用户名: 密码: 验证码:
人工股骨头表面硅碳氮薄膜生长特性及其摩擦学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工关节置换可以达到矫正畸形,重塑关节功能,使原来病损即结构失效的关节能够恢复正常的目的。无菌松动是限制人工关节在体内服役寿命和安全使用的主要障碍,关节失效后患者二次手术的代价不是仅仅可以用金钱来衡量的,更是给患者带来巨大的痛苦。目前在临床应用中人工关节股骨头的使用仍是以金属材质为主,通过物理或化学的手段对金属股骨头进行各种改性,提高其表面硬度和耐磨损性能是解决人工关节无菌松动与远期失效的有效手段之一。
     针对关节置换术后,由磨屑引起的无菌松动和骨吸收导致的人工关节失效问题,利用表面工程理论,在人工股骨头表面设计被覆一层超薄硅碳氮薄膜,控制和降低人工股骨头及对偶缓冲材料的磨损;硅碳氮薄膜质硬耐磨且具有自润滑性能,化学性能稳定,可以改善股骨头的抗腐蚀性能,从源头上降低或消除磨屑和腐蚀的发生,能够到达延长人工关节使用寿命的目的。
     本研究利用红外光谱(FT–IR)、X–Ray光电子能谱(XPS)、摩擦磨损试验机、纳米压痕等技术和其它现代分析测试手段对硅碳氮硬质薄膜的表面形貌、元素组成和薄膜厚度、粗糙度和表面能态以及机械性能等一系列材料学特征进行检测和分析。研究表明,硅碳氮薄膜被覆的人工关节配伍摩擦系数低至0.017,摩擦学评价过后硅碳氮薄膜表面没有对偶材料的粘附,表明能有效地改善了人工股骨头材料的摩擦学性能,是一类有潜质的人工股骨头保护膜层。
     在人工股骨头表面被覆化学性能稳定的硅碳氮薄膜,研究薄膜对其表面能态、力学性能、摩擦学性能的影响。硅碳氮的双性表面能态特性,使人工关节股骨头对植入环境胎牛血清稀释液有良好的浸润性,且具有清洁作用,推测这有利于关节的转动灵活性;薄膜硬度在16Gpa左右,弹性模量约为180GPa,能够有效抵抗外力的刻划摩擦,且力学性能与对偶材料匹配,加之良好的润滑,降低了UHMWPE的磨损。
     氮气流量和离子轰击能量显著的调整了硅氮薄膜的化学结合状态,氮气流量的提高显著地加强了薄膜中Si-N键的含量;调整沉积过程中的基体负偏压,适当的轰击偏压可以促进薄膜生长,改善薄膜性能。其中,硅含量随偏压变化明显,随着基体偏压的增大(–50V~–200V),薄膜中的硅含量最大达到40.5%;离子轰击能量的变化显著影响薄膜的化学组成和结构,高能粒子轰击薄膜生长表面,本征态的Si–Si键不断被破坏,薄膜中Si–N键含量随基体偏压的提高而增加,原子排列更加紧密,键长缩小,薄膜的结构更加紧凑致密,显微硬度逐渐提高。薄膜表面光滑平整,膜基结合紧密,硬度均在12GPa以上。薄膜为非晶结构,显微硬度在–200V基体负偏压下达到最大值,通过控制基体负偏压可以调节薄膜的显微硬度和弹性模量,据此调整薄膜生长过程中的氮气分压和离子轰击能量对薄膜的性能进行“裁剪”,以满足不同领域不同材质的应用需求。
     在空间等离子体中Si原子/离子产额不变的情况下,真空系统中N和C等离子体活性基团的密度,是影响F:Si–C–N薄膜化学结构、性能的主要因素;CF4本身催化和活化性能以及刻蚀效用并存,CF4的引入有效地调整了非晶硅氮薄膜的生长体系。随着CF4流量的增加,薄膜的氟化程度逐渐加强,薄膜从硅氮为主导的结构逐渐转化为氟化硅碳氮薄膜;随着四氟化碳流量的增加,薄膜的硬度逐渐增加,从11.3GPa迅速提高到16.3GPa,这有助于提高薄膜自身抵抗外力刻划和擦伤的能力,对基体材料的保护作用加强。
     薄膜表面由尺寸在20nm左右的突起密密麻麻的排列生长而成,薄膜表面形成了一层极薄的厚度在纳米级别的空气层。液体或者是尺寸上大于该厚度的固体颗粒接触时,液体在自身表面张力的作用下形成球状,只能与薄膜表面的凸起形成点接触,这种独特的结构是薄膜材料在介质环境中具备独特的自清洁功能。
     本文所研制的硅碳氮薄膜是在亲疏水环境均能良好润湿的双性特性功能薄膜,不同离子轰击能量下沉积的非晶硅氮薄膜,是一种高色散的薄膜,在表面能的色散分量和极性分量中,色散分量占很大的比例;随着四氟化碳流量的增加,薄膜表面能的极性分量逐渐超过色散分量,极性分量与色散分量的比值迅速上升到1.5。硅碳氮薄膜的具有亲疏水双性特征的功能材料,在FBS中表面得到良好的浸润,其润滑特性是一种流体力学润滑;摩擦化学反应产物溶于水,并吸附在摩擦副的界面,形成超平坦接触膜,起到良好的润滑效果;氮气分压和氟碳掺杂过程,显著的调整了薄膜化学结合状态,薄膜中的化学键组成不断变化,硅碳氮薄膜的表面能态也随之改变,表面能的极性分量和色散分量比值在0.55–0.77之间时,薄膜表面能够显著抑制血小板的粘附激活反应。
Biomedical implants such as artificial heart valves or interventional devices and artificialhip and knee joints have been gaining widespread use with development of medicalengineering. The knee and hip joints are complicatedly loaded parts, implantation materialsbear the comprehensive action of tension–compression, torsion, interface shear andreciprocating fatigue, wear in weight bearing conditions. The implants should withstanddynamical mechanical contact pressures and avoid formation of debris over a desiredlong–term biological interaction with the surrounding biological tissue. With time, mechanicalwear and stress, corrosion and tissue reactions lead either to a mechanical failure or to asepticloosening of the implant, the lifetime of the artificial joint implant is limited. The highlycorrosive environment and the low tolerance of the body to some dissolution productsstrongly restrict the materials available for implants.
     Some of protective functional film materials being considered for joint applications mayprevent or alleviate production of wear debris. Coating for biomedical materials is thephysical deposition of a ceramic and inert surface onto a medical implant device to improveits performance. In this paper, the F:Si–C–N films coating on Co alloy as bio–mechanicalcoating was put forward. The thickness, phase, composition, morphology andbiocompatibility of the coating were characterized by X–ray diffraction (XRD), atomic forcemicroscope (AFM), scanning electron microscopy (SEM) and Platelet adhesion tests. Thechemical bonding configurations and mechanical properties were characterized by means ofX–ray photoelectron spectroscopy (XPS), and nano–indentation technique and CSMpin–on–disk tribometer. Static contact angle measurements were performed by sessile–dropmethod to determine the wettability and surface free energy of the Si–N–O and F:Si–C–Nfilms.
     The results are summarized as follow: N2flow rate was the key parameters. On thecondition of keeping other parameter constant, the ratio of N/Si increased with the increasingof the N2flow rate. The Si–N bond gradually became dominant chemical binding state withthe increase of the partial pressure ratio of N2to Ar, the RPN2:PAr=0.3is a critical value to obtain high content of the Si–N bond and high hardness/elastic modulus. With the increase ofsputtering power, the films became smoother and with finer particle growth. The hardnessvaried between6GPa and11.23GPa depending on deposition condition (RPN2:PAr). Duringthe process of film deposition, the increasing N2flow made the bombardment of Ar+decreasewhile the silicon target was poisoned, causing the film to have insufficient density. Asystematic study on the preparation and properties of fluorinated silicon–nitride (Si–N) filmsunder varying different substrate bias voltage was carried out on the matrix of Co–Cr–Moalloy by direct current unbalanced magnetron sputtering techniques. It was found that thedeposition rate decreased linearly when the substrate bias voltage increased. When the biasvoltage exceeded to150V, the deposition rate increased again. It was easily detached by ionbombardment for Si–Si bond during high bias voltage that is less stable than Si–C bond. Theoptimum conditions were observed at substrate negative bias voltage of100–150V. The filmsshowed high hardness and elastic modulus at100V, while the state of samples betweensputtering and the control for Si, C, and N plasma reached to equilibrium at150V to growslow and dense.
     Significant role of fluorine and carbon–doped on growth characteristics and mechanicalproperties in the film was observed. It was found that CF4flows has a little effect on thecoefficient friction of the films, but large variations took place these films’ deposition rate,composition, microstructure and mechanical properties when CF4flows varied from0to9sccm. At9sccm CF4gas flow, the F:Si–C–N coatings demonstrated a fluorine content of5.95at.%and a maximum nano–hardness of15.3GPa, and a moderate friction coefficient of0.03. It is obvious from the hardness results that the F:Si–C–N coating enhances the hardnessof the Co–Cr–Mo alloy to approximately one time on a smoother surface.
     Behaviors of silicon nitride films and their relation to blood compatibility andbiomechanical properties have been interesting subjects to researchers. The results of theplatelet adhesion tests shown here have significant difference for the behavior of plateletadhesion between the silicon nitride films with various the ratio of polar component anddispersion component deposited on different N2and CF4flows. Si–N–O coating can be agreat candidate for developing antithrombogenic surfaces in blood contacting materials. Thechemical bonding state made an adjustment in microstructured surfaces, once in the totally wettable configuration, may improve the initial contact between platelet and biomedicalmaterial, due to the appropriate the ratio of and.
     The tribological characterisation of Co–Cr–Mo alloy with Si–(C)–N coating slidingagainst UHMWPE counter–surface in fetal bovine serum, shows that the wear resistance ofthe Si–(C)–N coated Co–Cr–Mo alloy/UHMWPE sliding pair show much obviouslyimprovement over that of uncoated Co–Cr–Mo alloy/UHMWPE sliding pair. The F:Si–C–Nand Si–N films have potential properties for joint surface modification applications.
引文
[1] Rumi F., Atsuro Y., Takao K., et al. Bone augmentation osteogenesis using hydroxyapatiteand β-tricalcium phosphate blocks [J]. Journal of Oral and Maxillofacial Surgery,2003,9:1045-1053.
    [2] Alistair P.D. Elfick, Simon L. Smith, Sarah M.Green, Anthony Unsworth, The quantitativeassessment of UHMWPE wear debris produced in hip simulator testing: the influence ofhead material and roughness, motion and loading. Wear249(2001)517-527.
    [3] S.Affatato, B.Fernandes, A.Tucci, L.Esposito, A.Toni, Isolation and morphologicalcharacterization of UHMWPE wear debris generated in vitro. Biomaterials22(2001)2325-2331.
    [4] Hong Liang, Bing Shi, Aaron Fairchild, Timothy Cale, Applications of plasma coatings inartificial joints: an overview. Vacuum73(2004)317-326.
    [5] J. L. Pariente. The biocompatibility of cathelers and stents used on urology. Prog. Urol.Apr.1994,8(2):18-19.
    [6]陈长春髋关节置换用股骨假体材料的研究与应用材料导报,1998,12(6):14-16.
    [7]浜中人士生体用钢および合金の现状きてりあ,1998,37(10):83-84.
    [8]中仓光康医疗福祉体特殊钢,1994,47(11):26.
    [9]新家光雄生体用β型合金のきてりあ,1998,37(10):84-85.
    [10]伊坪德宏.非铁金属材料制造にねけゐ环境影响の统合评,日本金属学会志,1998,62(2):207.
    [11]李肇建硅胶人工指关节的远期疗效分析.中华骨科杂志,1989,9(1):39
    [12] Boutin P. Christel P. The Use of dense alumina-alumina ceramic combination in total hipreplacements. J. Biomed. Mater. Res.1998,22:1203.
    [13]贾如宝.钴铬钼合金与几何膝[J].中国钼业,1995,(19):50-52.
    [14]沈彬.人工髋关节假体材料的研究现状.中国矫形外科杂志,2000,(7):790-792.
    [15] Horikoshi M, Macaulay W, Booth R. E. Comparison of interface membranes obtainedfrom failed cemented and cementless hip and knee prostheses[J]. Clin Orthop,1994,309:69-87.
    [16] Tanzer M, Maloney W, Jasty M.The progression of femoral cortical osteolysis inassociation with total hip arthroplasty without cement[J]. J Bone Joint Surg,1992,74-A:401-412.
    [17]戴克戎.骨溶解与人工关节后期松动[J].中华骨科杂志,1997,17:3-4.
    [18] Archibeck M J, Jacobs J J, Roebuck K A. The basic science of periprosthetic osteolysis[J]. J Bone Joint Surg (Am),2000,82:1478-1489.
    [19] Schmelzried T P, California L A. Wear in total tip and knee replacements[J]. J BoneJoint Surg (Am),1999,81:115-136.
    [20] Rogers S D, Howie D W, Graves S E. In vitro human monocyte response to wearparticles of titanium alloy containing vanadium or niobium [J]. J Bone Joint Surg,1997,79-B:311-315.
    [21] Jiranek W A, Machado M, Jasty M. Production ocytokines around loosened cementedacetabular components [J]. J Bone Joint Surg,1993,75-A:863-878.
    [22] Chiba J, Rubash H E, Kim K J. The characterization of cytokines in the interface tissueobtained from failed cementless total hip arthroplasty with and without femoralosteolysis [J]. Clin Orthop,1994,300:304-312.
    [23] Schmalzried. T. P, Peter. P. C, Maurer.B.T. Long-dura-tion metal-on-metal total hiparthroplasties with low wear of the articulating surfaces[J]. J Arthroplasty,1996,11:322-331.
    [24] Huo M H, Betts F, Bogumill.G.P. Metallic wear debris in acetabular osteolysis in amechanically stable cementless total hip replacement:report of a case[J]. Orthopedics,1993,16:1277-1281.
    [25] S. D Rogers, D. W Howie, S. E Graves. In vitro human monocyte response to wearparticles of titanium alloy containing vanadium or niobium [J]. J Bone Joint Surg,1997,79-B:311-315.
    [26] Dorr L D, Hilton K R, Wan Z. Modern mental on mental articulation for total hipreplacements[J].Clin Orthop,1996,333:108-117.
    [27] Huo M. H, Betts F, Bogumill.G. P. Metallic wear debris in acetabular osteolysis in amechanically stable cementless total hip replacement: report of a case[J]. Orthopedics,1993,16:1277-1281.
    [28] Dorr L. D, Hilton K. R, Wan Z. Modern mental on mental articulation for total hipreplacements [J].Clin Orthop,1996,333:108-117.
    [29] Annett Dorner-Reisel, Christian Schurer, Eberhard Muller, The wear resistance ofdiamond-like carbon coated and uncoated Co28Cr6Mo knee prostheses. Diamond andRelated Materials13(2004)823–827.
    [30] Robert Wen-Wei Hsu, Franklin H. Sim, Reoperation Results After Segmental ProstheticReplacement of Bone and Joint for Limb Salvage, The Journal of Arthroplasty. Vol.14No.51999,519-527.
    [31] J. J. Jacobs, A. K. Skipor, P. F. Doorn, et al., Clin. Orthop. Relat. Res.329(1996)52–56.
    [32] K.Peters, H.Schmidt, R.E.Unger, M.Otto,G.Kamp, C.J.Kirkpatrick, Biomaterials23(2002)3413.
    [33]浜中人士生体用钢および合金の现状きてりあ,1998,37(10):83-84.
    [34] Rogers S. D, Howie DW, Graves S. E. In vitro human monocyte response to wearparticles of titanium alloy containing vanadium or niobium[J]. J Bone Joint Surg,1997,79-B:311-315.
    [35] Saito T, Hasebe T, Yohena S, et al., Antithrombogenicity of fluorinated diamond-likecarbon films, Diamond&Related Materials14(2005)1116–1119.
    [36] Thomson L. A, Law Frances C, Rushton N, Franks J, Biocompatibility of diamond-likecarbon coating. Biomaterials12(1991)37–40.
    [37] Tran H.S, Puc M.M, Hewitt C.W, et al., Diamond-like carbon coating and plasma orglow discharge treatment of mechanical heart valves. J. Invest. Surg.12(1999)133–140.
    [38] Shi B, Ajayi O. O, Fenske G, et al., Tribological performance of some alternative bearingmaterials for artificial joints, Wear255(2003)1015–1021.
    [39] Takao Hanawa, Materials Science and Engineering A267(1999)260-266.
    [40] Daisaku Ikedam, MaKoto Ogana, Yoshihito Hara, et al., Surf. Coat. Technol.156(2002)301-305.
    [41]松下富春.人工关节用金属材料の处理金属,1998,68(2):10
    [42] Annett Dorner-Reisel, Christian Schurer, Eberhard Muller. The wear resistance ofdiamond-like carbon coated and uncoated Co28Cr6Mo knee prostheses. Diamond andRelated Materials13(2004)823–827.
    [43] A. S. Loir, F. Garrelie, C. Donnet, et al. Mechanical and tribological characterization oftetrahedral diamond like carbon deposited by femtosecond pulsed laser deposition onpre-treated orthopaedic biomaterials. Applied Surface Science247(2005)225–231.
    [44] J. I. Onate, M. Comin, I. Braceras. et al. Wear reduction effect on ultra-high-molecular-weight polyethylene by application of hard coatings and ion implantation on cobaltchromium alloy, as measured in a knee wear simulation machine. Surf. Coat. Technol.142-144(2001).1056-1062.
    [45] Veli-Matti Tiainen. Amorphous carbon as a bio-mechanical coating-mechanicalproperties and biological applications. Diamond and Related Materials.10(2001).153-160.
    [46] Tiina Ahlroos, Vesa Saiko. Wear of prosthetic joint materials in various lubricants Wear211(1997)113-119.
    [47] J. I. Onate, M. Comin, I. Braceras. A. Garcia, J. L. Viviente, M. Brizuela, N. Garagorri.Wear reduction effect on ultra-high-molecular-weight polyethylene by application ofhard coatings and ion implantation on cobalt chromium alloy, as measured in a kneewear simulation machine.Surf. Coat. Technol142-144(2001).1056-1062
    [48] Veli-Matti Tiainen Amorphous carbon as a bio-mechanical coating-mechanicalproperties and biological applications Diamond and Related Materials10(2001).153-160
    [49] D. Sheeja, B.K. Tay, S.P. Lau, L.N. Nung, Tribological characterisation of diamond-likecarbon coatings on Co–Cr–Mo alloy for orthopaedic applications. Surf. Coat. Technol.146–147(2001)410–416.
    [50]张海锋,刘皖育,刘念.纳米尺寸非晶氮化硅结构模型研究.中国科技技术大学学报.1994,24(1):42-45.
    [51]陈俊芳,吴先球,王德秋. Si3N4薄膜的表面微观特性.功能材料.2001,32(3):297-299.
    [52] Skordas S, Sirinakis G, Yu W., et al. Mater. Res. Soc. Symp. Proc109.2000606.
    [53] Eaton W. P., Smith J. H. Micromachined pressure sensors: review and recentdevelopments. Smart. Mater. Struct19979,6:530-539.
    [54] Bustillo J. M, Howe R. T. Muller R. S. Proc. IEEE.1998,1552:86-92.
    [55] French P. J, Sarro P. M, Malle′e R, et al. Optimization of a low-stress silicon nitrideprocess for surface-micromachining applications. Sens. Actuators A.1997,58:149-157.
    [56] M. J. Grieeo. Silicon nitride thin films from SiCl4Plus NH3Preparation and Properties. JElectrochem. Soe.1968,115(5):525-529.
    [57] T. O. Sedgwick, IBM journal of Research and Development,1970,14(1):2-11.
    [58] Yukari Shima, Hiroki Hasuyama, Toshiharu Kondoh. et al., Mechanical properties ofsilicon oxynitride thin films prepared by low energy ion beam assisted deposition,Nuclear Instruments and Methods in Physics Research B,148(1999)599-603.
    [59] Jesus Carrillo-Lopez, Arturo Morales-Acevado, Characterization of the oxidation rate ofdensified SiN thin films by Auger and infrared absorption spectroscopies, Thin SolidFilms,311(1997)38-43.
    [60] T. Chevolleau, A. Szekeres, S. Alexandrova, Oxidation of N+implanted silicon: opticaland structural properties, Surface and Coating Technology,151-152(2002)281-284.
    [61] Zh.Q. Yao,P. Yang,N. Huang et al., Fabrication and surface characterization of pulsedreactive closed-field unbalanced magnetron sputtered amorphous silicon nitride films,Surface&Coatings Technology,200(2006)4144-4151.
    [62] G. Dinescu, M. Creatore, M.C.M. van de Sanden, Remote nitridation of silicon surfaceby Ar/N2-fed expanding thermal plasma, Surface&Coatings Technology,174-175(2003)370-374.
    [63] M. I. Alayo, I. Pereyra, W. L. Scopel et al., On the nitrogen and oxygen incorporation inplasma-enhanced chemical vapor deposition (PECVD) SiOxNy films, Thin Solid Films,402(2002)154-161.
    [64] D. Criado, I. Pereyra, M.I. Alayo, Study of nitrogen-rich silicon oxynitride films obtainedby PECVD, Materials Characterization,50(2003)167-171.
    [65] Adel Prado, I. Martil, M. Fernandez et al., Full composition range silicon oxynitridefilms deposited by ECR-PECVD at room temperature, Thin Solid Films,343-344(1999)437-440.
    [66] F. Giorgis, C.F. Pirri, E. Tresso, Structural properties of a-Si1xNx:H films grown byplasma enhanced chemical vapour deposition by SiH4+NH3+H2gas mixtures. Thin SolidFilms,307(1997)298
    [67] M. Lattemann, E. Nold, S. Ulrich, et al. Investigation and characterisation of siliconnitride and silicon carbide thin films. Surface&Coatings Technology.(2003)365174-175.
    [68] Jan Schmidt, Mark Kerr. Highest-quality surface passivation of low-resistivity p-typesilicon using stoichiometric PECVD silicon nitride. Solar Energy Materials and SolarCells.2001,65(1-4):585-591.
    [69] Yukio Kanke, Tomonari Tanaka, Junichi Aikawa et al. The performance of the dry rootspump “DRYMAC” in LP-CVD silicon nitride process. Applied Surface Science.2001,169/170:777-780.
    [70] I O Parm, K Kim, D G Lim et al. High-density inductively coupled plasma chemicalvapor deposition of silicon nitride for solar cell application. Solar Energy Materials andSolar Cells.2002,74(1-4):97-105.
    [71] M C Poon, C W Kok, H Wong et al. Bonding structures of silicon oxynitride prepared byoxidation of Si-rich silicon nitride. Thin Solid Films.2004,462/463:42-45.
    [72] Luis da Silva Zambom, Ronaldo Domingues Mansano. Silicon nitride deposited byinductively coupled plasma using dichlorosilane and ammonia. Vacuum.2003,71(4):439-444
    [73] Rong-Fu Xiao, Lun Chiu Ng, Chao Jiang, et al., Preparation of silicon oxynitride(SiOxNy) thin films by pulsed laser deposition, Thin Solid Films,260(1995)10-13.
    [74] J. Fandino, G.Santana, L. Rodr guez-Fernandez, et al.Composition, structural, andelectrical properties of fluorinated silicon–nitride thin films grown by remoteplasma-enhanced chemical-vapor deposition from SiF4mixtures. Journal of VacuumScience&Technology A.23(2),2005248-255.
    [75]朱勇,沈伟东,叶辉等,磁控反应溅射SiNx薄膜的研究,光子学报,2005,34(1)
    [76]唐伟忠.薄膜材料制备原理、技术及应用(第二版).北京:冶金工业出版社.2003
    [77] G.M. Ingo, N. Zacchetti, D. della Sala, et al. Journal of Vacuum Science&Technology A7(1989)3048.
    [78] M.P. Tsang, C.W. Ong, C.L. Choy, P.K. Lim, W.W. Hung, Correlation between thecomposition, structure and properties of dual ion beam deposited SiNx films. Thin SolidFilms424(2003)143-147.
    [79] Yongjin Wang, Xinli Cheng, Zhilang Lin et al., A study of silicon oxynitride filmprepared by ion beam assisted deposition, Materials Letters,58(2004)2261-2265.
    [80]殷景华,王雅珍.功能材料概论.第一版.哈尔滨.哈尔滨工业大学出版社.1999.
    [81]杨文茂,刘艳文,徐禄祥等,溅射沉积技术的发展及现状,真空科学与技术学报,2005,25(3)205.
    [82]徐万劲,磁控溅射技术及应用(上),综述与专论,2005(5)1-2.
    [83]张建民,王立,梁昌慧.磁控溅射靶源设计及溅射工艺研究,陕西师范大学学报(自然科学版)1999,27(1):36-38.
    [84] Chen-sheng Ren, Zong-xin Mu, You-nian Wang et al. Corrosion behavior of TiN filmsprepared by vacuum arc deposition and nitrogen ion beam dynamic mixing implantation.[J]. Surface&Coatings Technology.2004,185:210-214.
    [85]武兵书. TiN涂层对工模具材料的适应性.金属热处理.1994,7:17-20.
    [86]牟宗信,关秉羽,李国卿等,非平衡磁控溅射中调制磁场的作用,真空,2002,03:27-29.
    [87] Window B, Savvides N. Unbalanced dc magnetrons as sources of high ion fluxes.[J].Journal of Vacuum Science&Technology,1986,4(2A):453-456.
    [88] Savvides N, Window B. Unbalanced magnetron ion-assisted deposition and propertymodification of thin films. Journal of Vacuum Science&Technology,1986,4(2A):504-508.
    [89] Window B, Savvides N. Charged particle fluxes from planar magnetron sputteringsources.[J]. Journal of Vacuum Science&Technology B,1986,4(2A):196-202.
    [90]韩大凯,陈庆川,非平衡磁控溅射技术的应用与发展,核工业西南物理研究院,2005
    [91]刘瑞鹏,李刘合,磁控溅射镀膜技术简述,科技前言,2006(8)56-59
    [92]徐万劲,磁控溅射技术及应用(上),综述与专论,2005(5)1-2
    [93]董骐,范毓殿.非平稳磁控溅射及其应用.真空科学与技术.1996,16(1):51-57.
    [94]赵建生,许大庆.非平衡磁控溅射类金刚石薄膜的抗刻划性能及氟对结合强度的影响.机械工程学报.1999,(5):80-84.
    [95] T. Mori, S. Fukuda and Y. Takemura. Improvement of mechanical properties of Ti/TiNmultilayer film deposited by sputtering. Surface Coating Technology.2001,140(2):122-127.
    [96]马峰,蔡珣,李刚等.纳米级类金刚石梯度膜机械特性研究.材料科学与工程.2002,20(2):200-202.
    [97]盖学周,饶平根,赵光岩等.人工关节材料的研究进展.材料导报.2006,20卷:47-49.
    [98]俞耀庭,张兴栋.生物医用材料[M].天津大学出版社,2000,24(4):242-261.
    [99]张亚平,高家诚,王勇.人工关节材料的研究与展望.世界科技研究与发展.2000年,22卷(1期):47-51
    [100]戴振东.人工关节摩擦学的研究.生物工程医学杂志.2006年,23卷(3):669-673
    [101] Ducheyne P., Qiu Q. Bioactive ceramics: the effect of surface reactivity on boneformation and bone cell function [J]. Biomaterials,1999,20(23-24):2287-2303.
    [102] Kelly P J, Arnell R D. The influence of magnetron configuration on ion current densityand deposition rate in a dual unbalanced magnetron sputtering system. Surface CoatingTechnology,1998,108-109(1-3):317-322.
    [103] Sproul W D, Rudnik P J, Michael E. Graham, et al. High rate reactive sputtering in anopposed cathode closed-field unbalanced magnetron sputtering system. Surface andCoatings Technology1990,43-44:270-278.
    [104]黄惠忠.论表面分析及其在材料研究中的应用.北京:科学技术文献出版社,2002
    [105]肖兴成,江伟辉.反应溅射Si-C-N薄膜的结构分析[J].功能材料与器件学报,2000,16(3):59-63.
    [106] Ren S. Y, Ching W. Y. Phys. Rev.,1981,23:5454.
    [107] Robertson J, Powell M. J. Appl. Phys. Lett.,1984,44:415.
    [108]岳瑞峰,王燕,廖显伯等非晶氮化硅薄膜退火前后微结构的XPS研究真空科学与技术第20卷第6期2000年11月.
    [109] Simunek A, Wiech G. J. Non-cryst. Solids.1995,192/193:161.
    [110]杨迪,杨辉其,周培贤,金属硬度实验,中国计量出版社,1988
    [111]师昌绪,徐滨士,张平,21世纪表面工程的发展趋势.中国表面工程,2001,14(1):2-7
    [112] Bulychev S. I., Alekhin V. P., Zavod Lab, Determining Young’s modulusfrom theindenter penetration diagram.1987,53:76
    [113] Bulychev S. I, Alekhin V. P. Zavod Lab, Determining Young’s modulusfrom theindenter penetration diagram.1987,53:76.
    [114] M. R. Scanlon, R. C. Cammarata. Mechanical properties of nanocomposite granularmetal thin films. J. Appl. Phys.1994,76:3387-3393.
    [115] Schiffmann K. I, Hieke A. Analysis of microwear experiments on thin DLC coatings:friction, wear and plastic deformation [J]. Wear,2003,254:565-572.
    [116] Bull S. J., Rickerby D. S., Matthews A., Advanced Surface Coatings: a HandbookofSurface Engineering, New York: Chapman and Hall Inc.,1991,315.
    [117] Q. Hua Fan, A. Fernandes, E. Pereira, J. Grácio. Adhesion of diamond coatings on steeland copper with a titanium interlayer, Diamond and Related Materials,Volume8, Issues8-9,81999,1549-1554.
    [118] D. T. Quinto, A. T. Santhanam, P. C. Jindal. Mechanical properties, structure andperformance of chemically vapor-deposited and physically vapor-deposited coatedcarbide tools Materials Science and Engineering,105-106,121988,443-452
    [119]黄立业,徐可为,吕坚无机材料学报第16卷第5期2001年9月
    [120] Fan W D, Chen X, Jagannadhan K, Narayan J. J.Mater. Res.1994;11:2850.
    [121]范康年.谱学导论.北京:高等教育出版社.加01
    [122]肖兴成,江伟辉,宋力听等.超硬薄膜的研究进展.无机材料学报,1999.14(5):704-710.
    [123] S. A. Barnett, Meenam Shinn., Plastic and Elastic Properties of CompositionallyModulated Thin Films. Annu. Rev. Mater. Sci.,1994,24,481-511.
    [124] M. Ben Daia, P.Aubert, S.Labdi,et al. Nano-indentation investigation of Ti/TiNmultilayered films[J].Appl.Phys.,2000,87(11):7753-7757.
    [125] Kikuchi N, Kitagawa M, Sato A, et al. Elastic and plastic energies in sputteredmultilayered Ti/TiN films estimated by nanoindentation.[J] Surface and CoatingsTechnology,2000,126(2-3):131-135.
    [126]李戈扬,虞晓江,吴桢干等. TaN∕NbN纳米多层膜的力学性能与耐磨性.真空科学与技术[J].2002,22(1):1-4
    [127]安健,张庆瑜. TiN∕TaN多层膜的结构和摩擦学性能[J].摩擦学学报.2005,25(1):7-11
    [128] Yang Jin, Wang Mingxia and Li Dejun, Modulation Ratio and Properties of ZrN/W2NNano-Multilayers, Chinese journal of vacuum science and technology2007.3-4,27-2,101-104
    [129] Axen N, Jacobson S, Hogmark S. Wear,1997,203–204:637–641
    [130] Lun Wei, Fanghua Mei, Nan Shao, et al. Appl Phys Lett,2005;86:21919
    [131] Pankov V, Evstigneev M, Prince R H. J Appl Phys,2002;92:4255
    [132] A. lrrera, Ph. D. Thesis, light emitting deviees based on silicon nano-structures,University of Catania,2003.
    [133]祈著,金晶,胡海龙等. A1诱导α-Si: H薄膜的晶化[J].真空科学与技术,2005,25(1):57-60
    [134] Liao L. S, Bao X. M, Zheng X. Q, et al. Blue luminescence from Si+implanted SiO2films thermally grown on crystalline silicon[J]. Applied physics Letters,1996,68(6):850.
    [135] Zhao J, Mao D. S. Intense short-wavelength photoluminescence from thermal SiO2films co-implanted Si and C ions, Applid Physics Letters,1998,73(13):1838-1840.
    [136] Kohketsu M, Awazu K, H. Kawazoe and Yamane M. Photoluminescence centers inVAD Si02glasses sintered under reducing or oxidizing atmospheres[J]. Japanese Journalof Applied Physics,1989(4),28:615-616.
    [137] RyoichiTohmon, HiroyasuMizuno, Yoshimichi Ohki. Correlation of the5.0and7.6eVabsorption bands in SiO2with oxygen vacancy [J]. Physics Review B,1989,39(2):1337-1345.
    [138] Tai-Ran Hsu. MEMS&Micro system-Design and Manufacture(王晓浩等译).北京:机械工业出版社,2004.1-31,90-146.
    [139] G.F. Cardinale. Fracture strength and biaxial modulus measurement of plasma siliconnitride films. Thin Solid Films,1992,207:126.
    [140] Skordas S, Sirinakis G, Yu W. et al. Mater.Res.Soc.Symp.Proc (2000)109606
    [141] French P. J, Sarro P. M, Mallee R, et al. Optimization of a low-stress silicon nitrideprocess for surface-micromachining applications. Sens. Actuators A1997,58:149-157
    [142] Bustillo J.M, Howe R. T. Muller.R. S. Proc. IEEE1998,1552:86-92
    [143] Eaton W P, Smith J H. Micro-machined pressure sensors: review and recentdevelopments. Smart. Mater. Struct1997.9,6:530-539.
    [144]周公度,段连运.结构化学基础(第二版).北京:北京大学出版社.1995.
    [145]吴刚.材料结构表征及应用.北京:化学工业出版社教材出版中心.加02.
    [146]吴瑾光,许振华,李琼瑶等.近代傅立叶变换红外光谱技术及应用.北京:科学技术文献出版社,1994
    [147] K Deenamma Vargheese, G Mohan Rao, Ion-assisted deposition of silicon nitride filmsusing electron cyclotron reaonance plasma. J. Vac. Sci. Technoli. A.2001,19(4):1336-1340.
    [148] Y C Liu, K Furukawa, D W Gao et al. In-situ infrared reflective absorptionspectroscopy characterization of SiN films deposited using sputtering-type ECRmicrowave plasma. App. Suf. Sci.1997,121/122:233-236.
    [149] Yota, J Hander, A A Saleh, A comparative study on inductively-coupled plasmahigh-density plasma, plasma-enhanced, and low pressure chemical vapor depositionsilicon nitride films. J. Vac. Sci. Technol. A.2000,18(2):372-376.
    [150]刘安生译.材料评价的分析电子显微方法.北京:冶金工业出版社,2001.
    [151] G. Beshkova, Shi Lei, V. Lazarova, et al. IR and Raman absorption spectroscopicstudies ofAPCVD, LPCVD and PECVD thin SiN flms, Vacuum.69(2003)301–305.
    [152] D. E. Hanson, B. C. Stephens, C. Saravanan, et al. Molecular dynamics simulations ofion self-sputtering of Ni and Al surfaces. J. Vac. Sci. Technol. A.2001,19(3):820-825.
    [153] J R Roth. Industrial Plasma Engineering (Volume1). Philadelphia: Institute of PhysicsPublishing.1995.
    [154] Thomas Michely, Christian Teichert. Adatom yields, sputtering yields, and damagepatterns of single-ion impacts on Pt (111). Phys. Rev. B.1994,50:11156-11166.
    [155]高鹏,等离子体增强沉积C-N-Si超薄保护膜,大连理工大学博士学位论文,2007年.
    [156] D E Hanson, B C Stephens, C Saravanan. et al. Molecular dynamics simulations of ionself-sputtering of Ni and Al surfaces. Journal of Vacuum Science&Technology A.2001,19(3):820-825.
    [157] Thomas Michely, Christian Teichert. Adatom yields, sputtering yields, and damagepatterns of single-ion impacts on Pt(111). Physical Review B.1994,50:11156-11166.
    [158] Sh.L. Ma, B. Xu, G.zh. Wu, Microstructure and mechanical properties of SiCN hardfilms deposited by an arc enhanced magnetic sputtering hybrid system. Surface andCoatings Technology.202(2008)5379-5382.
    [159] Hean Ju Lee, Kyoung Suk Oh, Chi Kyu Choi, The mechanical of the SiOC(–H)composite thin films with a low dielectric constant properties. Surface and CoatingsTechnology.171(2003)296-301.
    [160] H. Tomizawa, T. E. Fischer. Friction and wear of silicon nitride and silicon carbide inwater hydrodynamic lubrication at low sliding speed obtained by tribochemical wear.[J].ASLE Trans,1987,30:41-46.
    [161] J. Xu, K. Kato. Formation of tribochemical layer of ceramics sliding in water and itsrole for low friction.[J]. Wear,2000,245:61-75.
    [162] M. Chen, K. Kato, K. Adachi. The comparisons of sliding speed and normal load effecton friction coefficients of self-mated Si3N4and SiC under water lubrication [J].Tribology International,2002,35(3):129-135.
    [163] M. Chen, K. Kato, K. Adachi. The difference in running-in period and frictioncoefficient between self-mated Si3N4and SiC under water lubrication [J]. TribologyLetters,2001,11:23-28.
    [164] Jaroslav Vlcek, Martin Kormunda, Jiri Cizek, et al., Reactive magnetron sputtering ofSi–C–N films with controlled mechanical and optical properties, Diamond and RelatedMaterials.12(2003)1287–1294.
    [165] L. C. Chen, C. K. Chen, S. L. Wei, et al., Applied Physics Letters.72(1998)2463.
    [166] W. L. Li, J. L. Yang, Y. Zhao, et al., Effect of assistant RF plasma on structure andproperties of SiCN thin films prepared by RF magnetron sputtering of SiC target, Journalof Alloys and Compounds.482(2009)317-319.
    [167] S. K. Mishra, Chander Shekhar, P. K. P. Rupa, et al., Effect of pressure and substratetemperature on the deposition of nano-structured silicon–carbon–nitride superhardcoatings by magnetron sputtering, Thin Solid Films.515(2007)4738-4744.
    [168] A. Y. Liu, Cohen, M. L., Prediction of new low compressibility solids, Science,1989,245:841-843.
    [169] D. W. Wu, D. J. Fu, H. X. Guo, et al., Phys. Rev. B.56(1997)4949.
    [170] M. C. Poon, C. W. Kok, H. Wong, P J. Chan, Bonding structures of silicon oxynirtidePrepaerd by oxidation of Si-rich silicon nitride, Thin Solid Films,(2004),462-463,42-45.
    [171] R. Gilmore, R. Hauert. Control of the tribological moisture sensitivity of diamond-likecarbon films by alloying with F, Ti or Si. Thin Solid Films.2001(398-399):199-204.
    [172] C. Du, X. W. Su, F. Z. Cui, X. D. Zhu. Morphological behavior of osteoblasts ondiamond-like carbon coating and amorphous C-N film in organ culture. Biomaterials.1998,19(9):651.
    [173] Yvete toivola, Jeremy Thurn, Robter F Cook, et al. Influence of deposition conditionson mechanical Properties of low-Pressure chemical vapor deposited low-stress siliconnitride films. J.App.Phys.2003,94:6915-6922.
    [174] Y C Liu, K Furukawa, D W Gao. et al., In-situ infrared reflective absorptionspectroscopy characterization of SiN films deposited using sputtering-type ECRmicrowave plasma. App. Sur. Sci.1997,121/122:233-236.
    [175] J. Yota, J. Hander, A. A. Saleh, A comparative study on inductively-coupled plasmahigh-density plasma, plasma-enhanced, and low pressure chemical Vapor depositionsilicon nitride films. J.Vac.Sci.Technol. A.2000,18(2):372-376
    [176] G. R. Yang, Y P Zhao, Y Z Hu, et al. XPS and AFM study of chemical mechanicalpolishing of silicon nitride. Thin Solid Films,1998,333(1-2):219-233.
    [177] Besling W F A, Goossens A, Meester B, et al. Laser-induced chemical vapor depositionof nanostructured silicon carbonitride thin films. Journal of Applied Physics,1998,83(1):544-553.
    [178] A. del Prado, I. Mártil, M. Fernández, G. González-Díaz, et a1.Full composition rangesilicon oxynitride films deposition by ECR-PECVD at room temperature. Thin SolidFilms,1999,343-344:437-440.
    [179] Viera G, Andujar J L, S. N. Sharma, et al. Si-C-N nanometric powder producedinsquate-wave modulated RF glow discharges. Diamond and Related Materials,1998,7:407-411.
    [180] Kim D. S, Lee Y. H. Room-temperature deposition of α-SiC:H thin films by ion-assistedplasma-enhanced CVD. Thin Solid Films,1996,283:109-118.
    [181] J. Fandi o and G. Santana, Role of hydrogen on the deposition and properties offluorinated silicon-nitride films prepared by inductively coupled plasma enhancedchemical vapor deposition using SiF4/N2/H2mixtures, Journal of Vacuum Science&Technology A,232.
    [182] Young-Bae Park, Shi-Woo Rhee, Optoelectronic properties of fluorine-doped siliconnitride thin films, Journal of Non-Crystalline Solids343(2004)33–38
    [183] Gao Y, Wei J, Zhang D H, et al. Effects of nitrogen fraction on the structure ofamorphous Silicon-carbon-nitrogen alloys. Thin Solid Films,2000,377-378:562-566.
    [184]肖兴成,江伟辉,彭晓峰等.反应溅射Si-C-N薄膜的结构分析.功能材料与器件学报,2000,6(1):59-63.
    [185]谢晶曦,常俊标,王旭明编著,红外光谱在有机化学和药物化学中的应用,科学出版社,2001,12,IV. R914.4
    [186] P. M. Fauchet, J. Ruan, H. Chen, et al., Optical gain in different silicon nanocrystalsystems, Opt. Mater.27,245(2005)
    [187] L. Khriachtchev, M. Rasanen, S. Novikov, J. Sinkkonen, Optical gain in Si/SiO2lattice:Experimental evidence with nanosecond pulses, Applied Physics Letters.791249(2001).
    [188] Bibhu P. Swain, Bhabani S. Swain, Nong M. Hwang, Effect of DC bias onmicrostructural rearrangement of α-SiN:H films on PET substrate, Applied SurfaceScience255(2009)9391-9395
    [189] G. Beshkova, Shi Lei, V. Lazarova, et al., IR and Raman absorption spectroscopicstudies ofAPCVD, LPCVD and PECVD thin SiN flms, Vacuum69(2003)301-305
    [190] R. Hauert, U. Muller, G. Francz, F. Birehler, et al. Surface analysis and bioreactions of Fand Si containing α-C:H. Thin Solid Films,1997(308-309):191-194.
    [191] Bray, Donald J, Chandra, et al. Fluorine-doped diamond-like coatings. United StatesPatent. No.6,468,642. Oetober22,2002.
    [192] Liu A. Y., Cohen M. L., Prediction of New Low Compressibility Solid. Science,1989,245:841-842.
    [193]刘敬肖,杨大智,王伟强,陈吉华,蔡英骥.管腔内支架用金属材料的生物相容性及其表面改性.功能材料.2000,31(6):584-589.
    [194] Y. Xin, Z. Q. Gan, L. Fang, et al. Strctural evolution of α-C:F:Hfilm Prepared bymicrowave ECR CVD. Surface and Coatings Technology,2002,(149):89-94
    [195] Bulychev S I, Alekhin V P. Zavod Lab, Determining Young’s modulusfrom the indenterpenetration diagram.1987,53:76
    [196]王玉林,郑雪帆,陈效建.低应力PECVD氮化硅薄膜工艺探讨.固体电子学研究与进展,1999,19(4):448-452.
    [197] J. Fandino, G. Santana, L. Rodr guez-Fernandez, J. C. cheang-wong, A. Ortiz, J. C.Alonso, Journal of Vacuum Science&Technology A.23(2),2005248-255.
    [198] Bendeddouche A, Berjoan R, Bêche E, et al. Hardness and stiffness of amorphousSiCxNy chemical vapor deposited coatings. Surface and Coatings Technology,1999,111:184-190.
    [199]赵振国,接触角及其在表面化学研究中的应用.化学研究与应用.2000,12(4):370-374.
    [200] Fei Zhou, Koshi Adachi, Koji Kato. Comparisons of tribological property of a-C,a-CNx and BCN coatings sliding against SiC balls in water. Surface&CoatingsTechnology200(2006)4471-4478
    [201] Fei Zhou, Xiaolei Wang, Koji Kato, Zhendong Dai. Friction and wear property ofa-CNx coatings sliding against Si3N4balls in water. Wear263(2007)1253-1258.
    [202] M. Chen, K. Kato, K. Adachi, The comparisons of sliding speed and normal load effecton friction coefficients of self-mated Si3N4and SiC under water lubrication. Tribologyinternational,35(2002)129-135.
    [203] Zhou F, Adachi K, Kato K. Influence of deposition parameters on surface roughness andmechanical properties of boron carbon nitride coatings synthesized by ion beam assisteddeposition. Thin Solid Films,2006,497:210-217.
    [204] Steve Weiner. Materials design in biology. Materials Science and Engineering C.2000,11:1-8.
    [205] T. Fischer, H. Tomizawa. Interaction of tribochemistry and microfracture in friction andwear of sillicon nitride. Wear.105,1985,22:29-45.
    [206] J. Xu, K. Kato. Formation of tribochemical layer of ceramics sliding in water and itsrole for low friction. Wear,2000,245:61-75.
    [207] Yang P, Huang N, Leng Y.X, et al. Activation of platelets adhered on amorphoushydrogenated carbon (a-C:H) films synthesized by plasma immersion ionimplantation-deposition (PIII-D). Biomaterials,24(2003)2821-2829.
    [208] Weng Y. J, Hou R. X, Li G. C, Wang J, Huang N, Liu H. Q, Immobilization of bovineserum albumin on TiO2film via chemisorption of H3PO4interface and effects onplatelets adhesion. Applied Surface Science,254(2008)2712-2719.
    [209] Tamada, Y., Ikada, Y., Cell adhesion to plasma-treated polymer surfaces. Polymer34.1993.2208-2212.
    [210] Adachi S, Arai T, Kobayashi K, Chemical treatment effect of Si(111) surfaces inF-based aqueous solutions. J. Appl. Phys.80(1996)5422-5426.
    [211] Chen J. Y, Wan G. J, Leng Y. X, Yang P, Sun H, Wang J, Huang N, Behavior of culturedhuman umbilical vein endothelial cells on titanium oxide films fabricated by plasmaimmersion ion implantation and deposition. Surface and Coatings Technology,186(2004)270-276.
    [212] Yao Zh.Q, Yang P, Huang N, et al., Effects of negative low substrate bias voltage on thestructure and properties of fluorinated amorphous carbon films synthesized by plasmaimmersion ion implantation and deposition. Surface and Coatings Technology,186(2004)131-135.
    [213] K Anselme. Osteoblast adhesion on biomaterials.[J] Biomaterials.2000,21:667-681;
    [214]高长有,李安,封麟先.促进组织生长的聚合物骨架工程材料[J].功能高分子学报,1998,11(3):408-414.
    [215] Pietro Favia, Riccardo D Agostino. Plasma treatments and plasma deposition ofpolymers for biomedical applications,[J] Surface Coating Technology,1998,98:1102-1106.
    [216] I. De Scheerder, J. Sohier, E. Verbeken, et al. Biocompatibility of coronary stentmaterials: Effect of electrochemical polishing. Electropolishing2001;32:142-148.
    [217] De Scheerder I, Verbeken E, Van Humbeeck. Metallic surface modification. SeminInterv Cardiol1998;3:139-144
    [218] Y. T Xie, X. Y. Liu, Huang A, Ding C, Chu P. K. Improvement of surface bioactivity ontitanium by water and hydrogen plasma immersion ion implantation. Biomaterials.26(2005)6129-6135.
    [219] Roy R. K, Lee K. R. Biomedical applications of diamond-like carbon coatings: a review.J Biomedical Materials Research. B.2007;83B (1):72-84.
    [220] L. A Thomson, F. C. Law, N. Rushton, J Franks. Biocompatibility of diamond-likecarbon coating, Biomaterials1991;12(1):37-40.
    [221] T. I. Okpalugo, A. A. Ogwu, P. D. Maguire, J. A. McLaughlin, Platelet adhesion onsilicon modified hydrogenated amorphous carbon films. Biomaterials25(2004)239-245.
    [222] M. I Jones, I. R. McColl, D. M. Grant, et al. Protein adsorption and platelet attachmentand activation, on TiN, TiC, and DLC coatings on titanium for cardiovascularapplications. J. Biomedical Materials Research.52(2000)413-421.
    [223] Kwok C. H, Wang J, Chu P. K. Surface energy, wettability, and blood compatibilityphosphorus doped diamond-like carbon films. Diamond Related Materials2005;14:78-85.
    [224] Huang N, Yang P, Leng YX, et al. Surface modification for controlling theblood–materials interface. In: The Sixth Asia Symposium on Biomaterials, July20-23,2004, Chengdu, China.
    [225] Riascos H, Neidhardt J, Radnóczi G.Z, Emmerlich J, Zambrano G, Hultman L, Prieto P,Structure and properties of pulsed-laser deposited carbon nitride thin films. Thin SolidFilms497(2006)1-6.
    [226] Wang J. G., Jiang N., Blood compatibilities of carbon nitride flm deposited onbiomedical NiTi alloy. Diamond&Related Materials18(2009)1321-1325.
    [227] Fandino J, Santana G, Rodr guez-Fernandez L, cheang-wong J. C, Ortiz A, Alonso J. C,Journal of Vacuum Science&Technology A,23(2),2005248-255.
    [228] Hasebe T, Yohena S, Kamijo A, Takahashi K, et al. Fluorine doping into diamond-likecarbon coatings inhibits protein adsorption and platelet activation. J Biomed Mater Res A2007;83A (4):1192-1199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700