用户名: 密码: 验证码:
大气压微波等离子体射流装置设计及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气压微波等离子体具有设备成本低、无电极污染和适合于工业化生产等优点,具有极好的应用前景。目前大气压等离子体射流装置主要是从放电方式、电极结构和功率源三个方面进行设计和优化。本文利用Ansoft HFSS高频电磁场模拟软件对短路活塞的位置和喷嘴的形状及位置进行了优化,在电磁场分布理论的指导下设计出了一套大气压微波等离子体射流装置并在此装置上进行了含碳废气的处理实验研究。
     大气压微波等离子体射流装置由程控微波源、环形器、水负载、矩形谐振腔和耦合天线组成。频率为2.45GHz的微波在BJ26矩形波导中以TE10模式进行传播,通过调节短路活塞的位置在谐振腔体中形成TE103模式驻波,TE103模式波的特点是电场只有Ey分量,且Ey沿z方向呈正弦分布,在a边上有三个驻波分布,利用中间驻波最强电场击穿工作气体形成等离子体射流。
     通过对短路活塞和喷嘴位置的调试在大气环境下成功的实现了微波放电。使用微波能量仪和测微波反射仪对装置进行了调试,当短路面与耦合孔中心的距离为3λg/4时,喷嘴尖端的微波能量达到最大而水负载处的微波反射量最小,即耦合天线位于中间驻波电场强度最大处。此外,对喷嘴的外形研究表明,与突变型喷嘴相比,渐变型喷嘴周围的电磁场强度更为集中,喷嘴的最佳放电位置是尖端与法兰面平齐。
     在上述研究基础上进行了大气环境下微波等离子体放电实验研究和含碳废气处理实验。结果表明,氩气的电场击穿强度低于氮气电场击穿强度,氩气等离子体射流更易激发且更稳定;气体流量的增大有利于等离子体射流长度的增加,微波功率越大,放电程度越高,等离子体射流更稳定;实验还证明了渐变型喷嘴的放电效果要明显好于突变型喷嘴。XRD衍射分析结果显示含碳废气处理实验的产物是石墨粉,这表明该装置在处理废气方面具有较好的应用前景。
One atmospheric microwave plasma has great application prospect due to its unique characteristics, such as low cost, electrode contamination free and suitable for industrial production. The device is currently designed and optimized from three aspects in the major way of the discharge, the electrode structure and the power source. An atmospheric microwave plasma device was developed and simply modified to meet the carbon waste gas treatment after using Ansoft HFSS software to optimize the short circuiting plunger position and the shape and position of nozzle.
     An atmospheric microwave plasma jet device consists of programmable microwave source, circulator, water load, rectangular antenna cavity and coupling antenna. The 2.45GHz microwave with TE10 mode propagate in BJ26 rectangular waveguide and forms TE103 mode standing wave in the resonant cavity by means of adjusting the position of short circuiting plunger. TE103 mode wave was characterized by only Ey component, Ey sinusoidal distribute along the Z direction and there are three standing waves in a direction, in which the strongest electric field of the middle one is utilized to form plasma jet by breakdowning working gas.
     Microwave discharge successful occurred via debugging the position of short circuiting plunger and nozzle. Microwave energy meter readings up to the maximum, reflectivity is the smallest and the maximum area of electromagnetic field appears in the cavity center when the distance is 3λg/4 between short flat and coupling hole. In addition, the studies on the shape of the nozzle have shown that the electric field strength around the graded nozzle is more focused and the best position is that the nozzle tip is flush with the flange compared with the mutant nozzle.
     The treatment experiment of carbon gas was carried on based on studying the generation mechanism of microwave plasma jet under the condition of an atmospheric pressure. The result showed that: Argon plasma jet is more stable and longer than nitrogen plasma jet because of the lower electric field breakdown strength of the argon. The increase of gas flow is conducive to the increase of the plasma jet length. The discharge level increases and the plasma jet is more stable with the increase of microwave power. It was also proved that the discharge of gradient of nozzle is better than mutant nozzle. XRD diffraction analysis showed that the product of carbon gas treatment experiment by water-cooled is graphite.
引文
[1]菅井秀郎,等离子体电子工程学[M].张海波,张丹译, 2002,科学出版社, p76-111.
    [2]Fridman A, Chirokov A, Gutsol A. Non-thermal atmospheric pressure discharge[J].Journal of physics D:applied phsics, 2005, 38(8): 129-134.
    [3]Andreas S, James Y, Jeong S E, et al. The Atmospheric-Pressure Plasma Jet: A Review and Comparison to Other Plasma Sources[J]. Ieee transactions on plasma science, 1998, 26(6): 1685-1694.
    [4]Gomez E, Rani D A, Cheeseman C R, et al. Thermal plasma technology for the treatment of wastes: A critical review[J].Journal of Hazardous Materials, 2009,161(2-3):614-626.
    [5]郑培超,王鸿梅,李建权,等.大气压直流微等离子体射流研究[J].光谱学与光谱分析,2009, 29(2):48-53.
    [6] Fauchais P, Vardelle M. Understanding the formation of D.C. plasma sprayed coatings[J]. Materials Science Forum, 2003, 426-432 (3): 2459-2466.
    [7]Selwyn G S. Atmospheric pressure plasma jet[P]. U.S.A: 5-961-772, 1997, 1, 23.
    [8]解宏端,常压下微波等离子体处理四氟化碳的研究[D].博士学位论文,大连:大连海事大学, 2009.
    [9]Lvarez R A, Quintero M C, Rodero A. Radial distribution of electron density, gas temperature and air species in a torch kind helium plasma produced at atmospheric pressure[J]. Spectrochimica Acta-Part B Atomic spectroscopy, 2004, 59(5): 709–721.
    [10]Yong C H, Jeoong H K, Han S U. Simulated experiment for elimination of chemical and biological warfare agents by making use ofmicrowave plasma torch[J]. Physics of plasma, 2004,11(2):830-835.
    [11]Yong C H, Chan U B, Dong H S, et al. Banb gap narrowing of TiO2 by nitrogen doping in atmospheric microwave plasma [J]. Chemical physics letters,2005,413(14):454-457.
    [12]Kanazawa S, Daidai R, Akamine S, et al. Generation of microplasma jet at atmospheric pressure using a modified waveguide-based plasma torch[J]. Surface & coating technology, 2008, 202(22-23): 5275-5279.
    [13]Kuo S P, Tarasenko O, Popovic S, et al. Killing of bacterial spores contained in a paper envelope by a microwave plasma torch[J]. IEEE Transactions on plasma science, 2006, 34(4): 1275-1280.
    [14]Attila M B, Edgar V, Ulrich E, et al. A low-power 2.45 GHz microwave induced helium plasma source at atmospheric pressure based on microstrip technology[J]. Journal of analytical atomic spectrometry, 2000, 15(6):579~580.
    [15]李丽华,高辉,张金生,等.微波等离子体矩原子发射光谱法测定钢中镍和铬[J].冶金分析,2007, 27(6):41-44.
    [16]Ahmed I A, Stephen R W, Jim L, et al. Atmospheric microwave plasma jet for material processing[J]. Ieee transactions on plasma science,2002,30(5):1863-1871.
    [17]Severich B.常压等离子体—改善纺织品性能的新技术[J].国际纺织导报, 2008, 9: 58-60.
    [18]S S Asad, C Tendero, C Dublanche-Tixier, et al. Effect of atmospheric microwave plasma treatment on organic lubricant on a metallic surface[J]. Surface & coatings technology, 2009, 203(13): 1790-1796.
    [19]Dong H. Shin , Chan U. Bang , Jong H. Kim ,et al. Modification of metal surfaces by microwave plasma at atmospheric pressure[J]. Surface & coatings technology, 2007, 201(9-11): 4934-4942.
    [20]Chan U B, Yong C H, Han S U. Synthesis and characterization ofnano-sized nitride particles by using an atmospheric microwave plasma technique[J]. Surface & coating technology, 2007, 201(9-11): 5007-5011.
    [21]Yong C H, Dong H S, Han S U. Production of vanadium nitride nanopowders from gas-phase VOCl3 by making use of microwave plasma torch[J]. Materials Chemistry and physics, 2007, 101(1): 35-40.
    [22]Dong H S, Chan U B, Yong C H, et al. Prepartion of vanadium pentoxide powders by microwave plasma-torch at atmospheric pressure[J]. Materials chemistry and physics, 2006, 99(8):269-275.
    [23]Yong C H, Han S U. Synthesis of MgO nanopoder in atmospheric microwave plasma torch[J]. Chemical physics letters, 2006, 422:174-178.
    [24]Soon C C, Yong C H, Han S U. TeO2 nanoparticles synthesized by evaporation of tellurium in atmospheric microwave-plasma torch-flame[J]. Chemical physics letters, 2006, 429:214-218.
    [25]Yong C H, Han S U. Production of carbon nanotubes by microwave plasma torch at atmospheric pressure[J]. Physics of plasma, 2005, 12(5):1-6.
    [26]Jong H K, Yong C H, Han S U. Synthesis of oxide nanoparticles via microwave plasma decomposition of initial materials[J]. Surface & coating technology, 2007, 201(9-11):5114-5120.
    [27]Soon C C, Han S U, Chan U B, et al. Production of nanocrystalline Y2O3: Eu powder by microwave plasma-torch and its characterization[J]. Thin solid films, 2009, 517(4):4052-4055.
    [28]Hidetoshi S, Yoshihiro M. Steam plasma reforming using microwave discharge[J]. Thin solid films, 2003, 435(1-2): 44-48.
    [29]Mariusz J, Miroslaw D, Helena N,et al. Hydrogen production via methane reforming using various microwave plasma sources[J]. chemistry listy, 2008, 102:1332-1337.
    [30] http://www.ent.com.cn/jcic/nasal.html, 2006-09-28.
    [31]Lei X, Yuya F, Akihisa O, et al. Generation technique and sterilizationapplication of microwave-excited plasma inside a medical container[J]. Journal of plasma and fusion research, 2009, 8: 564-567.
    [32]Tetsuji S, Bernd S, RenéR, et al. Characterization of microwave plasma torch for decontamination[J]. Plasma processes and polymers, 2008, 5(6):577-582.
    [33]Stoffels E, Flikweert A J, Stoffels W W, et al. Plasma needle: a non-destructive atmospheric plasma source for fine surface treatment of (bio)materials[J]. Plasma Sources Science and Technology, 2002,11: 383~388.
    [34]Rubio S J, Quintero M C, Rodero M, et al. Assessment of a new carbon tetrachloride destruction system based on a microwave plasma torch operating at atmospheric pressure[J]. Journal of hazardous materials, 2007, 148(1-2): 419-427.
    [35]Tsai S H, Shao J M, Formation of fluorine for abating sulfur hexafluoride in an atmospheric-pressure plasma environment[J]. Journal of hazardous materials, 2008, 157(1): 201-206.
    [36]Yong C H , Han S U. Abatement of CF4 by atmospheric-pressure microwave plasma torch[J]. Physics of plasmas, 2003, 10(8): 3410-3414.
    [37]Dong H S, Yong C H, Soon C C, et al. Abatement of SF6 and CF4 using an enhanced kerosene microwave plasma burner[J]. Physics of plasmas, 2006, 13(11): 114504-114510.
    [38]Yong C H, Han S U, Senior M, et al. Decomposition of Phosgene by Microwave Plasma-Torch Generated at Atmospheric Pressure[J]. IEEE transactions on plasma science, 2005, 33(2): 958-963.
    [39]Yong C H, Han S U. Microwave plasma torch abatement of NF3 and SF6[J]. Physics of plasmas, 2006, 13(3): 033508.
    [40]Yong C H, Hyoung S K, Han S U. Reduction of perfluorocompound emissions by microwave plasma-torch[J]. Thin solid films, 2003, 435(1-2): 329-334.
    [41]Yong C H, Jeong H K, Han S U. Simulated experiment for elimination of chemical and biological warfare agents by making use of microwave plasma torch[J]. Physics of plasmas, 2004, 11(2): 830-835.
    [42]聂秋月,大气压冷等离子体射流实验研究[D].博士学位论文,大连:大连理工大学, 2010.
    [43]Deilmann M, Grabowski M, Thei? S, et al. Permeation mechanisms of pulsed microwave plasma deposited silicon oxide films for food packaging applications[J]. Journal of physics D:applied physic, 2008, 41(13):453-458.
    [44]Tendero C, Tixier C, Tristant P, et al. Atmospheric pressure plasma:a review[J]. Spectrochimica Acta-Part B Atomic spectroscopy, 2006, 61(1): 2-30.
    [45]李大年,杨曙辉编著,电磁场理论与微波工程[M], 2009,北京师范大学出版社,p59-63.
    [46]杨涓,许映乔,朱良明.局域环境中微波等离子体电子密度诊断实验研究[J].物理学报, 2007, 57(3):1788-1792.
    [47]刘繁,汪建华. TE103单模谐振腔的计算模拟及优化[J].武汉工程大学学报, 2009, 31(3):56-59.
    [48]赵春晖,张朝柱编著,微波技术[M], 2007,高等教育出版社, p76-84.
    [49]AI-Shamma’a A I, Wylie S R, Lucas J. et al. Design and construction of a 2.45GHz waveguide-based microwave plasma jet at atmospheric pressure for material processing[J]. Journal of physics D: applied physics, 2001, 34(18): 2734-2741.
    [50]苏建欢. 915MHz频段微波设备微波泄流问题的分析研究[J].河池学院学报, 2007, 27(2): 30-33.
    [51] D. R. Mac Rae. Plasma arc process systems, reactors, and applications[J]. Plasma Chemistry and Plasma Processing, 1989, 9(1):85~118.
    [52]蒋建政,沈青,樊菁.不同形状微管道中的气体流动[J].力学学报. 2007, 39(2): 145-152.
    [53]Roth J R,吴坚强译.工业等离子体工程,第1卷:基本原理. 1998,科学出版社, p324-335.
    [54]I-Min Chan, Weng-Cheng Cheng, Franklin C. Hong. Enhanced performance of organic light-emitting devices by atmospheric plasma treatment of indium tin oxide surface[J]. Applied Physics Letters, 2002, 80(1): 13-15
    [55]李德君,大气压等离子体射流的产生机理[D].硕士学位论文,大连:连理工大学, 2004.
    [56]Theophanides M, Anastassopoulou J, Vasilakos C, et a1. Mortality and pollution in several Greek cities[J]. Journal of Environmental Science and Health part A-Toxic / Hazardous Substances & Environmental Engineering, 2007, 42(6):74 1-746.
    [57]周颖,夏志平,李宗全. Al-C在机械合金化过程中的结构变化[J].浙江大学学报(工学版), 2006, 40(9):1595~1599.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700