared by degenerative chain transfer radical polymerization, and then comb-like copolymer PVAc-c-PDMAQ (PDMAQ was the quaternization product of PDMAEMA) or PDMAQ-c-PVAc were obtained via click chemistry to incorporate PVAc-r-PPA and PDMAMEA-N3 or PDMAEMA-r-PPA and PVAc-N3. PVAc-c-PDMAQ contained CO2-philic PVAc main chain and hydrophilic PDMAQ side chain, PDMAQ-c-PVAc contained hydrophilic PDMAQ main chain and CO2-philic PVAc side chain. With these copolymers as surfactants of CO2/H2O emulsion template, light weight and porous PAAc hydrogel were prepared, followed by immersion polymerization of aniline into this hydrogel in scCO2 media, the PANI-hydrogel functionally gradient materials could be obtained by controlling some reaction conditions, such as immersion time, CO2 pressure and aniline concentration.
     In the tenth chapter, major conclusions in whole dissertation were summarized, and the next research works were also prospected.
引文
[1]Hoffman A S. Hydrogels for biomedical applications. Adv Drug Deliv Rev.2002,54(1): 3-12
    [2]Miyata T, Jige M, Nakaminami T, Uragami T. Tumor marker-responsive behavior of gels prepared by biomolecular imprinting. P Natl Acad Sci USA.2006,103(5):1190-1193
    [3]Hennink W E. Van Nostrum C F. Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev.2002,54(1):13-36
    [4]Yeomans K. Hydrogels-very versatile materials. Chem Rev.2000,10(1):2-5
    [5]Drury J L, Mooney D J. Hydrogels for tissue engineering:scaffold design variables and applications. Biomaterials.2003,24(24):4337-4351
    [6]DeRossi D, Kajiwara K, Osada Y. Polymer gels. fundamentals and biomedical applications. Plenum Press. New York.1991
    [7]Kim J, Serpe M J, Lyon L A. Photoswitchable Microlens Arrays. Angew Chem Intl Ed. 2005,44(9):1333-1336
    [8]Dong L, Agarwal Abhishek K, Beebe David J. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature.2006,442(7102):551-554
    [9]Serpe M J, Kim J, Lyon L A. Colloidal hydrogel microlenses. Adv Mater.2004,16(2): 184-187
    [10]Kim J, Serpe M J, Lyon L A. Hydrogel microparticles as dynamically tunable microlenses. J Am Chem Soc.2004,126(31):9512-9513
    [11]Reese C E, Mikhonin A V, Kamenjicki M. Nanogel nanosecond photonic crystal optical switching. J Am Chem Soc.2004,126(5):1493-1496
    [12]Beebe D J, Moore J S, Bauer J M. Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature.2000,404(6778):588-590
    [13]Atencia J, Beebe D J. Controlled microfluidic interfaces. Nature.2005,437(7059): 648-655
    [14]Yu Q, Bauer J M, Moore J S. Responsive biomimetic hydrogel valve for microfluidics. Appl Phys Lett.2001,78(17):2589-2591
    [15]Eddington D T, Beebe D J. Flow control with hydrogels. Adv Drug Deliv Rev.2004, 56(2):199-210
    [16]Wang J P, Gan D J, Lyon L A. Temperature-jump investigations of the kinetics of hydrogel nanoparticle volume phase transitions. J Am Chem Soc.2001,123(45): 11284-11289
    [17]Jones C D, Lyon L A. Photothermal patterning of microgel/gold nanoparticle composite colloidal crystals. J Am Chem Soc.2003,125(2):460-465
    [18]Jones C D, Serpe M J, Schroeder L, Lyon L A. Microlens formation in microgel/gold colloid composite materials via photothermal patterning. J Am Chem Soc.2003,125(18): 5292-5293
    [19]Nayak S, Debord S B, Lyon L A. Investigations into the deswelling dynamics and thermodynamics of thermoresponsive microgel composite films. Langmuir.2003,19(18): 7374-7379
    [20]Nayak S, Lyon L A. Photoinduced Phase Transitions in Poly (Nisopropylacrylamide) Microgels. Chem Mater.2004,16(13):2623-2627
    [21]Nayak S, Lyon L A. Soft nanotechnology with soft nanoparticles. Angew Chem Int Ed. 2005,44(47):7686-7708
    [22]Arotcarena M, Heise B, Ishaya S. Switching the inside and the outside of aggregates of water-soluble block copolymers with double thermoresponsivity. J Am Chem Soc.2002, 124(14):3787-3793
    [23]Zhou G, Elaissari A, Delair T, Pichot C. Synthesis and characterization of surface-cyanofunctionalized poly(N-isopropylacrylamide) latexes. Colloid Polym Sci. 1998,276(12):1131-1139
    [24]Varga I, Gilanyi T, Meszaros R. Effect of Cross-Link Density on the internal structure of Poly(N-isopropylacrylamide) microgels. J Phys Chem B.2001,105(38):9071-9076
    [25]Hu T J, You Y Z, Pan C Y. The coil-to-globule-to-brush transition of linear thermally sensitive poly(N-isopropylacrylamide) chains grafted on a spherical microgel. J Phys Chem B.2002,106(26):6659-6662
    [26]Guo Z L, Wang J T, Zhu H J. Preparation of temperature sensitive ultrafine particles of poly(N-isopropyl acrylamide) by microemulsion polymerization. Acta Polym Sin.2001,4: 489-493
    [27]Yao K D, Liu J. Water in polymers. Polymer Materials Science and Engineering.1999, 15(1):5-9
    [28]Khalid M N, Agnely F, Yagoubi N. Water state characterization, swelling behavior, thermaland mechanical properties of chitosan based networks. European Journal of Pharmaceutical Sciences.2002,15(5):425-432
    [29]Han J, Liu Z J. Studies on phase transition processes of radiation synthesized hydrogels. Radiat Phys Chem.1993,42(4-6):955-958
    [30]Ju H K, Kim S Y, Lee Y M. pH/temperature-responsive behaviors of semi-IPN and comb-type graft hydrogels composed of alginate and poly (N-isopropylacrylamide). Polymer.2001,42(16):6851-6857
    [31]Flory P J. Molecular size distribution in three dimensional polymers. J Am Chem Soc. 1941,63(11):3083-3090
    [32]Ilmain F, Tanaka T, Kokufuta E. Volume transition in a gel driven by hydrogen bonding. Nature.1991,349(6308):400-401
    [33]Chen G H, Hoffman A S. Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature.1995,373(5):49-52
    [34]Tanaka T, Fillmore D J. Kinetics of swelling of gels. J Chem Phys.1979,70(3): 1214-1218
    [35]Pelton R. Temperature-sensitive aqueous microgels. Advances in Colloid and Interface Science.2000,85(1):1-33
    [36]Wu Q, Zhou S. Volume phase transition of swollen gels:discontinuous or continuous. Macromolecules.1997,30(3):574-576
    [37]Wu X, Hoffman A S, Yagger P. Synthesis and characterization of thermally reversible macroporous poly(N-isopropylacrylamide) hydrogels. J Polym Sci, Part A:Polym Chem. 1992,30(10):2121-2129
    [38]Zhuo R X, Li W. Preparation and characterization of macroporous poly (N-isopropylacrylamide) hydrogels for the controlled release of proteins. J Polym Sci, Part A:Polym Chem.2003,41(1):152-159
    [39]刘晓华,王晓工,刘德山.快速响应的温敏性聚(N-异丙基丙烯酰胺)水凝胶-Ⅰ:以 CaCO3 为成孔剂制备方法、表征及动力学研究.高分子学报.2002, (3):354-357
    [40]Norihiro K, Yasuzo S, Shihoko S. Wide-range control of deswelling time for thermosensitive poly(N-isopropylacrylamide) gels treated by freeze-drying. Macromolecules.2003,36(4):961-963
    [41]Zhang X Z, Yang Y, Chung T. Effect of mixed solvents on characteristics of poly (N-isopropylacrylamide) gels. Langmuir.2002,18(7):2538-2542
    [42]Yoshida R, Uchida K, Kaneko Y et al. Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature.1995,374(6519):240-242
    [43]Kaneko Y, Nakamura S, Kiyotaka S. Rapid deswelling response of poly (N-isopropylacrylamide) hydrogels by the formation of water release chmnel using poly(ethylene oxide) graft chains. Macromolecules.1998,31(18):6099-6105
    [44]Jain R A. The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide) (PLGA) devices. Biomaterials.2000,21(23):2475-2490
    [45]Jeong B, Bae Y H, Kim S M. Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions. Macromolecules.1999,32(21):7064-7069
    [46]Mukea K, Bae Y H, Okano T. A new thermo-sensitive hydrogels:Polyethylene oxide-dimethyl siloxane-ethylene oxide)/Poly(N-isopropylacrylamide) interpene-trating
    polymer networks I synthesis and characterization. Polym J.1990,22(3):206-217
    [47]Usuki A, Kojima Y, Kawasumi M. Synthesis and characterization of a nylon 6-clay hybrid. Polym Prepr.1987,28(2):447-449
    [48]Messersmith P B, Znidarsich F. In Nanophase and Nano-composite Materials II. MRS Symposium Proceedings 457. Materials Research Society.1997:507
    [49]Liang L, Liu J, Gong X Y. Thermosensitive poly(N-isopropylacrylamide)-clay nonocomposites with enhanced temperature response. Langmuir.2000,16(25):9895-9899
    [50]Haraguchi K, Takehisa T, Nanocomposite hydrogels:-morgamc network structurewith extraordinary a unique organic mechanical and swelling/deswelling properties. Adv Mater. 2002,14(16):1120-1124
    [51]Freitas R, Cussler E L. Temperature sensitive gels as extraction solvents. Chem Eng Sci. 1987,42(1):97-99
    [52]路元丽.导电高聚物聚苯胺的开发应用.合成树脂及塑料.1999,16(2):50-54
    [53]Huang W S, Humphrey B D. Polyaniline, a novel conducting polymer. J Chem Soc Faraday Trans.1986,82(8):2385-2400
    [54]Yang Y, Westerweele E, Zhang C, et al. Polyaniline network electrodes:Enhanced performance of polymer light emitting diodes. Adv Mater.1995,7(10):839-845
    [55]张清华,王献红.聚苯胺的合成及其光谱特性.化学世界.2001,42(5):242-244
    [56]Pron A F, Genoud. The effect of the oxidation conditions Oil the chemical polymerization of polyaniline. Synthetic Met.1988,24(3):193-201
    [57]Samui A B, Pamnkar A S, Satpute R S, et al. Synthesis and characterization of polyaniline-maleic acid salt. Synthetic Met.1998,92(2):121-126
    [58]Wud I F. Angus J R O, Lu F L. Poly-p-phenyleneamineimine:synthesis and comparison to polyaniline. J Am Soc.1987,109(12):3677-3684
    [59]Wood L Y, Mittelman W, Santerre J P, et al. Synthesis and characterization of a novel biodegradable all-timicroblal polymer. Biomateriais.2000,21(12):1235-1242
    [60]焦树强,彭霞辉,周海晖等.脉冲电流法电解合成聚苯胺.高等学校化学学报.2003,(6):1118-1121
    [61]林宪杰,徐龙君.掺杂和取代对聚苯胺导电性能影响机制的研究.物理化学学报.1996,12(2):152-155
    [62]Gong J, Cui X J, Xie Z W, Wang S G, Qu L Y. The solid-state synthesis of polyaniline/H4SiW12O4o materials. Synthetic Met.2002,129(2):187-192
    [63]黄美荣,冯为,李新贵.导电易溶磺化聚苯胺的制备及成膜.材料导报.2003,17(12):59-62
    [64]马利,汤琪.导电高分子材料聚苯胺的研究进展.重庆大学学报(自然科学版).2002,25(2):124-127
    [65]王佛松,王利祥,景遐斌.聚苯胺的掺杂反应.武汉大学学报.1993,(6):65-73
    [66]Akheel A S, Maravattickal K D. Review, Polyaniline-A novel polymeric material. Talanta. 1991,38(8):815-837
    [67]Genis E M, Boyle A, Lapkowski M, et al. Polyaniline, a historical survey. Synthetic Met. 1990,36(2):139-182
    [68]Manohar S K, MacDiarmid A G, Cromack K R, et al. N-subsitued derivatives of polyaniline. Synthetic Met.1989,29(1):349-356
    [69]Zeng X R, Ko T M. Structures and properties of chemically reduced polyanilines. Polymer.1998,39(5):1187-1195
    [70]MacDiarmid A, Chiang J C, Halpern M. Polyaniline, interconversion of metallic and insulating forms. Mol Cryst Liq Cryst.1985,121:173-180
    [71]Kohlman R S, Tanner D B, Ihas Gco, et al. Inhomogeneous insulator-metal transition in conducting polymers. Synthetic Met.1997,84(1-3):709-714
    [72]Phang S W, Hino T, Abdullah M H, et al. Applications of polyaniline doubly doped with p-toluene sulphonic acid and dichloroacetic acid as microwave absorbing and shielding materials. Mater Chem Phys.2007,104(2-3):327-335
    [73]封伟,吴洪才.可溶导电聚苯胺的合成及其性能研究.功能高分子学报.1998,11(2):237-240
    [74]Liu M J, Tzou K, Gregory R V. Investigations on the effect of 5-sulfosalicylic acid on the properties of polyaniline. Synthetic Met.1993,58(3):309-324
    [75]陆抿,吴益华,姜海复.高电导率聚苯胺.功能材料,1998,29(5):483-485
    [76]Martins C, Scandiucci P, De F, et al. Physical and conductive properties of the blend of polyaniline/dodecylbenzenesulphonic acid with PSS. Polym Bull.2003,49(5):379-386
    [77]郑裕东,李吉波.聚苯胺热掺杂十二烷基苯磺酸的反应过程及其结构.高等学校化学学报.1997,(18):495-497
    [78]De Souza, Jr F G, Soares B C. Methodology for determination of Pani DBSA content in conductive blends by using UV-Vis spectrometry. Polym Test.2006,25(4):512-517
    [79]Zhang L. The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence oil-naphthalenesulfonic acid. Electrochim Acta.2007,52(24):6969-6975
    [80]Saravanan S, Joseph Mathai C, Anantharaman M R, et al. Investigations on the electrical and structural properties of polyaniline doped with camphor sulphonic acid. J Phys Chem Solids.2006,67(7):1496-1501
    [81]刘少琼,黄河.樟脑磺酸掺杂聚苯胺的性能研究.功能材料.2001,32(5):512-513
    [82]Zhang L, Dong S W. The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of camphorsulfonic acid. J Electroanal Chem.2004,56(2): 189-194
    [83]Lapkowski M, Barth M, Lefrant S, et al. Changes in catalytic properties of substituted and unsubstituted heteropolyacids in conductive polymer matrix. Synthetic Met.1995, 69(1-3):127-128
    [84]Ma X F, Wang M, Li G, et al. Preparation, physico chemical characterization, analytical applications and electrical conductivity measurement studies of all'organic-inorganic' composite cation-exchanger,Polyaniline Sn(1V) phosphate. React Funct Polym.2006, 66(12):1649-1663
    [85]景遐斌,唐劲松,王佛松.掺杂态聚苯胺链结构的研究.中国科学(B辑).1990,(1):15-20
    [86]Wang L X, Jing X B, Wang F S. Polytoluidines with different degrees of oxidation and their doping with HC1. Synthetic Met.1989,29(1):363-365
    [87]Moon G H, Seung S I. Electrical and structural analysis of conductive polyaniline/polyimide blends. J Appl Polym Sci.1999,71(13):2169-2174
    [88]唐建国,胡克鳌.聚合物基复合材料研究进展.高分子通报,1999,(12):40-45
    [89]蒋殿录,翁永良,童汝亭.聚苯胺/膨润土纳米复合材料的合成与表征.物理化学学报.1999,15(1):69-75
    [90]Tang B Z, Geng Y H. Processible nanomaterials with high conductivity and magnetizability Preparation and properties of maghemite/polyaniline nanocomposite films. Pure & Applied Chemistry.2001,72(1-2):157-162
    [91]Gangopadyay R, Amitabha D. Conducting polymer nanocompotises:a brief review. Chem Mater.2000,12(3):608-613
    [92]刘皓,谢洪泉.聚苯胺/聚乙烯醇导电复合膜的制备及性质研究.高分子学报.1995,(6):693-698
    [93]Mauro A S, Olacir A A, Roselena F, Mirabel C R, Marco A D P. Antistatic coating and electromagnetic shielding properties of a hybrid material based on polyaniline/organoclay nanocomposite and EPDM rubber. Synthetic Met.2006,156 (13):1249-1255
    [94]曾幸荣,潘莉芳,张淳.PANI-PVc原位复合材料的制备及性能.高分子材料科学与工程.1996,12(5):53-56
    [95]Moon G H, Seung S I. Electrical and structural analysis of conductive polyaniline/polyimide blends. J Appl Polym Sci.1999,71(13):2169-2178
    [96]Sudha J D, Reena V L, PAVITHRAN C. Facile Green Strategy for Micro/Nano Structured Conducting Polyaniline-Clay Nanocomposite via Template Polymerization Using Amphiphilic Dopant,3-Pentadecyl Phenol 4-Sulphonic Acid. J Polym Sci, Part B: Polym Phys.2007,45(3):2664-2673
    [97]胡红旗,陈鸣才,黄玉惠,从广民.超临界CO2流体的性质及其在高分子科学中的应用.化学通报.1997,(12):20-26
    [98]Chaudhary A K, Beckman E J, Russell A J. Rational control of polymer molecular and dispersity during enzyme-catalyzed polyester synthesis in supercritical fluids. J Am Soc. 1995,117(13):3728-3733
    [99]Kumar S K, Chhabria S P, Suter U W. Solubility of Polystyrene in Supercritical Fluids. Macromolecule.1987,20(10):2550-2557
    [100]Brennecke J F, Tomasko D L, Eckert C A. Fluorescence spectroscopy studies of dilute supercritical solutions. Ind Eng Chem Res.1990,29(8):1682-1690
    [101]Mawson S, Johnston K P, Desimone J M. Formation of Poly (1,1,2,2-tetrahydroperfluorodecylacrylate) submicron fibers and particles from supercritical carbon dioxide solutions. Macromolecular.1995,28(9):3182-3189
    [102]Watkins J J, MoCarthy T J. Polymerization in supercritical fluid-swollen polymers:A new route to polymer blends. Macromolecules.1994,27(17):4845-4847
    [103]Guan Z B, Combes J R, Menceloglr Y Z. Homogeneous free radical polymerizations in supercritical carbon dioxide:2 thermal decomposition of 2, 2'-azobis(isobutyronitrile)..Macromolecules.1993,26(11):2663-2669
    [104]Guan Z B, Combes J R, DeSimone J M Homogeneous free radical polymerizations in supercritical carbon dioxide:3. Telomerization of 1,1-Difluoroethylene in Supercritical Carbon Dioxide. Macromolecules.1994,27(3):865-867
    [105]Hagiwara M, Mitsui H, Machi S, et al. Liquid carbon dioxide as a solvent for the radiation polymerization of ethylene. J Polym Sci Part A.1968,6(3):603-608
    [106]Hagiwara M, Mitsui H, Machi S, et al. Kinetics of the y-radiation induced polymerization of ethylene in liquid carbon dioxide. J Polym Sci, Part A.1968,6(3):609-621
    [107]DeSimone J M, Guan Z, Elsbemd C S. Synthesis of fluoropolymers in supercritical carbon dioxide. Science.1992,257(5072):945-947
    [108]DeSimone J M, Maury E E, Menceloglu Y Z, et al. Dispersion polymerizations in supercritical carbon dioxide. Science.1994,265(5170):356-359
    [109]韩布兴.超临界流体科学与技术.北京.中国石化出版社.2005
    [110]Shieh Y T, Su J H, Manivarman G, et al. Interaction of supercritical carbon dioxide with polymers I:Crystalline polymers. J Appl Polym Sci.1996,59(4):695-705
    [111]Shieh Y T, Su j H, Manivannan G, et al. Interaction of supercritical carbon dioxide with polymers Ⅱ:Amorphous polymers. J Appl Polym Sci.1996,59(4):707-717
    [112]Berens A R, Huvard G S. Application of compressed carbon dioxide in the corporation of additives into polymers. J Appl Polym Sci.1992,46(2):231-242
    [113]Chiou J S, Bariow J W, Paul D R. Plasticization of glassy polymers by CO2. J Appl Polym Sci.1985,30(6):2633-2642
    [114]Lee M, Tzoganakis C, Park C B. Measurements and modeling of PS/supercritical CO2
    solution viscosities. Polym Sci Eng.1999,39(1):99-109
    [115]Zhang Y, Gangwani K K, Lemert R M. Sorption and swelling of block copolymers in the presence of supercritical fluid carbon dioxide. J Supercrit Fluids.1997,11(1-2):115-134
    [116]Goel S K, Beckman E J. Modelling the swelling of crosslinked elastomers by supercritical fluids. Polymer.1992,33(23):5032-5039
    [117]Sand M L. Method for inpregnating a thermoplastic polymer. US:4598006.1986
    [118]Shenoy S L, Kaya P, Erkey C, et al. Synthesis of conductive elastomeric foams by an in situ polymerization of pyyrole using supercritical carbon dioxide and ethanol solvents. Synthetic Met.2001,123(3):509-514
    [119]Fu Y, Palo D R, Erkey C, et al. Synthesis of conductive polypyrrole/polyurethane foams via a supercritical fluid process. Macromoleeules.1997,30(24):7611-7613
    [120]Nazem N, Taylor L T, Rubira A F. Metallized poly(etherether ketone)films achieved by supercritical fluid impregnation of a silver precursor followed by thermal curing. J Supercrit Fluids.2002,23(1):43-57
    [121]Rosolovsky J, Boggess R K, Rubira A F, et al. Supercritical fluid infusion of silver into polyimide films of varying chemical composition. Mater Res.1997,12(11):31277-3133
    [122]Schlenker W, Werthemann D, Liechti P, el al. Disperse dyeing of hydropbobic textiles with azo dyes in supercritical carbon dioxide. EP:474600.1992
    [123]Goel S K, Beckman E J, Nucleation and growth in microcellular materials:Supercritical CO2 foaming agent. AIChE J.1995,41(2):357-367
    [124]Krause B, Diekmann K. Open nanoporous morphologies from polymeric blends by carbon dioxide foaming. Adv Mater.1995,7(12):1041-1044
    [125]Siripurapu S, Gay Y J, Royer J R, et al. Generation of microcellular foams of PVDF and its blends using supercritical carbon dioxide in a continuous process. Polymer.2002, 43(20):5511-5520
    [126]Matsuyama H, Yano H, Maki T, el al. Formation of porous rim membrane by phase separation with supercritical CO2. J Membr Sci.2001,194(2):157-163
    [127]Matsuyama H, Kim M, Lloyd D R. Effect of extraction and drying OB the structure of microporous polyethylene membranes prepared via thermally induced phase separation. J Membr Sci.2002,204(1-2):413-419
    [128]Dixon D J, Luna B G, Johnston K P. Microcellular microspheres and microbalioons by precipitation with a vapour-liquid compressed fluid antisolvent. Polymer.1994,35(18): 3998-4005
    [129]Muth O, Hirth T, Vogel H. Polymer Modification by Supercritical Impregnation. J Supercrit Fluids.2000,17(1):65-72
    [130]Watkins J J, McCarthy T J. Polymerization in Supercritical Fluid-Swollen Polymers:A
    New Route to Polymer Blends. Macromolecules.1994,27(17):4845-4847
    [131]Watkins J J, McCarthy T J. Polymerization of Styrene in Supercritical CO2-Swollen Poly(chlorotrifluoroethylene). Macromolecules.1995,28(12):4067-4074
    [132]Liu Z M, Song L P, Han B X. Grafting of methyl methylacrylate onto isotactic polypropylene film using supercritical CO2 as a swelling agent. Polymer.2002,43(4): 1183-1188
    [133]Li D, Han B X, Liu Z M. Grafting of 2-hydroxyethyl methacrylate onto isotactic polypropylene using supercritical CO2 as a solvent and swelling agent. Macromol Chem Phys.2001,202(11):2187-2194
    [134]Galia A, Spadaro G, Filardo G. grafting of malefic anhydride onto isotactic polypropylene in the presence of supercritical carbon dioxide as a solvent and swelling fluid. Macromolecules.2004,37(12):4580-4589.
    [135]Singley E J, Liu W, Beckman E J. Phase behavior and emulsion formation of novel fluoroether amphiphiles in carbon dioxide. Fluid Phase Equilibr.1997,128(1-2):199-219
    [136]刘会洲,郭晨,余江等.微乳液萃取技术及应用.科学出版社.2005
    [137]Percec V, Barboiu B. "Living" Radical Polymerization of Styrene Initiated by Arenesulfonyl Chlorides and CuI(bpy)nCl. Macromolecules.1995,28(23):7970-7972
    [138]Yuan J Y, Pan C Y, Tang B Z. "Living" free radical ring-opening polymerization of 5,6-benzo-2-methylene-1,3-dioxepane using atom transfer radical polymerization method. Macromolecules.2001,34(2):211-214
    [139]Chiefari J, Rizzardo E, Thang S H. Living free-radical polymerization by reversible addition-fragmentation chain transfer:the RAFT process. Macromolecules.1998,31(16): 5559-5562
    [140]Krzysztof M, Simion C, Scott G G, et al. Controlled Radical Polymerization in the Presence of Oxygen. Macromolecules.1998,31(17):5967-5969
    [141]李增昌,程恂,吴承佩.微波辅助制备PMMA为壳层PNIPAM为核的温度响应型粒子.全国高分子学术论文报告会论文集.1997,1:a253
    [142]王文俊,董宁平.通过原子转移自由基聚合对聚氯乙烯进行化学改性.高分子学术论文报告会论文集.1999,上册:a93
    [143]Janata M, Masar B, Toman L, et al. Multifunctional ATRP macroinitiators for the synthesis of graft copolymers. React Funct Polym.2001,50(1):67-75
    [144]Masar B, Janata M, Vicek E, et al. Atom transfer radical polymerization grafting of highly functionalized polystyrene and poly(4-methylstyrene)macroinitiators with tert-butyl acrylate. J Appl Polym Sc.2002,86(12):2930-2936
    [145]Barre G, Taton D, Lastecoueres D, et al. "Closer to me" ideal recoverable catalyst for atom transfer radical polymerization using a molecular non-fluorous thermorphic system.
    J Am Chem Soc.2004,126(25):7764-7765
    [146]Tang W, Matyjaszewski K. Effects of Initiator Structure on Activation Rate Constants in ATRP. Macromolecules.2007,40(6):1858-1863
    [147]Patten T E, Matyjaszewski K. Atom transfer radical polymerization and the synthesis of polymeric materials. Adv Mater.1998,10(12):901-915
    [148]Ma Q G, Karenl W. The preparation of t-butyl acrylate, methyl acrylate, and styrene block copolymers by atom transfer radical polymerization:Precursors to amphiphilic and hydrophilic block copolymers and conversion to complex nanostructured materials. J Polym Sci, Part A:Polym Chem.2000,38:(S1) 4805-4820
    [149]Shen Y Q, Robert P. Packed column reactor for continuous atom transfer radical polymerization:Methyl methacrylate polymerization using silica gel supported catalyst. Macromol Rapid Commun.2000,21(14):956-959
    [150]Senkal, Filiz B, Hizal. Atom transfer radical polymerization through N-chlorosulfonamides. J Polym Sci, Part A:Poly Chem.2001,39(16):2691-2695
    [151]Haddleton D M, Jasieczek C B. Atom transfer radical polymerization of methyl methacrylate initiated by alkyl bromide and 2-pyridinecarbaldehyde lmine copper(1)complexes. Macromolecules.1997,30(7):2190-2193
    [152]Zhang H Q, Rob Vande Lide. Atom transfer radical polymerization of n-butyl acrylate catalyzed by CuBr/N-(n-hexyl)-2-pyfidylmethanimine. J Polym Sci, Part A:Polym Chem. 2002,40(21):3549-3561
    [153]Cheng G L, Hu C E, Ying S K. A novel initiator system of atom transfer radical polymerization for styrene. China Synth Rubber Ind.1997,20(2):116-121
    [154]Cheng G L, Hu C P, Ying S K. Controlled radical polymerization of methyl methacrylate in the presence of CuX/phen complexes and alkyl halides. Polymer.1999,40(8): 2167-2169
    [155]Cheng G K, Hu C P, Ying S K. Kinetics of heterogeneous atom transfer radical polymerization of styrene by using bis(1,10-phenanthroline)copper bromide. Macromol Rapid Commun.1999,20(6):303-307
    [156]Wan X L, Ying S K. Living radical bulk polymerization catalyzed by CuCl/BDE. China Synth Rubber Ind.1999,22(1):53-53
    [157]Tang W, Matyjaszewski K. Effect of Ligand Structure on Activation Rate Constants in ATRP. Macromolecules.2006,39(15):4953-4959
    [158]Kotani Y, Kamigaito M, Sawamoto M. FeCp(CO)2I:A phosphine-free half-metallocene-type iron(ii) catalyst for living radical polymerization of styrene. Macromolecules.1999,32(20):6877-6880
    [159]Kotani Y Kamigaito M, Sawamoto M. Living radical polymerization of styrene by
    half-metallocene iron carbonyl complexes. Macromolecules.2000,33(10):3543-3549
    [160]Kotani YKamigaito M, Sawamoto M. Living radical polymerization of para-substituted styrenes and synthesis of styrene-based copolymers with rhenium and iron complex catalysts. Macromolecules.2000,33(18):6746-6751
    [161]Sawamoto M, Kamigation M. Interaction in information retrieval:Selection and effectiveness of search terms. J Am Soc Info Sci.1997,48(8):741-761
    [162]王晓松,罗宁,应圣康.CuX/bpy催化体系中甲基丙烯酸甲酯的原子转移自由基聚合.功能高分子学报.1998,11(1):1-8
    [163]Xia J H, Johnson Terri, Scott G, et al. Atom Transfer Radical Polymerization in supercritical carbon dioxide. Macromolecules.1999,32(15):4802-4805
    [164]Kathryn L B, Sohyun B, et al. Atom Transfer Radical Polymerization of 2-hydroxyethyl methacrylate. Macromolecules.1999,32(18):5772-5776
    [165]万小龙,应圣康.Cu0/2,2'-联吡啶/CCl4和CuCl2/2,2'-联吡啶/偶氮二异丁腈催化引发体系中的苯乙烯“活性”自由基乳液聚合研究.高分子学报.2000,(1):27-31
    [166]Carine Burguiere, Christophe Chassenieux, Bernadette Charleux. Characterization of aqueous micellar solutions of amphiphilic block copolymers of poly(acrylic acid)and polystyrene prepared via ATRP. Toward the control of the number of particles in emulsion polymerization. Polymer.2003,44(3):509-518
    [167]Okubo M, Minami H, Zhou J. Preparation of block copolymer by atom transfer radical seeded emulsion polymerization. Colloid Polym Sci.2004,282(7):747-752
    [168]谭惠民,罗运军.树枝形聚合物.北京,化学工业出版社.2002
    [169]唐新德,范星河,陈小芳,周其凤.基于ATRP技术的多嵌段共聚物研究进展.高分子学报.2006,(6):36-43
    [170]牛余忠,陈厚,陈健等.原子转移自由基聚合与高分子构筑.高分子通报.2006,8:70-78
    [171]Hartmuth C K, Finn M G, Sharploss K B. Click chemistry:diverse chemical function fi'om a few good reactions. Angew Chem Int Ed.2001,40(11):2004-2021
    [172]Huisgen R. Mechanism of 1,3-dipolar cycloadditions reply. J Org Chem.1968,33(6): 2291-2297
    [173]Patton G C. Development and Applications of Click Chemistry, http:// chemistry.illinois.edu/research/organic/seminar_extracts/2004_2005/08_Patton_Abstract. pdf
    [174]Malkoch M, Thibauh R J, Hawker C J, et al. Orthogonal Approaches to the simultaneous and cascade functionalization of macromolecules using click chemistry. J Am Chem Soc. 2005,127(42):14942-14949
    [175]Altintas O, Yam kul B, Tunca U, et al. A3-type star polymers via click chemistry. J
    Polym Sci, Part A:Polym Chem.2006,44(21):6458-6465
    [176]Thibauh R J, Takizawa K, Hawker C J, et al. A versatile new monomer family: functionalized 4-vinyl-1,2,3-triazoles via click chemistry. J Am Chem Soc.2006,128(37): 12084-12085
    [177]Dumlaz H, Hizal G, Tunca U, et al. One-Pot Synthesis of ABC Type Triblock Copolymers via in situ Click [3+2] and Diels-Alder [4+2] Reactions. Macromolecules. 2007,40(2):191-198
    [178]Riva R, Schmeits S, Christine J, et al. Combination of ring-opening polymerization and "click chemistry":toward functionalization and grafting of poly(ε-caprolactone). Macromolecules.2007,40(4):796-803
    [179]Such K G, Tjipto E, Caruso F, et al. Ultrathin, responsive polymer click capsules. Nano Lett.2007,7(6):1706-1710
    [180]Opsteen J A, Brinkhuis R P, Vail Hest J C M, et al. Clickable polymersomes. Chem Commun.2007, (30):3136-3138
    [181]Vogt A P, Sumerlin B S. An efficient route to macromonomers via ATRP and click chemistry. Macromolecules.2006,39(16):5286-5292
    [182]Tsarevsky N V, Benchefif S A, Matyjaszewski K. Graft copolymers by a combination of ATRP and two different consecutive click reactions. Macromolecules.2007,40(13): 4439-4445
    [183]Lutz J F, BOrner H G, Weichenhan K. Combining Atom Transfer Radical Polymerization and Click Chemistry:A versatile method for the preparation of end-functional polymers. Macromol Rapid Commun.2005,26(7):514-518
    [184]Gao H F, Matyjaszewski K. Synthesis of star polymers by a combination of ATRP and the "Click" coupling method. Macromolecules.2006,39(15):4960-4965
    [185]Finn M G, Koberstein J T, Turro N J, et al. Synthesis of degradable model networks via ATRP and Click Chemistry. J Am Chem Soc.2006,128(20):6564-6565
    [186]Johnson J A, Finn M G, Turro N J, et al. Synthesis of photocleavable linear macromonomers by ATRP and star macromonomers by a tandem ATRP-click reaction: precursors to photodegradable model networks. Macromolecules.2007,40(10): 3589-3598
    [187]Ladmiral V, Mantovani G, Haddleton D M, et al. Synthesis of neoglycopolymers by a combination of "Click Chemistry" and Living Radical Polymerization. J Am Chem Soc. 2006,128(14):4823-4830
    [188]Rozkiewiez D I, Jafiezewski D, Reinhoudt D N. Click Chemistry by microcontact printing. Angew Chem Int Ed.2006,45(32):5292-5296
    [189]Sun X L, Stabler C L, Chalkof E L. Carbohydrate and Protein immobilization onto solid
    surfaces by sequential Diels-Alder and Azide-Alkyne cycloadditions. Bioconjugate Chem. 2006,17(1):52-57
    [190]OReilly R K, Wooley K L, Hawker C J, et al. Functionalization of Micelles and Shell Cross-linked Nanoparticles Using Click Chemistry. Chem Mater.2005,17(24): 5976-5988
    [191]White M A, Johnson J A, Turro N J, et al. Toward the syntheses of universal ligands for metal oxide surfaces:controlling surface functionality through Click Chemistry. J Am Chem Soc.2006,128(35):11356-11357
    [192]Sarbu T, Styranec T, Beckman E J. Non-fluorous polymer with very high solubility in supercritical CO2 down to low pressures. Nature.2000,405(6783):165-168
    [193]Tan B, Woods H. M, Licence P, Howdle S. M, Cooper A I. Synthesis and CO2 Solubility studies of Poly(ether carbonate)s and Poly(ether ester)s produced by step growth polymerization. Macromolecules.2005,38(5):1691-1698
    [194]Blatchford M. A, Raveendran P, Wallen S L. Raman spectroscopic evidence for cooperative C-H…O interactions in the Acetaldehyde-CO2 Complex. J Am Chem Soc. 2002,124(50):14818-14819
    [195]Tan B, Cooper A I. Functional Oligo(vinyl acetate) CO2-philes for solubilization and emulsification. J Am Chem Soc.2005,127(25):8938-8939
    [196]Shen Z, McHugh M A, Xu J. CO2-solubility of oligomers and polymers that contain the carbonyl group. Polymer.2003,44(11):1491-1499
    [197]Bray C L, Tan B, Wood C D. High-throughput solubility measurements of polymer libraries in supercritical carbon dioxide. J Mater Chem.2005,15(4):456-459
    [198]Xia J, Paik H, Matyjaszewski K. Polymerization of vinyl acetate promoted by iron complexes. Macromolecules.1999,32(25):8310-8314
    [199]Wang J S, Matyjaszewski K. Controlled/living radical polymerization halogen atom transfer radical polymerization promoted by a Cu(Ⅰ)/Ca (Ⅱ) redox process. Macromolecules.1995,28(23):7901-7910
    [200]Hsiao Y L, DeSimone J M. Polymerization of methyl methacrylate in supercritical carbon dioxide:influence of helium concentration on particle size distribution. J Polym Sci, Part A:Polym Chem.1997,35(10):2009-2013
    [201]Hsiao Y L, Maury E E, DeSimone J M. Dispersion polymerization of methyl methacrylate stabilized with poly(1,1-dihydroperfluorooctyl acrylate) in supercritical carbon dioxide. Macromolecules.1995,28(24):8159-8166
    [202]Hiroshi Shiho, DeSimone J M. Dispersion polymerization of acrylonitrile in supercritical carbon dioxide. Macromolecules.2000,33(5):1565-1569
    [203]Victor M, Stefan M, Thierry T, Francois C, Aymonier C. Dendritic Core-Shell
    Macromolecules Soluble in Supercritical Carbon Dioxide. Macromolecules.2006,39(12): 3978-3979
    [204]Wang B, He J, Sun D H, Zhang R, Han B X, Huang Y, Yang G Y, Preparation of β-cyclodextrin-polyaniline complex in supercritical CO2. Eur Polym J.2005,41(10): 2483-2487
    [205]Palaniappan S, Sairam M. Benzoyl Peroxide as a Novel Oxidizing Agent in a Polyaniline Dispersion:Synthesis and Characterization of a Pure Polyaniline-Poly(vinyl pyrrolidone) Composite. J Appl Polym Sci,2008,108(2):825-832
    [206]Palaniappan S. Benzoyl peroxide oxidation route to polyaniline salts. Polym Adv Technol. 2004,15(3):111-117
    [207]http://www2.ormecon.de
    [208]Luis M. G, Octavio S I, Julio L B, Consuelo P and Ignacio Medina Limiting Binary Diffusivities of Aniline, Styrene, and Mesitylene in Supercritical Carbon Dioxide. J Chem Eng Data.2007,52(4):1286-1290
    [209]Stejskal J R, Gilbert G. Polyaniline:Preparation of a Conducting Polymer. Pure Appl Chem.2002,74(5):857-867
    [210]http://webbook.nist.gov
    [211]Okada A, Kawasumi M, Kurauchi T. Synthesis of nylon 6-clay nanocomposites. Polym Prepr.1987,28(2):447-448
    [212]Usuki A, Kawasumi M, Kojima Y. Swelling behavior of MMT cation ex changed for ω-amino acids by e-caprolactam. Mater Res.1993,8(5):1174-1178
    [213]漆宗能,李强,赵竹第等.一种聚酰胺/粘土纳米复合材料及其制备方法.CN96105362.3.1996
    [214]Usuki A, Kojima Y, Kawasumi M. Synthesis of nylon 6-clay hybrid. Mater Res.1993, 8(5):1179-1184
    [215]Kojima Y, Usuki A, Kawasumi M. Mechanical properties of nylon 6-clay hybrid. Mater Res.1993,8(5):1185-1189
    [216]Moet A, Akelah A. Polymer-clay nanocomposites:polystyrene grafted onto montmorillonite interlayers. Mater Lett.1993,18(1-2):97-102
    [217]Moet A, Akelah A. Organophilic rubber-montmorillonite nanocomposites. Mater Lett. 1995,22(1-2):97-102
    [218]Chen G M, Qi Z N, Shen D Y. Shear-induced ordered structure in PS/clay nanocomposite. J Mater Res.2000,15(2):351-356
    [219]陈光明,漆宗能.聚苯乙烯/蒙脱土纳米复合材料中的剪切诱导有序结构.高等学校化学学报.1999,20:1987-1989
    [220]Wu J H, Lerner M M. Structural, thermal, and electrical characterization of layered
    nanocomposites derived from sodium-montmorillonite and polyethers. Chem Mater.1993, 5(6):835-838
    [221]Vaia R A, Jandt K D, Kramer E J. Kinetics of Polymer Melt Intercalation. Macromolecules.1995,28(24):8080-8085
    [222]Vaia R A, Giannielis E P. Polymer Melt Intercalation in Organically-Modified Layered Silicates:Model Predictions and Experiment. Macromolecules 1997,30(15):8000-8009
    [223]Vaia R A, Ishii H, Giannielis E P. Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem Mater. 1993,5(12):1694-1696
    [224]Vaia R A, Vasudevan S, Krawiec W. New polymer electrolyte nanocomposites:Melt intercalation of poly(ethylene oxide) in mica-type silicates. Adv Mater.1995,7(2): 154-156
    [225]Pinnavaia T J. Interfacial Effects on the Reinforcement Properties of Polymer-Organoclay Nanocomposites. Chem Mater.1996,8(8):1584-1587
    [226]Kato C. Clay Sci. Synthesis and characterization of PA6/clay nanocomposits prepared by melt intercalation.1989,7(1):243-249
    [227]刘立敏,乔放,朱晓光,漆宗能等.尼龙6/蒙脱土纳米复合材料的等温结晶动力学研究.高分子学报.1998,(3):274-279
    [228]Zhao Q, Samulski E T. Supercritical CO2-mediated intercalation of PEO in clay. Macromolecules.2003,36(19):6967-6969
    [229]Zhao Q, Samulski E T. In situ polymerization of PMMA/clay nanocomposites in supercritical CO2. Macromolecules.2005,38(19):7967-7971
    [230]Eastoe J, Paul A, Nave S, Steytler D C, Robinson B H, Rumsey E, Thorpe M, Heenan R K. Micellization of Hydrocarbon Surfactants in Supercritical Carbon Dioxide. J Am Chem Soc.2001,123(5):988-989
    [231]Liu, J. C., Shervani, Z., Raveendran, P. Ikushima, Y. Micellization of sodium bis (2-ethylhexyl) sulfosccinate in supercritical CO2 with fluorinated co-surfactant and its solubilization of hydrophilic species. J Supercrit Fluids.2005,33(2):121-130
    [232]Fink R, Beckman E J. Phase behavior of siloxane-based amphiphiles in supercritical carbon dioxide. J Supercrit Fluids.2000,18(2):101-110
    [233]Kemmere M F, Meyer T. Supercritical Carbon Dioxide in Polymer Reaction Engineering. WILEY-VCH Verlag GmbH & Co. KGaA:Weinheim.2005
    [234]Zhou Q, Wang J W, Ma Y L, Cong C B, Wang F. The relationship of conductivity to the morphology and crystallinity of polyaniline controlled by water content via reverse microemulsion. Colloid Polym Sci.2007,285(4):405-411
    [235]Stejskala J, Omastova M, Fedorova S. Polyaniline and polypyrrole prepared in the
    presence of surfactants:a comparative study. Polymer.2003,44(5):1353-1358
    [236]Mani A, Selvan S T, Phani K L N, Pitchumani S. Studies on the generation of polyaniline microstructures using microemulsion polymerization. J Mater Sci Lett.1998,17(5): 385-387
    [237]Zhang L, Wan M. Self-Assembly of Polyaniline-From Nanotubes to Hollow Microspheres. Adv Funct Mater.2003,13(10):815-820
    [238]Yang C H, Chih Y K, Cheng H E, Chen C H. Nanofibers of self-doped polyaniline. Polymer.2005,46(24):10688-10698
    [239]Voorn D J, Ming W, van Herk A M. Polymer-Clay Nanocomposite Latex Particles by Inverse Pickering Emulsion Polymerization Stabilized with Hydrophobic Montmorillonite Platelets. Macromolecules.2006,39(6):2137-2143
    [240]Sun Y H, Luo Y F, Jia D M, Preparation and properties of natural rubber nanocomposites with solid-state organomodified montmorillonite. J Appl Polym Sci.2008,107(5): 2786-2792
    [241]Kim Y H, Foster C, Chiang J C, Heeger A J. Photoinduced localized charged excitations in polyaniline. Synthetic Met.1988,26(1):49-59
    [242]Inoue H, Yoneyama H, Electropolymerization of aniline intercalated in montmorillonite. J Electroanal Chem.1987,233(2):291-294
    [243]Wu Q, Xue Z, Qi Z, Wang F. Synthesis and characterization of PAn/clay nanocomposite with extended chain conformation of polyaniline. Polymer.2000,41(6):2029-2032
    [244]Do Nascimento G M, Constantino V R L, Landers R, Temperini M L A. Spectroscopic Characterization of a New Type of Conducting Polymer-Clay Nanocomposite. Macromolecules.2002,35(20):7535-7537
    [245]Yoshimoto S, Ohashi F, Ohnishi Y, Nonami T. Temperature dependence of the electrical properties of single-crystals of dithiophene-tetrathiafulvalene (DT-TTF). Synthetic Met. 2004,145(2-3):265-268
    [246]Prashanth K V H, Tharanathan R N. Chitin/chitosan:modifications and their unlimited application Potential-an overview. Trends Food Sci Tech.2007,18(1):117-131
    [247]Khaled F E, Safaa M E, Aly S A. Preparation and application of chitos and poly (methacrylicacid)graft copolymer. Carbohyd Polym.2006,66(2):176-183
    [248]Reining B, Keul H, Hocker H. Block copolymers comprising poly(ethylene oxide) and poly(hydroxyethyl methacrylate) blocks:synthesis and characterization. Polymer.2002, 43(11):3139-3145
    [249]Chen Y, Shen Z, Barriau E, Kautz H, Frey H. Synthesis of Multiarm Star Poly(glycerol)-block-Poly(2-hydroxyethyl methacrylate). Biomacromolecules.2006,7(3): 919-926
    [250]Guo W, Fung B M, Christian S D. NMR Study of Cyclodextrin Inclusion of Fluorocarbon Surfactants in Solution. Langmuir.1992,8(2):446-451
    [251]Li W, Li Z Y, Liao W S, Feng X D. Chemical modification of biopolymers-mechanism of model graft copolymerization of chitosan. J Biomater Sci-Polym Edn.1993,4(5):557-559
    [252]张国栋,冯新德,铈盐作用下甲基丙烯酸甲酯在壳聚糖模型化合物上接枝聚合机理研究,高分子学报,1998,(4):505-508
    [253]Goklen K E, Hatton T A. Protein Extraction Using Reverse Micelles. Biotechnol Progr. 1985,1(1):69-74
    [254]沈一丁.高分子表面活性剂.化学工业出版社.2002
    [255]Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T. Compositional Effects on Mechanical Properties of Nanocomposite Hydrogels Composed of Poly (N,N-dimethylacrylamide) and Clay. Macromolecules.2003,36 (15):5732-5741
    [256]Liang L, Liu J, Gong X Y. Thermosensitive Poly(N-isopropylacrylamide)-Clay Nanocomposites with Enhanced Temperature Response. Langmuir.2000,16(25): 9895-9899
    [257]KYUNG W O, KYUNG H H, SEONG H K. Electrically Conductive Textiles by in situ Polymerization of Aniline. J App Polym Sci.1999,74(8),2094-2101
    [258]Anbarasan R, Muthumani N, Vasudevan T, Gopalan A, WEN T C. Chemical Grafting of Polyaniline onto Nylon66 Fiber in Different Media, J App Polym Sci.2001,79(7): 1283-1296
    [259]Hong Kg H, Oh K W, Kan T J. Polyaniline-Nylon 6 Composite Fabric for Ammonia Gas Sensor. J App Polym Sci.2004,92(1):37-42
    [260]Chandran A S, Narayanankutty S K, An elastomeric conducting composite based on polyaniline coated nylon fiber and chloroprene rubber. Eur Polym J.2008,44 (7): 2418-2429
    [261]Kolb H C, Finn M G, Sharpless K B. Click Chemistry:Diverse chemical cunction froma few goodreactions. Angew Chem Int Ed.2001,40(11):2004-2021
    [262]Golas P L, Matyjaszewski K. Click Chemistry and ATRP:A Beneficial Union for the Preparation of Functional Materials. QSAR Comb Sci.2007,26(11-12):1116-1134
    [263]Gao H F, Matyjaszewski K. Synthesis of Star Polymers by a Combination of ATRP and the "Click" Coupling Method. Macromolecules,2006,39(15):4960-4965
    [264]Liu Q C, Chen Y M. Synthesis of Well-Defined Macromonomers by the Combination of Atom Transfer Radical Polymerization And a Click Reaction. J Polym Sci, Part A:Polym Chem.2006,44(20):6103-6113
    [265]Li C M, Finn M G. Click chemistry in materials synthesis. Ⅱ. Acid-swellable crosslinked polymers made by copper-catalyzed azide-alkyne cycloaddition. J Polym Sci, Part A:
    Polym Chem.2006,44(19):5513-5518
    [266]Xu Q, Chang Y N, He J L, Han B X, Liu Y K. Supercritical CO2-assisted synthesis of poly(acrylic acid)/nylon6 and polystyrene/nylon6 blends. Polymer 2003,44(18): 5449-5454
    [267]Liao S K. Dyeing Nylon-6,6 with Some Hydrophobic Reactive Dyes by Supercritical Processing. J Polym Res.2005,11(4):285-291
    [268]Chang Y N, Xu Q, Liu M Y, Wang Y D, Zhao Q X. Supercritical CO2-Assisted Synthesis of Poly(acrylic acid)/Nylon 1212 Blend. J App Polym Sci.2003,90(8):2040-2044
    [269]Chang Y N, Xu Q, Han B X, Wang Y D, Liu M Y, Zhao Q X. Supercritical CO2 Assisted Processing of Polystyrene/Nylon 1212 Blends and CO2-Induced Epitaxy on Nylon 1212. J App Polym Sci.2004,92(3):2023-2029
    [270]Xu F J, Zhao J P, Kang E T, Neoh K G, Li J. Functionalization of Nylon Membranes via Surface-Initiated Atom Transfer Radical Polymerization. Langmuir.2007,23(16): 8585-8592
    [271]Komarov I V, Monsees A, Kadyrov R, Fischer C, Schmidta U, Borner A. A new hydroxydiphosphine as a ligand for Rh(I)-catalyzed enantioselective hydrogenation, Tetrahedron:Asymmetry.2002,13(15):1615-1620
    [272]Lutz J F, Borner H G, Weichenhan K. Combining Atom Transfer Radical Polymerization and lick Chemistry:A Versatile Method for the Preparation of End-Functional Polymers. Macromol Rapid Commun.2005,26(7):514-518
    [273]Mespouille L, Coulembier O, Paneva D, Degee P, Rashkov I, DUBOIS P. Synthesis of Adaptative and Amphiphilic Polymer Model Conetworks by Versatile Combination of ATRP, ROP, and "Click Chemistry". J Polym Sci, Part A:Polym Chem.2008,46(15): 4997-5013
    [274]Loyola E F, Silva R C, J. Garcia R, J.L. Sanchez A F, Castillon F, Farias M H. Enzymatic polymerization of aniline in the presence of different inorganic substrates. Mater Chem Phys.2007,105(1):136-141
    [275]Bhandari S, Deepa M, Singh S, Gupta G, Kant R. Redox behavior and optical response of nanostructured poly(3,4-ethylenedioxythiophene) films grown in a camphorsulfonic acid based micellar solution. Electrochimica Acta.2008,53(7):3189-3199
    [276]Wang T J, Qi Y Q, Xu J K, Hu X J, Chen P. Effects of poly(ethylene glycol) on electrical conductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) film. Appl Surf Sci.2005,250(1-4):188-194
    [277]Yoon S C, Ratner B D. Surface structure of segmented poly(ether urethanes) and poly(ether urethane ureas) with various perfluoro chain extenders. An x-ray photoelectron spectroscopic investigation. Macromolecules.1986,19(4):1068-1079
    [278]Jiang D, Xu Y, Wu D, Sun Y. Isocyanate-modified TiO2 visible-light-activated photocatalyst. Appl Catal B-Environ.2009,88 (1-2):165-172
    [279]Rohde R D, Agnew H D, Yeo W S, Bailey R C, Heath J R. A Non-Oxidative Approach toward Chemically and Electrochemically Functionalizing Si(111). J Am Chem Soc.2006, 128(29):9518-9525
    [280]#12
    [281]沈海民,史鸿鑫,武宏科,项菊萍.对全氟壬烯氧基苯磺酸钠的合成与表面活性.农药.2007,46(8):520-522
    [282]Tong G S, Liu T, Hu G H, Hoppe S, Zhao L, Yuan W K. Modelling of the kinetics of the supercritical CO2 assisted grafting of maleic anhydride onto isotactic polypropylene in the solid state. Chem Eng Sci 2007,62(18-20):5290-5294
    [283]Wang X, Bide M. Factors Affecting the Levelness of dyeing in Reused Acid Dye-baths for Nylon. Text Chem Color Am D.1998,30(4):45-52
    [284]Marlowe T L, Solubilities and Affinities of Disperse Dyes in Supercritical Carbon Dioxide. Master Thesis. College of Textiles, North Carolina State University. Raleigh, NC.1997
    [285]Deore B A, Freund M S. Self-Doped Polyaniline Nanoparticle Dispersions Based on Boronic Acid-Phosphate Complexation. Macromolecules.2009,42(1):164-168
    [286]Decker G, Hong J D. Buildup of ultrathin multilayer films by a self-assembly process:I. Consecutive adsorption of anionic and cationic bipolar amphiphiles. Makromol Chem Macromol Symp.1991,46(3):321-327
    [287]Li D, Jiang Y, Wu Z M. Self-assembly of polyaniline ultrathin films based on doping-induced deposition effect and applications for chemical sensors. Sensor Actuat B-Chem.2000,66(1-3):125-127
    [288]Oliveira O N J, Zucolotto V F M. Nanoscale processing of polyaniline and phthalocyanines for sensing applications. Sensor Actuat B-Chem.2006,113(2):809-815
    [289]Advincula R. Supramolecular strategies using the layer-by-layer sequential assembly technique, Applications for PLED and LC display devices and biosensors. IEICE T Electron.2000,83:1104-1110
    [290]Zhao W, Xu J J, Shi C G. Multilayer membranes via layer-by-layer deposition of organic polymer protected Prussian blue nanoparticles and glucose oxidase for glucose biosensing. Langmuir,2005,21(21):9630-9634
    [291]Recksiedler C L, Deore B A, Freund M S. A novel layer-by-layer approach for the fabrication of conducting polymer/RNA multilayer films for controlled release. Langmuir. 2006,22(6):2811-2815
    [292]Nohria R, Khillan R K, Su Y. Humidity sensor based on ultrathin polyaniline film
    deposited using layer-by-layer nano-assembly. Sensor Actuat B-Chem.2006,114(1): 218-222
    [293]Gallyamov M O, Mourran A, Tartsch B, Vinokur R A, Nikitin L N, Alexei R. Self-assembly of (perfluoroalkyl)alkanes on a substrate surface from solutions in supercritical carbon dioxide. Phys Chem Chem Phys.2006,8(22):2642-2649
    [294]Eastoe J, Gold S. Self-assembly in green solvents. Phys Chem Chem Phys.2005,7(7): 1352-1362
    [295]Yoshida E, Tanaka M, Takata T. Self-assembly control of a pyridine-containing diblock copolymer by perfluorinated counter anions during salt-induced micellization. Colloid Polym Sci.2005,283(10):1100-1107
    [296]Yoshida E, Nagakubo A. Convenient synthesis of microspheres by self-assembly of random copolymers in supercritical carbon dioxide. Colloid Polym Sci.2007,285(4): 441-447
    [297]Yoshida E, Nagakubo A. Superhydrophobic surfaces of microspheres obtained by self-assembly of poly[2-(perfluorooctyl)ethyl acrylate-ran-2-(dimethylamino)ethyl acrylate] in supercritical carbon dioxide. Colloid Polym Sci.2007,285(11):1293-1297
    [298]Stejskal J, Sapurina I, Prokes J. In-situ polymerized polyaniline films. Synth Met.1999, 105(3):195-202
    [299]杨亚军.含氟嵌段共聚物的ATRP合成及其在scCO2合成中的应用研究.华东理工大学博士论文.2007
    [300]Liu Z T, Liu L, Wu J, Lu J, Sun P, Song L P. Phase Behaviors of Aerosol-OT Analogue Fluorinated Surfactants in 1,1,1,2-Tetrafluoroethane and Supercritical CO2. Ind Eng Chem Res.2007,46(1):22-28
    [301]Liu Z T, Liu L, Wu J, Lu J, Sun P, Song L P. Phase behavior of novel fluorinated surfactants in supercritical carbon dioxide. Green Chem.2006,8(11):978-983
    [302]GB 5174-85.洗涤剂中阳离子活性物的测定法-直接两相滴定法
    [303]Enick R, Beckman E, Yazdi A, Krukonis V. Schonemann H, Howell J. Phase behavior of CO2-perfluoropolyether oil mixtures and CO2-perfluoropolyether chelating agent mixtures. J Supercrit Fluid.1998,13(1-3):121-126
    [304]Sagisaka M, Yoda S, Takebayashi Y, Otake K, Kondo Y, Yoshino N, Sakai H, Abe M. Effects of CO2-Philic Tail Structure on Phase Behavior of Fluorinated Aerosol-OT Analogue Surfactant/Water/Supercritical CO2 Systems. Langmuir.2003,19(20): 8161-8167
    [305]da Rocha S R P, Jasper D, Cho D, Rossky P J, Johnston K P. "Stubby Surfactants for Stabilization of Water and CO2 Emulsions:Trisiloxanes". Langmuir.2003,19(8): 3114-3120
    [306]Wang Y, Hong L, Tapriyal D, Kim I C, Paik I H. Design and Evaluation of Nonfluorous CO2-Soluble Oligomers and Polymers. J Phys Chem B.2009,113(45):14971-14980
    [307]Cooper A I, Londono J D, Wignall G, McClain J B, Samulski E T, Lin J S, DeSimone. Extraction of a hydrophilic compound from water into liquid CO2 using dendritic surfactants. Nature.1997,389(6649):368-371
    [308]Sagisaka M, Yoda S, Takebayashi Y, Otake K. Preparation of a W/scCO2 Microemulsion Using Fluorinated Surfactants. Langmuir.2003,19 (2):220-225
    [309]Guan Z, DeSimone J M. Fluorocarbon-based Heterophase Polymeric Materials:1. Block Copolymers Surfactants for Carbon Dioxide Applications. Macromolecules.1994,27(20): 5527-5532
    [310]Long R, Li G Q, Peng F L. Determination of sulfur in sulfur cream by oxygen flasr combustion. Central South Pharm.2006,4(4):155-156
    [311]Sapufina I, Rieden, Stejskal J. In-situ polymerized polyaniline films 3:Film formation. Synthetic Met.2001,123(3):503-507
    [312]Zhang P J, Qian W, Yang Y, An Q F, Liu X Q, Gui Z, L. Polyelectrolyte layer-by-layer self-assembly enhanced by electric field and their multilayer membranes for separating isopropanol-water mixtures. J Membr Sci.2008,320(1-2):73-77
    [313]Amajjahe S, Choi S, Munteanu M, Ritter H. Pseudopolyanions Based on Poly(NIPAAM-co-b-Cyclodextrin Methacrylate) and Ionic Liquids. Angew Chem Int Ed. 2008,47(18):3435-3437
    [314]Felici M, Hatzakis N S, Nolte R J M, Feiters M C. p-Cyclodextrin-Appended Giant Amphiphile:Aggregation to Vesicle Polymersomes and Immobilisation of Enzymes. Chem Eur J.2008,14(32):9914-9920
    [315]Fu G D, Zhao J P, Sun Y M, Kang E T, Neoh K G. Conductive Hollow Nanospheres of Polyaniline via Surface-Initiated Atom Transfer Radical Polymerization of 4-Vinylaniline and Oxidative Graft Copolymerization of Aniline. Macromolecules.2007,40(6): 2271-2275
    [316]Li J S, Xiao H N. An efficient synthetic-route to prepare [2,3,6-tri-O-(2-bromo-2-methylpropionyl]-b-cyclodextrin). Tetrahedron Letters.2005, 46(13):2227-2229
    [317]Ming W, Wu D, Van Benthem R, De With G. Superhydrophobic Films from Raspberry-like Particles. Nano Lett.2005,5 (11):2298-2301
    [318]Zhou Z W, Chu L S, Hu S C. Microwave absorption behaviors of tetra-needle-like ZnO whiskers. Mat Sci Eng B-Solid.2006,126(1):93-96
    [319]Ranjan R, Brittain W J. Combination of Living Radical Polymerization and Click Chemistry for Surface Modification. Macromolecules.2007,40(17):6217-6223
    [320]Ostaci R V, Damiron D, Capponi S, Vignaud G, Leger L, Grohens Y, Drockenmuller E. Polymer Brushes Grafted to Passivated Silicon Substrates using Click Chemistry. Langmuir.2008,24(6):2732-2739
    [321]Gole A, Murphy C J. Azide-Derivatized Gold Nanorods:Functional Materials for'Click' Chemistry. Langmuir.2008,24(1):266-272
    [322]Johnson J A, Finn M G, Koberstein J T, Turro N J. Construction of Linear Polymers, Dendrimers, Networks, and Other Polymeric Architectures by Copper-Catalyzed Azide-Alkyne Cycloaddition "Click" Chemistry. Macromol Rapid Commun.2008, 29(12-13):1052-1072
    [323]Loste E, Fraile J, Fanovich M A, Voerlee G F, Domingo C. Anhydrous Supercritical Carbon Dioxide Method for the Controlled Silanization of Inorganic Nanoparticles. Adv Mater.2004,16(8):739-744
    [324]Barbetta A, Carnachan R J, Smith K H, Zhao C T, Cameron N R, Kataky R, Hayman M, Przyborski S A, Swan M. Porous Polymers by Emulsion Templating. Macromol Symp. 2005,226(1):203-211
    [325]Yu C Z, Tian B H, Fan J, Stucky G D, Zhao D Y. Synthesis of siliceous Hollow Spheres with Uitra Large Mesopore Wall Structures by Reverse Emulsion Templating. Chem Lett. 2002,1(1):62-63
    [326]Manoharan V N, Imhof A, Thorne J D, Pine D J. Photonic crystals from emulsion templates. Adv Mater.2001,13(6):447-450
    [327]Butler R, Hopkinson I, Cooper A I. Synthesis of Porous Emulsion-Templated Polymers Using High Internal Phase CO2-In-Water Emulsions. J Am Chem Soc.2003,125(47): 14473-14481
    [328]Lee C T, Ryoo W, Smith P G, Arellano J, Mitchell D R, Lagow R J, Webber S E, Johnston K P. Carbon Dioxide-in-Water Microemulsions. J Am Chem Soc.2003,125(10): 3181-3189
    [329]Baradie B, Shoichet M S, Shen Z H, McHugh M A, Hong L, Beckman E J. Synthesis and solubility of linear poly(tetrafluoroethylene-co-vinyl acetate) in dense CO2:Experimental and molecular modeling results. Macromolecules.2004,37(20):7799-7807
    [330]Raveendran P, Wallen S L. Cooperative C-H…O hydrogen bonding in CO2-Lewis base complexes:Implications for salvation in supercritical CO2. J Am Chem Soc.2002, 124(42):12590-12599
    [331]Raveendran P, Wallen S L. Sugar acetates as novel, renewable CO2-philes. J Am Chem Soc.2002,124(20):7274-7275
    [332]Lee C T, Psathas P A, Johnston K P, De Grazia J, Randolph T W. Water-in-CO2 emulsions:Formation and stability. Langmuir.1999,15(20):6781-6791
    [333]Cooper A I, Recent developments in materials synthesis and processing using supercritical CO2. Adv Mater.2001,13(14):1111-1114
    [334]Cooper A I, Porous materials and supercritical fluids. Adv Mater.2003,15(13): 1049-1059
    [335]Matyjaszewski K, Gaynor S, Wang J S. Controlled radical polymerizations:The use of alkyl iodides in degenerative transfer. Macromolecules.1995,28(6):2093-2095
    [336]Goto A, Ohno K, Fukuda T. Mechanism and kinetics of iodide-mediated polymerization of styrene. Macromolecules.1998,31(9):2809-2814
    [337]刘英涛,李占伟,吕中元,李泽生.梳型嵌段共聚物微观相分离的耗散粒子动力学模拟.高等学校化学学报.2008,29(6):1200-1204

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700