用户名: 密码: 验证码:
IUGR猪的生长与肠道发育及L-精氨酸和大豆卵磷脂的营养调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
子宫内发育迟缓(IUGR)对胎儿生理机能和后期代谢产生深远影响,在猪生产上IUGR发生率高(15%-20%),导致仔猪生后生长速度、养分利用率、肉品质和健康状况低下,对养猪生产效益影响巨大。本研究选用新生IUGR仔猪和正常体重(NBW)仔猪,研究IUGR对猪出生后生长和肠道发育的影响及相关机制;并在仔猪哺乳和断奶后,补充L-精氨酸(Arg)和大豆卵磷脂(SL),研究其对IUGR猪生长和肠道发育的营养调控,为养猪生产和人类医学研究提供科学依据和调控技术。
     1IUGR对猪出生后生长的影响
     选用40头初生IUGR仔猪(IUGR组)和40头全同胞NBW仔猪(NBW组),每组4个重复,每个重复10头,仔猪于21d龄断奶,饲养至160d龄。测定各阶段猪的生产性能,并分别于1d、7d、21d、28d、66d和160d龄时,每组随机选取4头猪(1头/重复)进行屠宰取样,测定器官指数、血清常规指标、血清激素和HSP70水平。数据分析调用SAS的GLM过程,采用LSMEAN过程进行最小二乘分析,结果发现:IUGR导致猪出生后体重(NBW21.26kg vs. IUGR15.96kg, SEM0.23)和各阶段平均日增重(ADG)显著降低(P<0.05),断奶后各阶段平均日采食量(ADFI)亦显著降低(P<0.05),料重比(F/G)显著升高(P<0.05),表明IUGR损害猪出生后的生长;1-20d、1-160d和67-160d龄内IUGR猪的相对生长率(FGR)分别比NBW猪高36.04%、46.51%和28.06%(P<0.05),提示IUGR猪表现出“补偿生长”现象;与NBW猪相比,IUGR猪出生后血清总蛋白(TP)水平下降9.73%(P<0.05),尿素氮(UN)升高42.75%(P<0.05),表明IUGR对猪蛋白质代谢和利用效率产生不利影响;IUGR对猪出生后血清葡萄糖(Glu)无显著影响(P>0.05),而胰岛素(Ins)水平降低23.45%(P<0.05);IUGR猪QUICKI、HOMA-IS和G/I指数与NBW猪相比显著升高(P<0.05), HOMA-IR降低(P<0.05),表明IUGR可改善猪的Ins敏感性;IUGR导致猪出生后血清胰岛素样生长因子I (IGF-I)和雌二醇(E2)分别降低12.97%和18.99%(P<0.05),瘦素(+15.38%)显著升高(P<0.05);IUGR猪出生后血清皮质醇和HSP70水平分别比NBW猪高24.18%和6.11%(P<0.05),提示IUGR对猪产生明显应激影响。总之,IUGR对猪出生后的生长发育产生不利影响。
     2IUGR对猪出生后肠道发育的影响
     试验设计同1。分离猪的小肠,测定小肠及其黏膜重量、小肠形态学指标、黏膜中二糖酶和碱性磷酸酶(1AP)活性、抗氧化指标、激素和HSP70水平、小肠上皮细胞凋亡和增殖状况及Akt、mTOR、S6K1和FoxO4的磷酸化水平。数据分析同1,结果发现:IUGR显著降低猪出生后小肠(-30.07%)、小肠黏膜(-28.75%)和非黏膜(-30.53%)绝对重量(P<0.05),以及小肠单位长度肠段(-21.87%)和单位长度黏膜(-22.34%)重量(P<0.05),从日龄变化来看,此不利影响至少延续到66d龄;IUGR导致猪十二指肠、空肠前段和后段、回肠的总黏膜厚度(TMT)、绒毛高度(VH)、绒毛高度/绒毛宽度(HWR)、绒毛高度/隐窝深度(VCR)和绒毛表面积(VS)均显著降低(P<0.05),且影响至少持续到160d;IUGR显著降低猪出生后小肠黏膜乳糖酶(-20.31%)、麦芽糖酶(-30.73%)和IPA(-23.74%)活性(P<0.05); IUGR导致猪出生后肠道黏膜组中MDA(+26.98%)和H202水平(+12.68%)显著升高(P<0.05),而T-AOC (-17.28%)、GPx (-17.22%)和SOD (-11.62%)显著降低(P<0.05),表明IUGR导致小肠黏膜抗氧化能力低下,发生氧化应激(OS); IUGR猪出生后,小肠黏膜组织中NOS活性(-15.00%)和NO水平(-22.16%)显著降低(P<0.05),肠道黏膜屏障功能受损;免疫组织化学分析显示,肠道绒毛破损处的HSP70表达增多,IUGR猪黏膜HSP70水平在66d和160d龄时显著降低(P<0.05),但在哺乳期和断奶前后显著升高(P<0.05),表现出机体应激适应性反应。IUGR导致猪出生后小肠上皮细胞凋亡指数(AI,+46.06%)、AI/PI(+52.06%)和黏膜Caspase-3比活性(+14.11%)显著升高(P<0.05),增殖指数(PI,-6.29%)显著降低(P<0.05),提示肠道上皮细胞凋亡和增殖失衡,进而导致肠道形态结构发生改变,肠道生长和功能受损。IUGR导致猪出生后小肠黏膜组织中Ins (-31.34%)、IGF-I (-25.73)和E2(-11.58%)水平均显著下降(P<0.05),肠道黏膜Akt (-49.49%, NBW0.580vs. IUGR0.293, SEM0.018)、mTOR (-31.27%, NBW0.673vs. IUGR0.438, SEM0.020)、S6K1(49.10%, NBW0.269vs. IUGR0.151, SEM0.013)和FoxO4(-50.81%, NBW0.615vs. IUGR0.302, SEM0.023)磷酸化水平降低(P<0.05),这可能是IUGR导致肠道上皮细胞增殖和凋亡稳态发生紊乱,肠道生长发育受损的原因之一。其中,小肠黏膜中E2介导的Akt-FoxO4信号通路可能在猪66d和160d时发挥作用。总之,IUGR损害猪出生后肠道发育,导致猪生长因子分泌减少,肠道黏膜Akt、mTOR和FoxO4活性降低,肠细胞凋亡增加,有丝分裂减少,此可能是导致肠道发育受损的重要原因。
     3Arg和SL对哺乳阶段IUGR猪生长和肠道发育的调控
     选取18头IUGR仔猪和6头NBW仔猪,自然哺乳至7d龄,将所有IUGR仔猪随机分成三组,分别饲喂基础人工乳(IUGR组)、基础人工乳+0.6%Arg (IUGR+Arg组)和基础人工乳+1.5%SL(IUGR+SL组),所有NBW仔猪饲喂基础人工乳(NBW组),试验期7d。于结束时(14d龄)每组选取4头仔猪进行屠宰取样,测定生长性能和肠道发育相关指标(同1),以及血清和肠道黏膜中游离氨基酸水平。数据分析调用SAS的GLM过程,采用LSMEAN进行最小二乘分析,并进行两两比较。结果发现:
     (1)IUGR猪在7-14d龄内补充0.6%的Arg,14d龄体重比IUGR猪提高21.78%(P<0.05),但仍低于NBW猪(P<0.05);与IUGR猪相比,IUGR+Arg猪ADG和干物质采食量(DMI)分别提高47.30%和21.41%(P<0.05),腹泻率降低61.46%(P<0.05);补充Arg后,IUGR猪血清皮质醇,血清和肠道黏膜中HSP70水平均显著降低(P<0.05),提示IUGR应激减弱;与IUGR猪相比,IUGR+Arg猪血清和小肠黏膜中Arg代谢相关AA (Arg、Orn、Cit和Pro),NO含量和NOS活性显著升高(P<0.05),血清中UN显著降低(P<0.05),Ins水平显著升高(P<0.05),但Glu、 TP、IGF-I、瘦素和E2水平无显著变化(P>0.05),表明Arg对IUGR猪蛋白质代谢和内分泌功能具有一定程度的改善。
     日粮中补充Arg,可显著提高7-14d龄内IUGR猪小肠肠重、黏膜和非黏膜的绝对重量和相对重量(P<0.05),以及肠重/长度(P<0.05),提高乳糖酶和麦芽糖酶活性(P<0.05),提高T-AOC和GPx (P<0.05),降低黏膜MDA含量(P<0.05),改善肠道抗氧化功能;IUGR猪补充Arg后,空肠和回肠VH显著升高(P<0.05),回肠TMT和HWR显著升高(P<0.05),空肠和回肠各形态学测量指标与NBW猪相比均无显著差异(P>0.05),表明IUGR猪补充Arg后,可改善IUGR猪小肠肠道形态和消化吸收功能;与IUGR猪相比,14d龄IUGR+Arg猪肠道黏膜Ins水平显著升高(P<0.05), IGF-I也有升高趋势(P>0.05),黏膜Akt和mTOR磷酸化水平分别升高47.09%和60.34%(P<0.05),但S6K1升高不显著(P>0.05);同时,IUGR+Arg猪肠上皮细胞AI和AI/PI分别比IUGR猪降低42.86%和44.08%(P<0.05)。
     (2) IUGR猪在7-14d龄内补充1.5%的SL,仔猪体重和ADG分别升高20.46%和53.32%(P<0.05),但对DMI无显著影响(P<0.05),提示SL可能通过提高养分消化率来改善IUGR仔猪生长性能。与Arg类似,SL可降低IUGR猪血清皮质醇和HSP70水平,缓解IUGR应激;与IUGR猪相比,IUGR+SL猪小肠组织生长加快,形态结构得到改善,黏膜麦芽糖酶和乳糖酶活性显著升高(P<0.05),黏膜T-AOC、 GPx和SOD显著升高(P<0.05), MDA显著下降(P<0.05),提示氧化应激得到缓解;与IUGR猪相比,SL可提高IUGR猪小肠黏膜中Akt(+38.84%)和mTOR(+36.12%)信号通路转导(P<0.05),减少肠细胞凋亡(-24.340%,P<0.05),但Caspase-3比活性无显著变化(P>0.05);补充SL后,IUGR猪小肠黏膜和血清中AA浓度、黏膜中Ins和IGF-I水平未出现升高(P>0.05),表明Arg和SL对肠道发育的调控机制不同。
     总之,在7-14d龄IUGR猪日粮中补充Arg和SL,可促进IUGR猪个体和小肠组织生长,改善肠道形态和功能,这与能与补充Arg和SL后,IUGR猪Ins分泌增加,肠道黏膜Akt和mTOR信号增强,肠细胞凋亡减少有关。
     4SL对IUGR猪断奶后生长和肠道发育的调控
     选取32头IUGR仔猪和16头NBW仔猪,自然哺乳至21d龄断奶。随后将IUGR仔猪随机分成两组,分别饲喂基础日粮(IUGR组)和基础日粮+1.5%SL (IUGR+SL组),所有NBW仔猪饲喂基础日粮(NBW组),每组4个重复(4头/重复),试验期140d。分别于仔猪28d、66d和160d龄时屠宰取样,生长性能和肠道发育相关指标测定同1,数据分析调用SAS的GLM程序,采用LSMEAN过程进行最小二乘分析,分析日粮添加SL对IUGR的调控效应,并进行两两比较,并与IUGR和NBW猪进行比较,数据结果表明:
     (1) IUGR断奶仔猪补充SL后,体重比IUGR猪高14.86%(P<0.05),比NBW猪低10.36%(P<0.05);SL可显著改善IUGR猪生长性能,加快“补偿生长”,在160d时体重达到NBW仔猪水平(NBW86.14kg vs. IUGR+SL81.05kg, SEM2.41, P>0.05);与IUGR猪相比,IUGR+SL猪血清Ins和E2水平升高(P<0.05),皮质醇水平下降(P<0.05),应激得到缓解;IUGR+SL猪断奶后血清和小肠黏膜中HSP70均高于IUGR猪(P<0.05),提示SL可提高IUGR猪免疫功能和抗应激能力。
     (2)与在猪哺乳阶段调控结果类似,SL促进IUGR断奶猪小肠组织生长,缓解氧化应激,对黏膜中NO和NOS无显著影响(P>0.05);补充SL后,66d和160d龄IUGR猪肠道黏膜Akt磷酸化水平分别升高56.89%和33.56%(P<0.05),IUGR断奶仔猪肠道上皮细胞AI和AI/PI分别下降21.58%和24.00%(P<0.05),小肠各段VH、TMT和VS均显著升高(P<0.05),而肠道黏膜Caspase-3活性、mTOR和FoxO4活性无显著变化(P>0.05)。
     总之,在IUGR断奶猪日粮中补充SL,对IUGR猪个体和小肠发育有明显改善,这与能肠道黏膜Akt信号增强,肠细胞凋亡减少有关。
Intrauterine growth retardation (IUGR), a serious problem among human fetuses and polyembryony animals, has long-term adverse effects on fetal physiological function and metabolism. Pig fetuses are born with a high occurrence of15%to20%, and these IUGR piglets show a lower postnatal growth rate, nutrient utilization, meat quality, and health condition. In this study, IUGR piglets and piglets with normal body weight (NWB) were used to investigate the difference of body growth and development of small intestine (SI) from birth to slaughter age (160d) and study the related mechanism. Meanwhile, diet supplemented with L-arginine (Arg) and Soya lecithins (SL) were involved to evaluate the nutrition regulation of the postnatal development in IGUR piglets. This study will further provide evidences of IUGR on growth and SI development in long term and theoretical basis on research in pig production and human medicine.
     1Effect of IUGR on body growth in postnatal pigs
     Forty NBW newborn piglets and forty IUGR littermates (Duroc×(Landrace×Yorkshire)) were selected to set two groups, each of which had4replicates of10pigs per replicates. The growth performance of piglets was measured. At1d,7d,21d,28d,66d, and160d of age,4pigs in each group with close body weight (BW) were chosen to slaughter and sample. The absolute and relative weight of visceral organs were weighted and calculated, the serum glucose and urea nitrogen were detected by commercial kits, the serum hormones (insulin, IGF-I, leptin, E2, and cortisol) and HSP70level were measured by commercial ELSIA kits. All data were analyzed by LSMEAN using the General Linear Model (GLM) procedures of SAS9.0. The factors of day and IUGR were involved in the statistic model. The results showed that, compared with NBW postnatal piglets, IUGR decreased (P<0.05) the BW (NBW21.26vs. IUGR15.96, SEM0.23) and ADG in postnatal piglets, as well as decreased (P<0.05) the ADFI and increased (P<0.05) the F/G in piglets from weaning to slaughter age. However, the FGR was increased (P<0.05) in IUGR piglets during1to20,1 to160, and67to160d of age by36.04%,46.51%, and28.06%, respectively, which suggested a dramatic catch-up growth. IUGR decreased (P<0.05) the serum total protein (TP) content by9.73%, enhanced (P<0.05) the serum urea nitrogen (UN) level by42.75%in postnatal piglets, which showed delayed protein metabolism and utility efficiency in IUGR postnatal piglets. The serum glucose level was not changed (P>0.05) by IUGR, however, the serum insulin level was decreased (P<0.05) by23.45%, which suggested impaired insulin secretion in postnatal IUGR piglets. In addition, IUGR decreased (P<0.05) the QUICKI, HOMA-IS, and G/I, as well as elevated (P<0.05) the HOMA-IR, these indicated that IUGR improved the insulin sensitive in IUGR postnatal piglets before mature. Compared with IUGR piglets, serum IGF-I and E2levels was decreased (P<0.05) by12.97%and18.99%in postnatal IUGR piglets. However, the serum cortisol and HSP70levels was increased (P<0.05) by24.18%and6.11%, which showed a significant stress of IUGR. In conclusion, IUGR impaired the growth and development of postnatal pigs.
     2Effect of IUGR on SI development in postnatal pigs
     The pigs used in this part were the same as part1. The absolute and relative weight of SI and its mucosa were weighted and calculated, the SI morphological measurements were measured using a Nikon ECLIPSE80i light microscope with a computer-assisted morphometric system, the mucosal disaccharides and intestinal alkaline phosphatase (IAP) activity, the mucosal anti-oxidation capacity, the mucosal hormones (insulin, IGF-I, leptin, E2, and cortisol) and HSP70level were measured by commercial ELSIA kits, the apoptosis and proliferation of enterocytes were measured by TUNEL kits and immunohistochemistry method, and the phosphorylation of Akt, mTOR, S6K1and FoxO4in SI mucosa were evaluated by Western Blot. All data were analyzed as described in part1. The results showed that, In postnatal piglets, IUGR decreased (P<0.05) the weight of SI by30.07%, mucosa by28.75%, and non-mucosa by30.53%, as well as the intestinal and mucosal weight per length of SI. This showed that IUGR impaired the growth and development of SI, and the adverse effect was persistent up to66d of age at least. The TMT, VH, HWR, VCR and VS of duodenum, proximal and distal jejunum, and ileum were decreased (P<0.05) by IUGR in postnatal piglets. The impaired structure of SI induced by IUGR continued to160d of age at least. IUGR impaired the enzymes mature in SI, the activity of mucosal lactase (-20.31%), maltase (-30.73%), and IPA (-23.74%) was decreased (P<0.05) by IUGR in postnatal piglets. IUGR increased (P<0.05) the content of mucosal MDA (26.98%) and H2O2(12.68%), as well as decreased (P<0.05) the T-AOC (-17.28%), GPx (-17.22%), and SOD (-11.62%), which showed a severe oxidant stress (OS). IUGR also impaired (P<0.05) the activity of NOS (-15.00%), and reduced (P<0.05) the content of NO (-22.16%) in SI mucosa of postnatal piglets. The IHC staining of HSP70showed that, the expression of HSP70was increased in broken villi. ELISA result showed that IUGR increased (P<0.05) the mucosal HSP70content during suckling period and early time after weaning, which HSP70represented the adaptation reaction. However, the content of HSP70was lower (P<0.05) in IUGR piglets compared with NBW piglets at66and160d of age, which HSP70may indicate the capacity of anti-stress. IUGR decreased (P<0.05) the proliferation index (PI) of enterocytes by6.29%, increased (P<0.05) the apoptosis index (AI) by46.06%, AI/PI by52.06%, as well as the mucosal Caspase-3relative activity by14.11%in postnatal piglets. This indicated that, IUGR changed the homeostasis between proliferation and apoptosis of enterocytes, which could impair the structure and growth of SI. The concentration of mucosal insulin (-31.34%), IGF-I (-25.73), and E2(-11.58%) was decreased (P<0.05) by IUGR in postnatal period. Compared with NBW piglets, the phosphorylation of mucosal Akt, mTOR, S6K1, and FoxO4was also reduced (P<0.05) in IUGR piglets by49.49%,31.27%,49.10%, and50.81%, respectively. These indicated that the Akt and mTOR signaling were involved in regulating SI development. In addition, the mucosal E2/Akt/FoxO4pathway might play important roles on SI development in piglets at66and160d of age. In conclusion, IUGR delayed the growth and intestinal development of postnatal piglets. These may due to the decreased growth factors secretion, mucosal Akt, mTOR, and FoxO4activity, as well as imbalanced enterocytes apoptosis and proliferation.
     3Dietary supplementation with Arg and SL on body growth and SI development in suckling IUGR piglets
     A total of twenty-four piglets including six NBW piglets and eighteen IUGR piglets were selected. All piglets were weaned at7d of age. Then they were assigned equally to four groups:six NBW (Group NBW) and six IUGR piglets fed control diet (Group IUGR), six IUGR piglets fed Arg diet supplemented with0.60%Arg (Group IUGR+Arg), and six IUGR piglets fed Arg diet supplemented with1.50%SL (Group IUGR+SL), respectively from7to14d of age. All piglets were housed individually in plastic floored pens and free access to water. At14d of age,4pigs in each group with close BW were chosen to slaughter and sample. The content of serum AA was measured by HPLC. Other parameters measured were the same as part1. Data were analyzed by LSMEAN using the GLM procedures of SAS9.0. The results showed that,
     (1) Dietary supplementation with0.60%Arg in IUGR piglets increased (P<0.05) the14d BW by21.78%, the ADG by47.30%and DMI by21.41%, and decreased (P<0.05) the diarrhea rate by61.46%compared with IUGR piglets fed control diet. However, the14d BW of piglets in IUGR+Arg group was still lower (P<0.05) than that of IUGR piglets. In IUGR piglets, Arg decreased (P<0.05) serum cortisol and HSP70level, and mucosal HSP70content, which indicated a reduced stress effect. Compared with IUGR piglets, diet supplemented by Arg increased (P<0.05) the serum and mucosal concentration of Arg, Orn, Cit, and Pro, the activity of NOS and the content of NO, the level of insulin, and decreased (P<0.05) the serum urea nitrogen in IUGR piglets at14d of age. However, the level of glucose, TP, IGF-I, leptin and E2was not changed (P>0.05) by Arg in IUGR piglets.
     In group IUGR+Arg, the weight of SI, its mucosa and non-mucosa, as well as SI weight/length was higher (P<0.05) than that of IUGR piglets. The activity of mucosal lactase and maltase was also elevated (P<0.05) by Arg in IUGR piglets. Arg reduced the content of MDA, and increased the T-AOC and GPx of SI mucosa in IUGR piglets, which suggested improved the anti-oxidation of SI. Arg treated improved the structure of SI in IUGR piglets. The VH of jejunum and ileum, the TMR and HWR of ileum was increased by Arg in IUGR piglets at14d of age.
     Dietary supplementation with Arg increased (P<0.05) the mucosal insulin, IGF-I, as well as the phosphorylation of Akt by47.09%and mTOR by60.34%compared with IUGR piglets. Meanwhile, Arg treated decreased (P<0.05) the AI and AI/PI by42.86%and44.08%, respectively, but did not affect the PI (P>0.05).(2) Dietary supplementation with SL in IUGR piglets during suckling period increased (P<0.05) the14d BW and ADG by20.46%and53.32%compared to IUGR piglets. However, the DMI was not changed (P>0.05) by SL supplementation, this indicated that SL improved the growth of IUGR piglets may via increasing the nutrients utility. Similarly as Arg supplementation, SL decreased (P<0.05) the serum cortisol and HSP70levels to reduce IUGR induced stress, increased (P<0.05) the mucosal T-AOC, GPx, and SOD levels and decreased (P<0.05) the content of MDA to relieve OS. The activity of mucosal lactase and maltase was also increased (P<0.05) by SL in IUGR piglets.
     Compared with IUGR control piglets, dietary supplementation with SL enhanced (P<0.05) the signaling of Akt and mTOR by38.84%and36.12%, reduced (P<0.05) the AI by24.34%in IUGR piglets. However, the enterocytes PI, mucosal Caspase-3relative activity, AA concentrations, insulin and IGF-I level were not changed by SL supplemented in IUGR piglets. This suggested that the regulation mechanism of SL on body growth and SI development in IUGR piglets differed from Arg supplementation.
     Conclusion, diet supplemented with Arg and SL increased the body and intestinal tissue grow, improved the morphology and function of SI. The elevated insulin level, Akt and mTOR activity, and decreased enterocytes apoptosis contributed to these benefit effects.
     4Diet supplemented with SL on body growth and SI development in weaning piglets
     At the time of birth, sixteen NBW piglets and thirty-two IUGR piglets were selected. All piglets were weaned at21d of age. Then they were assigned equally to three groups:16NBW (Group NBW) and16IUGR piglets fed control diets (Group IUGR), and16IUGR piglets fed Arg diet supplemented with1.50%SL (Group IUGR+SL), respectively from21to160d of age. Each groups had4replicates of4pigs per replicates. All piglets were housed by replicate with ad libitum feeding and drinking. At28d,66d, and160d of age,4pigs in each group with close BW were chosen to slaughter and sample. The indexes measured were the same as part1. Data were analyzed by LSMEAN using the GLM procedures of SAS9.0. The factors of day and SL were involved in the statistic model. The results showed that,
     (1) Dietary supplementation with SL increased (P<0.05) the growth performance, improved the catch-up growth. The BW of IUGR+SL piglets at160d of age was not different (P<0.05) from that of NBW piglets. The level of serum insulin and E2was increased by SL in IUGR piglets after weaning. The increased insulin in IUGR+SL piglets was consistent with the increased serum glucose. The serum cortisol level was decreased (P<0.05) by SL supplementation in IUGR piglets after weaning. However, the serum and mucosal HSP70level was increased (P<0.05), which may indicated that SL improved the immune function and anti-stress capacity.
     (2) Similarly as the regulation effect on SI of IUGR piglets during suckling period, SL supplemented improve the SI growth, increased (P<0.05) the activity of lactase, maltase and IAP, reduced the OS. However, the NO and NOS were not changed by SL in IUGR piglets after weaning. Dietary supplementation with SL increased (P<0.05) the activity of Akt, reduced (P<0.05) the enterocytes AI, increased (P<0.05) the VH, TMT and VS of SI. However, the mTOR and FoxO4activity was not change by SL supplementation in IUGR piglets after waning.
     In conclusion, diet supplemented with SL in weaning piglets improved the body growth and intestinal development. These were closely related to the elevated Akt signal transduction and decreased enterocytes apoptosis.
引文
[1]Zabielski R, Godlewski MM, Guilloteau P. Control of development of gastrointestinal system in neonates[J]. J Physiol Pharmacol,2008,59 (Suppl 1):35-54.
    [2]Godlewski MM, Slupecka M, Wolinski J, et al. Into the unknown-the death pathways in the neonatal gut epithelium[J]. J Physiol Pharmacol,2005,56(Suppl 3):7-24.
    [3]Godlewski MM, Hallay N, Bierla JB, et al. Molecular mechanism of programmed cell death in the gut epithelium of neonatal piglets[J]. J Physiol Pharmacol,2007,58(Suppl 3):97-113.
    [4]Pluske JR, Hampson DJ, Williams IH. Factors influencing the structure and function of the small intestine in the weaned pig:A review[J]. Livestock Production Science,1997,51(1-3): 215-236.
    [5]Reilly P, O'Doherty JV, Pierce KM, et al. The effects of seaweed extract inclusion on gut morphology, selected intestinal microbiota, nutrient digestibility, volatile fatty acid concentrations and the immune status of the weaned pig[J]. Animal,2008,2(10):1465-1473.
    [6]Henning SJ. Functional development of the gastrointestinal tract.2nd ed. in Physiology of the gastrointestinal tract, Johnson LR, Editor.1987, Raven Press:New York. p.285-300.
    [7]Baserga M, Bertolotto C, Maclennan NK, et al. Uteroplacental insufficiency decreases small intestine growth and alters apoptotic homeostasis in term intrauterine growth retarded rats[J]. Early Hum Dev,2004,79(2):93-105.
    [8]Wang J, Chen L, Li D, et al. Intrauterine growth restriction affects the proteomes of the small intestine, liver, and skeletal muscle in newborn pigs[J]. J Nutr,2008,138(1):60-66.
    [9]Wang T, Huo YJ, Shi F, et al. Effects of intrauterine growth retardation on development of the gastrointestinal tract in neonatal pigs[J]. Biol Neonate,2005,88(1):66-72.
    [10]Zhong X, Wang T, Zhang X, et al. Heat shock protein 70 is upregulated in the intestine of intrauterine growth retardation piglets[J]. Cell Stress Chaperones,2010,15(3):335-342.
    [11]周根来,王恬,霍永久,等.胎儿宫内发育迟缓对新生仔猪小肠消化酶发育的影响[J].畜牧兽医学报,2005,36(8):778-783.
    [12]周根来,王恬,霍永久,等.胎儿宫内发育迟缓对新生仔猪小肠组织发育的影响[J].动物营养学报,2006,1 8(1):19-25.
    [13]Wu G, Bazer FW, Wallace JM, et al. Board-invited review:Intrauterine growth retardation: Implications for the animal sciences[J]. J Anim Sci,2006,84(9):2316-2337.
    [14]Xu RJ, Mellor DJ, Birtles MJ, et al. Impact of intrauterine growth retardation on the gastrointestinal tract and the pancreas in newborn pigs[J]. J Pediatr Gastroenterol Nutr,1994, 18(2):231-240.
    [15]霍永久,王恬,许若军.新生仔猪小肠生长发育及肠黏膜部分基因的表达[J].南京农业大学学报,2005,28(3):129-132.
    [16]Zabielski R, Gajewski Z, Piedra JLV, et al. The perinatal development of the gastrointestinal tract in piglets can be modified by supplementation of sow diet with bioactive substances [J]. Livestock Science,2007,109(1-3):34-37.
    [17]Nankervis CA, Reber KM, Nowicki PT. Age-dependent changes in the postnatal intestinal microcirculation[J]. Microcirculation,2001,8(6):377-87.
    [18]Skrzypek T, Valverde Piedra JL, Skrzypek H, et al. Gradual disappearance of vacuolated enterocytes in the small intestine of neonatal piglets[J]. J Physiol Pharmacol,2007,58(Suppl 3): 87-95.
    [19]Burrin DG, Shulman RJ, Reeds PJ, et al. Porcine colostrum and milk stimulate visceral organ and skeletal muscle protein synthesis in neonatal piglets[J]. J Nutr,1992,122(6):1205-1213.
    [20]Wolinski J, Biernat M, Guilloteau P, et al. Exogenous leptin controls the development of the small intestine in neonatal piglets[J]. J Endocrinol,2003,177(2):215-222.
    [21]Skrzypek T, Valverde Piedra JL, Skrzypek H, et al. Light and scanning electron microscopy evaluation of the postnatal small intestinal mucosa development in pigs[J]. J Physiol Pharmacol, 2005,56(Suppl 3):71-87.
    [22]Biernat M, Wolinski J, Godlewski MM, et al. Apoptosis in the gut of neonatal piglets. in Proceedings of the 9th international symposium on digestive physiology in pigs.2003: University of Alberta, Edmonton, Canada. p.46-48.
    [23]Verburg M, Renes IB, Meijer HP, et al. Selective sparing of goblet cells and paneth cells in the intestine of methotrexate-treated rats[J]. Am J Physiol Gastrointest Liver Physiol,2000,279(5): G1037-G1047.
    [24]Baintner K. Vacuolation in the young. in Biology of the intestine in growing animals, Zabielski R,Gregory PC,Westrom B, Editors.2002, Elsevier:Amsterdam, p.55-110.
    [25]Baintner K. Intestinal absorption of macromolecules and immune transmission from mother to young[M]. Florida:CRC Press Inc,1986.
    [26]Hase K, Kawano K, Nochi T, et al. Uptake through glycoprotein 2 of FimH+ bacteria by m cells initiates mucosal immune response[J]. Nature,2009,462(7270):226-230.
    [27]Grand RJ, Watkins JB, Torti FM. Development of the human gastrointestinal tract. A review[J]. Gastroenterology,1976,70(5 PT.1):790-810.
    [28]Klein RM. Small intestinal cell proliferation during development. in Human gastrointestinal development, Lebenthal E, Editor.1989, Raven Press:New York. p.367-394.
    [29]Iwanaga T. The involvement of macrophages and lymphocytes in the apoptosis of enterocytes[J]. Arch Histol Cytol,1995,58(2):151-159.
    [30]Kim J, Klionsky DJ. Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells[J]. Annu Rev Biochem,2000,69:303-342.
    [31]Cain K, Brown DG, Langlais C, et al. Caspase activation involves the formation of the aposome, a large (approximately 700 kda) caspase-activating complex[J]. J Biol Chem,1999,274(32): 22686-22692.
    [32]Gorka M, Godlewski MM, Gajkowska B, et al. Kinetics of smac/diablo release from mitochondria during apoptosis of mcf-7 breast cancer cells[J]. Cell Biol Int,2004,28(11): 741-754.
    [33]Slee EA, Harte MT, Kluck RM, et al. Ordering the cytochrome c-initiated caspase cascade: Hierarchical activation of caspases-2,-3,-6,-7,-8, and -10 in a caspase-9-dependent manner[J]. J Cell Biol,1999,144(2):281-292.
    [34]Wildhaber BE, Lynn KN, Yang H, et al. Total parenteral nutrition-induced apoptosis in mouse intestinal epithelium:Regulation by the bcl-2 protein family[J]. Pediatr Surg Int,2002,18(7): 570-575.
    [35]Xia HH, Talley NJ. Apoptosis in gastric epithelium induced by helicobacter pylori infection: Implications in gastric carcinogenesis[J]. Am J Gastroenterol,2001,96(1):16-26.
    [36]Blum JW, Baumrucker CR. Colostral and milk insulin-like growth factors and related substances:Mammary gland and neonatal (intestinal and systemic) targets[J]. Domest Anim Endocrinol,2002,23(1-2):101-110.
    [37]Guilloteau P, Biernat M, Wolinski J, et al. Gut regulatory peptides and hormones of the small intestine. in Biology of growing animals, R. Zabielski PCGBW,Salek E, Editors.2002, Elsevier. p.325-362.
    [38]Kolek O, Gajkowska B, Godlewski MM, et al. Molecular mechanism of TGF-β1-induced apoptosis in hc11 mouse mammary epithelial cells (mec)[J]. Cell Mol Biol,2001,47 (Online Pub):197-208.
    [39]Narine K, De Wever O, Van Valckenborgh D, et al. Growth factor modulation of fibroblast proliferation, differentiation, and invasion:Implications for tissue valve engineering [J]. Tissue Eng,2006,12(10):2707-16.
    [40]Godlewski MM, Slupecka M, Wolinski J, et al. Into the unknown-the death pathways in the neonatal gut epithelium[J]. J Physiol Pharmacol,2005,56(Supp 3):7-24.
    [41]Dunker N, Schmitt K, Schuster N, et al. The role of transforming growth factor β-2, β-3 in mediating apoptosis in the murine intestinal mucosa[J]. Gastroenterology,2002,122(5): 1364-1375.
    [42]Mikami F, Lim JH, Ishinaga H, et al. The transforming growth factor-β-smad3/4 signaling pathway acts as a positive regulator for TLR2 induction by bacteria via a dual mechanism involving functional cooperation with NF-κb and MAPK phosphatase 1-dependent negative cross-talk with p38 mapk[J]. J Biol Chem,2006,281(31):22397-22408.
    [43]Miyazawa K, Shinozaki M, Hara T, et al. Two major smad pathways in TGF-β superfamily signalling[J]. Genes Cells,2002,7(12):1191-204.
    [44]Chi XZ, Yang JO, Lee KY, et al. Runx3 suppresses gastric epithelial cell growth by inducing p21(waf1/cip1) expression in cooperation with transforming growth factor β-activated smad[J]. Mol Cell Biol,2005,25(18):8097-8107.
    [45]Thompson CB. Apoptosis in the pathogenesis and treatment of disease[J]. Science,1995, 267(5203):1456-1462.
    [46]Godlewski MM, Hallay N, Bierla JB, et al. Molecular mechanism of programmed cell death in the gut epithelium of neonatal piglets[J]. J Physiol Pharmacol,2007,58(Suppl 3):97-113.
    [47]Lipkin M, Sherlock P, Bell B. Cell proliferation kinetics in the gastrointestinal tract of man. Ⅱ. Cell renewal in stomach, ileum, colon, and rectum[J]. Gastroenterology,1963,45:721-729.
    [48]Zhang H, Malo C, Buddington RK. Suckling induces rapid intestinal growth and changes in brush border digestive functions of newborn pigs[J]. J Nutr,1997,127(3):418-426.
    [49]王恬,钟翔.仔猪肠黏膜营养与肠道修复[J].饲料工业,2008,29(2):2-7.
    [50]Puzio I, Kapica M, Bienko M, et al. Dietary bioactive substances influenced perinatal bone development in piglets[J]. Livestock Science,2007,108(1-3):72-75.
    [51]Dziaman T, Gackowski D, Rozalski R, et al. Urinary excretion rates of 8-oxogua and 8-oxodg and antioxidant vitamins level as a measure of oxidative status in healthy, full-term newborns[J]. Free Radic Res,2007,41(9):997-1004.
    [52]Strzalkowski AK, Godlewski MM, Hallay N, et al. The effect of supplementing sow with bioactive substances on neonatal small intestinal epithelium[J]. J Physiol Pharmacol,2007,58 Suppl 3:115-122.
    [53]Gorka P, Kowalski ZM, Pietrzak P, et al. Effect of sodium butyrate supplementation in milk replacer and starter diet on rumen development in calves[J]. J Physiol Pharmacol,2009, 60(Suppl 3):47-53.
    [54]Radberg K, Biernat M, Linderoth A, et al. Enteral exposure to crude red kidney bean lectin induces maturation of the gut in suckling pigs[J]. J Anim Sci,2001,79(10):2669-2678.
    [55]McPherson RJ, Juul SE. High-dose erythropoietin inhibits apoptosis and stimulates proliferation in neonatal rat intestine[J]. Growth Horm IGF Res,2007,17(5):424-430.
    [56]Papaconstantinou HT, Hwang KO, Rajaraman S, et al. Glutamine deprivation induces apoptosis in intestinal epithelial cells[J]. Surgery,1998,124(2):152-159; discussion 159-160.
    [57]Rosenberg A. The IUGR newborn[J]. Semin Perinatol,2008,32(3):219-224.
    [58]Wu G, Bazer FW, Wallace JM, et al. Board-invited review:Intrauterine growth retardation: Implications for the animal sciences[J]. J. Anim Sci.,2006,84(9):2316-2337.
    [59]McMillen IC, Robinson JS. Developmental origins of the metabolic syndrome:Prediction, plasticity, and programming[J]. Physiol Rev,2005,85(2):571-633.
    [60]Bauer R, Walter B, Ihring W, et al. Altered renal function in growth-restricted newborn piglets[J]. Pediatr Nephrol,2000,14(8-9):735-739.
    [61]Zhong X, Wang T, Zhang X, et al. Heat shock protein 70 is upregulated in the intestine of intrauterine growth retardation piglets[J]. Cell Stress and Chaperones,2010,15(3):335-342.
    [62]沈峰,王恬.胰岛素对子宫内生长迟缓新生仔猪小肠生长发育的影响[J].肠外与肠内营养,2005,12(1):5-8.
    [63]Wu G, Bazer FW, Cudd TA, et al. Maternal nutrition and fetal development [J]. J Nutr,2004, 134(9):2169-2172.
    [64]Wallace JM, Bourke DA, Aitken RP, et al. Placental glucose transport in growth-restricted pregnancies induced by overnourishing adolescent sheep[J]. J Physiol,2003,547(Pt 1):85-94.
    [65]Schoknecht PA, Newton GR, Weise DE, et al. Protein restriction in early pregnancy alters fetal and placental growth and allantoic fluid proteins in swine[J]. Theriogenology,1994,42(2): 217-26.
    [66]朱秋凤,张卫辉,黄进,等.胎儿宫内发育迟缓胎盘形态学的研究进展[J].畜牧与兽医,2008,40(6):103-106.
    [67]Pere MC, Etienne M. Uterine blood flow in sows:Effects of pregnancy stage and litter size[J]. Reprod Nutr Dev,2000,40(4):369-382.
    [68]Finch AM, Yang LG, Nwagwu MO, et al. Placental transport of leucine in a porcine model of low birth weight[J]. Reproduction,2004,128(2):229-235.
    [69]Perry JS, Rowell JG. Variations in foetal weight and vascular supply along the uterine horn of the pig[J]. J Reprod Fertil,1969,19(3):527-534.
    [70]Kinzler WL, Vintzileos AM. Fetal growth restriction:A modern approach[J]. Curr Opin Obstet Gynecol,2008,20(2):125-131.
    [71]Briana DD, Malamitsi-Puchner A. Intrauterine growth restriction and adult disease:The role of adipocytokines[J]. Eur J Endocrinol,2009,160(3):337-347.
    [72]Gastaldelli A, Miyazaki Y, Pettiti M, et al. Metabolic effects of visceral fat accumulation in type 2 diabetes[J]. J Clin Endocrinol Metab,2002,87(11):5098-5103.
    [73]Barker DJ. The developmental origins of insulin resistance[J]. Horm Res,2005,64(Suppl 3): 2-7.
    [74]Attig L, Djiane J, Gertler A, et al. Study of hypothalamic leptin receptor expression in low-birth-weight piglets and effects of leptin supplementation on neonatal growth and development[J]. Am J Physiol Endocrinol Metab,2008,295(5):E1117-E1125.
    [75]陈才勇,周根来,王恬.以猪为动物模型对子宫内生长阻滞的研究进展[J].实验动物科学与管理,2003,(01):33-36+45.
    [76]Davis TA, Fiorotto ML, Burrin DG, et al. Intrauterine growth restriction does not alter response of protein synthesis to feeding in newborn pigs[J]. Am J Physiol Endocrinol Metab,1997, 272(5):E877-E884.
    [77]Roy-Clavel E, Picard S, St-Louis J, et al. Induction of intrauterine growth restriction with a low-sodium diet fed to pregnant rats[J]. Am J Obstet Gynecol,1999,180(3 Pt 1):608-613.
    [78]Roecklein B, Levin SW, Comly M, et al. Intrauterine growth retardation induced by thiamine deficiency and pyrithiamine during pregnancy in the rat[J]. Am J Obstet Gynecol,1985,151(4): 455-460.
    [79]Royston JP, Flecknell PA, Wootton R. New evidence that the intra-uterine growth-retarded piglet is a member of a discrete subpopulation[J]. Biol Neonate,1982,42(1-2):100-104.
    [80]张庆,黎海芪,郑惠连.宫内生长迟缓对新生幼鼠胃肠发育的影响[J].中华儿科杂志,1997,35(11):567-570.
    [81]Avila CG, Harding R, Rees S, et al. Small intestinal development in growth-retarded fetal sheep[J]. J Pediatr Gastroenterol Nutr,1989,8(4):507-515.
    [82]Buchmiller-Crair TL, Gregg JP, Rivera FA, Jr., et al. Delayed disaccharidase development in a rabbit model of intrauterine growth retardation[J]. Pediatr Res,2001,50(4):520-524.
    [83]Qiu XS, Huang TT, Shen ZY, et al. Effect of early nutrition on intestine development of intrauterine growth retardation in rats and its correlation to leptin[J]. World J Gastroenterol, 2005,11(28):4419-4422.
    [84]Kressig P, Beinder E, Schweer H, et al. Post-delivery oxidative stress in women with preeclampsia or IUGR[J]. J Perinat Med,2008,36(4):310-315.
    [85]张彬,邓红兵,周斌,等.热休克蛋白70通过bcl-2抑制氧化应激所致C2C12细胞凋亡[J].中国动脉硬化杂志,2010,18(8):621-624.
    [86]Schwartzman RA, Cidlowski JA. Apoptosis:The biochemistry and molecular biology of programmed cell death[J]. Endocr Rev,1993,14(2):133-151.
    [87]Itoh N, Tsujimoto Y, Nagata S. Effect of bcl-2 on Fas antigen-mediated cell death[J]. J Immunol, 1993,151(2):621-627.
    [88]张汉英,黎丹戎,张惠煊,等.卵巢癌及癌旁组织端粒酶活性与凋亡相关性研究[J].实用临床医药杂志,2009,13(4):42-45.
    [89]Jacobson MD, Burne JF, King MP, et al. Bcl-2 blocks apoptosis in cells lacking mitochondrial DNA[J]. Nature,1993,361(6410):365-369.
    [90]Christ M, Luu B, Mejia JE, et al. Apoptosis induced by oxysterols in murine lymphoma cells and in normal thymocytes[J]. Immunology,1993,78(3):455-460.
    [91]Sandstrom PA, Pardi D, Tebbey PW, et al. Lipid hydroperoxide-induced apoptosis:Lack of inhibition by bcl-2 over-expression[J]. FEBS Lett,1995,365(1):66-70.
    [92]Song J, Li J, Qiao J, et al. Pkd prevents h2o2-induced apoptosis via NF-κb and p38 mapk in rie-1 cells[J]. Biochem Biophys Res Commun,2009,378(3):610-614.
    [93]Rahman I, Gilmour PS, Jimenez LA, et al. Oxidative stress and TNF-α induce histone acetylation and NF-Kb/AP-1 activation in alveolar epithelial cells:Potential mechanism in gene transcription in lung inflammation[J]. Mol Cell Biochem,2002,234-235(1-2):239-248.
    [94]Song J, Li J, Qiao J, et al. Pkd prevents H2O2-induced apoptosis via NF-Kb and p38 MAPK in RIE-1 cells[J]. Biochem Biophys Res Commun,2009,378(3):610-614.
    [95]Furukawa-Hibi Y, Kobayashi Y, Chen C, et al. FoxO transcription factors in cell-cycle regulation and the response to oxidative stress[J]. Antioxid Redox Signal,2005,7(5-6): 752-760.
    [96]Gross DN, Wan M, Birnbaum MJ. The role of FoxO in the regulation of metabolism[J]. Curr Diab Rep,2009,9(3):208-214.
    [97]Kops GJ, Dansen TB, Polderman PE, et al. Forkhead transcription factor FoxO3a protects quiescent cells from oxidative stress[J]. Nature,2002,419(6904):316-321.
    [98]Essers MA, Weijzen S, de Vries-Smits AM, et al. FoxO transcription factor activation by oxidative stress mediated by the small gtpase ral and jnk[J]. EMBO J,2004,23(24):4802-4812.
    [99]Ogata ES, Bussey ME, Finley S. Altered gas exchange, limited glucose and branched chain amino acids, and hypoinsulinism retard fetal growth in the rat[J]. Metabolism,1986,35(10): 970-977.
    [100]Ogata ES, Swanson SL, Collins JW, Jr., et al. Intrauterine growth retardation:Altered hepatic energy and redox states in the fetal rat[J]. Pediatr Res,1990,27(1):56-63.
    [101]Gupta P, Narang M, Banerjee BD, et al. Oxidative stress in term small for gestational age neonates born to undernourished mothers:A case control study[J]. BMC Pediatr,2004,4:14-21.
    [102]Biri A, Bozkurt N, Turp A, et al. Role of oxidative stress in intrauterine growth restriction[J]. Gynecol Obstet Invest,2007,64(4):187-192.
    [103]Karowicz-Bilinska A, Suzin J, Sieroszewski P. Evaluation of oxidative stress indices during treatment in pregnant women with intrauterine growth retardation[J]. Med Sci Monit,2002,8(3): CR211-CR216.
    [104]Ravagnan L, Gurbuxani S, Susin SA, et al. Heat-shock protein 70 antagonizes apoptosis-inducing factor[J]. Nat Cell Biol,2001,3(9):839-843.
    [105]Saleh A, Srinivasula SM, Balkir L, et al. Negative regulation of the APAF-1 apoptosome by hsp70[J]. Nat Cell Biol,2000,2(8):476-483.
    [106]Lucas A. Programming by early nutrition:An experimental approach[J]. J Nutr,1998,128(2 Suppl):401S-406S.
    [107]Ziegler TR, Estivariz CF, Jonas CR, et al. Interactions between nutrients and peptide growth factors in intestinal growth, repair, and function[J]. JPEN J Parenter Enteral Nutr,1999,23(6 Suppl):S174-S183.
    [108]Ebner S, Schoknecht P, Reeds P, et al. Growth and metabolism of gastrointestinal and skeletal muscle tissues in protein-malnourished neonatal pigs[J]. Am J Physiol,1994,266(6 Pt 2): R1736-R1743.
    [109]周小秋,杨凤,陈可容,等.营养水平对猪胎儿器官发育和初生仔猪血液生化指标的影响[J].四川农业大学学报,1994,12(2):253-258.
    [110]Gura T. Obesity research. Tracing leptin's partners in regulating body weight[J]. Science,2000, 287(5459):1738-1741.
    [111]Fisher DA, Lakshmanan J. Metabolism and effects of epidermal growth factor and related growth factors in mammals [J]. Endocr Rev,1990,11(3):418-442.
    [112]Buchmiller TL, Shaw KS, Chopourian HL, et al. Effect of transamniotic administration of epidermal growth factor on fetal rabbit small intestinal nutrient transport and disaccharidase development[J]. J Pediatr Surg,1993,28(10):1239-1244.
    [113]Cellini C, Xu J, Arriaga A, et al. Effect of epidermal growth factor infusion on fetal rabbit intrauterine growth retardation and small intestinal development[J]. J Pediatr Surg,2004,39(6): 891-897.
    [114]Clark JA, Lane RH, Maclennan NK, et al. Epidermal growth factor reduces intestinal apoptosis in an experimental model of necrotizing enterocolitis[J]. Am J Physiol Gastrointest Liver Physiol,2005,288(4):G755-G762.
    [115]Rochiccioli P, Tauber M, Moisan V, et al. Investigation of growth hormone secretion in patients with intrauterine growth retardation[J]. Acta Paediatr Scand Suppl,1989,349:42-46; discussion 53-54.
    [116]Muaku SM, Thissen JP, Gerard G, et al. Postnatal catch-up growth induced by growth hormone and insulin-like growth factor-I in rats with intrauterine growth retardation caused by maternal protein malnutrition[J]. Pediatr Res,1997,42(3):370-377.
    [117]Shen WH, Xu RJ. Gastrointestinal stability and absorption of insulin in suckling pigs[J]. Comp Biochem Physiol A Mol Integr Physiol,2000,125(3):389-401.
    [118]Shulman RJ, Tivey DR, Sunitha I, et al. Effect of oral insulin on lactase activity, mrna, and posttranscriptional processing in the newborn pig[J]. J Pediatr Gastroenterol Nutr,1992,14(2): 166-172.
    [119]Arsenault P, Menard D. Insulin influences the maturation and proliferation of suckling mouse intestinal mucosa in serum-free organ culture[J]. Biol Neonate,1984,46(5):229-236.
    [120]郑春田,王恬,陆治年,等.胰岛素和酶解配方奶粉对初生仔猪小肠生长发育的影响[J].畜牧兽医学报,1999,30(5):405-412.
    [121]Menard D, Malo C, Calvert R. Insulin accelerates the development of intestinal brush border hydrolytic activities of suckling mice[J]. Dev Biol,1981,85(1):150-5.
    [122]沈峰,张莉莉,霍永久,等.酪蛋白酶解物对宫内生长迟缓新生仔猪小肠生长发育的影响[J].南京农业大学学报,2006,29(3):59-63.
    [123]Chang F, Lee JT, Navolanic PM, et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation:A target for cancer chemotherapy [J]. Leukemia,2003,17(3):590-603.
    [124]Neri LM, Borgatti P, Capitani S, et al. The nuclear phosphoinositide 3-kinase/Akt pathway:A new second messenger system[J]. Biochim Biophys Acta,2002,1584(2-3):73-80.
    [125]Blume-Jensen P, Hunter T. Oncogenic kinase signalling[J]. Nature,2001,411(6835):355-365.
    [126]Cantley LC. The phosphoinositide 3-kinase pathway[J]. Science,2002,296(5573):1655-1657.
    [127]Simpson L, Parsons R. Pten:Life as a tumor suppressor[J]. Exp Cell Res,2001,264(1):29-41.
    [128]Burgering BM, Coffer PJ. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction[J]. Nature,1995,376(6541):599-602.
    [129]Jones PF, Jakubowicz T, Pitossi FJ, et al. Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily[J]. Proc Natl Acad Sci U S A, 1991,88(10):4171-4175.
    [130]Alessi DR, Andjelkovic M, Caudwell B, et al. Mechanism of activation of protein kinase B by insulin and IGF-1[J]. EMBO J,1996,15(23):6541-6451.
    [131]Jacinto E, Facchinetti V, Liu D, et al. Sinl/mipl maintains rictor-mTOR complex integrity and regulates akt phosphorylation and substrate specificity[J]. Cell,2006,127(1):125-137.
    [132]Sarbassov DD, Guertin DA, Ali SM, et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex[J]. Science,2005,307(5712):1098-1101.
    [133]Franke TF, Kaplan DR, Cantley LC. PI3K:Downstream aktion blocks apoptosis[J]. Cell,1997, 88(4):435-437.
    [134]Cardone MH, Roy N, Stennicke HR, et al. Regulation of cell death protease caspase-9 by phosphorylation[J]. Science,1998,282(5392):1318-1321.
    [135]Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor[J]. Cell,1999,96(6):857-868.
    [136]Zhang HM, Rao JN, Guo X, et al. Akt kinase activation blocks apoptosis in intestinal epithelial cells by inhibiting caspase-3 after polyamine depletion[J]. J Biol Chem,2004,279(21): 22539-22547.
    [137]Gesbert F, Sellers WR, Signoretti S, et al. Bcr/abl regulates expression of the cyclin-dependent kinase inhibitor p27kip1 through the phosphatidylinositol 3-kinase/Akt pathway[J]. J Biol Chem, 2000,275(50):39223-39230.
    [138]Lengyel F, Vertes Z, Kovacs KA, et al. Effect of estrogen and inhibition of phosphatidylinositol-3 kinase on Akt and FoxO1 in rat uterus[J]. Steroids,2007,72(5):422-428.
    [139]Meng ZX, Sun JX, Ling JJ, et al. Prostaglandin E2 regulates FoxO activity via the Akt pathway: Implications for pancreatic islet β cell dysfunction[J]. Diabetologia,2006,49(12):2959-2968.
    [140]Cheskis BJ, Greger J, Cooch N, et al. Mnar plays an important role in era activation of src/mapk and PI3K/Akt signaling pathways[J]. Steroids,2008,73(9-10):901-905.
    [141]李学斌,谢庄,石放雄.FoxO蛋白在动物细胞的分化、增殖、免疫、衰老调节中的作用[J].中国临床康复,2006,10(9):158-162.
    [142]Inoki K, Li Y, Zhu T, et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling[J]. Nat Cell Biol,2002,4(9):648-657.
    [143]Fujio Y, Guo K, Mano T, et al. Cell cycle withdrawal promotes myogenic induction of Akt, a positive modulator of myocyte survival[J]. Mol Cell Biol,1999,19(7):5073-5082.
    [144]Edwards E, Geng L, Tan J, et al. Phosphatidylinositol 3-kinase/Akt signaling in the response of vascular endothelium to ionizing radiation[J]. Cancer Res,2002,62(16):4671-4677.
    [145]Sheng H, Shao J, Townsend CM, Jr., et al. Phosphatidylinositol 3-kinase mediates proliferative signals in intestinal epithelial cells[J]. Gut,2003,52(10):1472-1478.
    [146]El-Assal ON, Besner GE. Hb-egf enhances restitution after intestinal ischemia/reperfusion via PI3K/Akt and mek/erkl/2 activation[J]. Gastroenterology,2005,129(2):609-625.
    [147]Laprise P, Langlois MJ, Boucher MJ, et al. Down-regulation of mek/erk signaling by e-cadherin-dependent PI3K/Akt pathway in differentiating intestinal epithelial cells[J]. J Cell Physiol,2004,199(1):32-39.
    [148]Sheng H, Shao J, DuBois RN. Akt/PKB activity is required for ha-ras-mediated transformation of intestinal epithelial cells[J]. J Biol Chem,2001,276(17):14498-14504.
    [149]Weigel D, Jurgens G, Kuttner F, et al. The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the drosophila embryo[J]. Cell,1989,57(4):645-658.
    [150]王远孝,王恬.FoxO转录因子的活性调节及对哺乳动物细胞进程的调控[J].生物技术通报,2009,(07):31-34.
    [151]Jacobs FM, van der Heide LP, Wijchers PJ, et al. FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics[J]. J Biol Chem,2003,278(38): 35959-35967.
    [152]Cabodi S, Morello V, Masi A, et al. Convergence of integrins and egf receptor signaling via PI3K/Akt/FoxO pathway in early gene egr-1 expression[J]. J Cell Physiol,2009,218(2): 294-303.
    [153]Greer EL, Dowlatshahi D, Banko MR, et al. An AMPK-FoxO pathway mediates longevity induced by a novel method of dietary restriction in c. Elegans[J]. Curr Biol,2007,17(19): 1646-1656.
    [154]Juhasz B, Thirunavukkarasu M, Pant R, et al. Bromelain induces cardioprotection against ischemia-reperfusion injury through Akt/FoxO pathway in rat myocardium [J]. Am J Physiol Heart Circ Physiol,2008,294(3):H1365-H1370.
    [155]Kitamura T, Kitamura YI, Funahashi Y, et al. A FoxO/Notch pathway controls myogenic differentiation and fiber type specification[J]. J Clin Invest,2007,117(9):2477-2485.
    [156]Nakae J, Park BC, Accili D. Insulin stimulates phosphorylation of the forkhead transcription factor fkhr on serine 253 through a wortmannin-sensitive pathway[J]. J Biol Chem,1999, 274(23):15982-15985.
    [157]Williams DS, Cash A, Hamadani L, et al. Oxaloacetate supplementation increases lifespan in caenorhabditis elegans through an AMPK/FoxO-dependent pathway[J]. Aging Cell,2009,8(6): 765-768.
    [158]王远孝,王恬.FoxOs转录因子对机体代谢的调控[J].动物营养学报,2010,(04):811-816.
    [159]Brunet A, Kanai F, Stehn J, et al.14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport[J]. J Cell Biol,2002,156(5):817-828.
    [160]Brownawell AM, Kops GJ, Macara IG, et al. Inhibition of nuclear import by protein kinase b (Akt) regulates the subcellular distribution and activity of the forkhead transcription factor afx[J]. Mol Cell Biol,2001,21(10):3534-3546.
    [161]Nakae J, Oki M, Cao Y. The FoxO transcription factors and metabolic regulation [J]. FEBS Lett, 2008,582(1):54-67.
    [162]Ide T, Shimano H, Yahagi N, et al. Srebps suppress irs-2-mediated insulin signalling in the liver[J]. Nat Cell Biol,2004,6(4):351-357.
    [163]Rena G, Bain J, Elliott M, et al. D4476, a cell-permeant inhibitor of ckl, suppresses the site-specific phosphorylation and nuclear exclusion of FoxO1a[J]. EMBO Rep,2004,5(1): 60-65.
    [164]Woods YL, Rena G, Morrice N, et al. The kinase dyrkla phosphorylates the transcription factor fkhr at ser329 in vitro, a novel in vivo phosphorylation site[J]. Biochem J,2001,355(Pt 3): 597-607.
    [165]Koubova J, Guarente L. How does calorie restriction work?[J]. Genes Dev,2003,17(3): 313-321.
    [166]Picard F, Kurtev M, Chung N, et al. Sirtl promotes fat mobilization in white adipocytes by repressing ppar-gamma[J]. Nature,2004,429(6993):771-776.
    [167]Moynihan KA, Grimm AA, Plueger MM, et al. Increased dosage of mammalian sir2 in pancreatic β cells enhances glucose-stimulated insulin secretion in mice[J]. Cell Metab,2005, 2(2):105-117.
    [168]Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of pgc-1α and sirt1 [J]. Nature,2005,434(7029):113-118.
    [169]van der Horst A, Tertoolen LG, de Vries-Smits LM, et al. FoxO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hsir2(sirtl)[J]. J Biol Chem,2004,279(28): 28873-28879.
    [170]Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FoxO transcription factors by the sirtl deacetylase[J]. Science,2004,303(5666):2011-2015.
    [171]Matsuzaki H, Daitoku H, Hatta M, et al. Acetylation of FoxO1 alters its DNA-binding ability and sensitivity to phosphorylation[J]. Proc Natl Acad Sci U S A,2005,102(32):11278-11283.
    [172]Accili D, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation[J]. Cell,2004,117(4):421-426.
    [173]Matsuzaki H, Daitoku H, Hatta M, et al. Insulin-induced phosphorylation of FKHR (FoxO1) targets to proteasomal degradation[J]. Proc Natl Acad Sci U S A,2003,100(20):11285-11290.
    [174]Aoki M, Jiang H, Vogt PK. Proteasomal degradation of the FoxO1 transcriptional regulator in cells transformed by the p3k and Akt oncoproteins[J]. Proc Natl Acad Sci U S A,2004,101(37): 13613-13617.
    [175]Sakai T, Sakaue H, Nakamura T, et al. Skp2 controls adipocyte proliferation during the development of obesity[J]. J Biol Chem,2007,282(3):2038-2046.
    [176]Kerr JF, Wyllie AH, Currie AR. Apoptosis:A basic biological phenomenon with wide-ranging implications in tissue kinetics[J]. Br J Cancer,1972,26(4):239-257.
    [177]Ramjaun AR, Tomlinson S, Eddaoudi A, et al. Upregulation of two bh3-only proteins, bmf and bim, during TGF β-induced apoptosis[J]. Oncogene,2007,26(7):970-981.
    [178]Urbich C, Knau A, Fichtlscherer S, et al. FoxO-dependent expression of the proapoptotic protein bim:Pivotal role for apoptosis signaling in endothelial progenitor cells[J]. FASEB J, 2005,19(8):974-976.
    [179]Nakamura T, Sakamoto K. Forkhead transcription factor FoxO subfamily is essential for reactive oxygen species-induced apoptosis[J]. Mol Cell Endocrinol,2008,281(1-2):47-55.
    [180]Heazell AE, Crocker IP. Live and let die-regulation of villous trophoblast apoptosis in normal and abnormal pregnancies[J]. Placenta,2008,29(9):772-783.
    [181]Sherr CJ, Roberts JM. Inhibitors of mammalian gl cyclin-dependent kinases[J]. Genes Dev, 1995,9(10):1149-1163.
    [182]Han SY, Choung SY, Paik IS, et al. Activation of nf-kappab determines the sensitivity of human colon cancer cells to TNFa-induced apoptosis[J]. Biol Pharm Bull,2000,23(4):420-426.
    [183]Chen J, Chua HN, Hsu W, et al. Increasing confidence of protein-protein interactomes[J]. Genome Inform,2006,17(2):284-297.
    [184]Chen J. Serial analysis of binding elements for human transcription factors[J]. Nat Protoc,2006, 1(3):1481-1493.
    [185]Abid MR, Yano K, Guo S, et al. Forkhead transcription factors inhibit vascular smooth muscle cell proliferation and neointimal hyperplasia[J]. J Biol Chem,2005,280(33):29864-29873.
    [186]Yang H, Zhao R, Yang HY, et al. Constitutively active FoxO4 inhibits Akt activity, regulates p27 kipl stability, and suppresses her2-mediated tumorigenicity[J]. Oncogene,2005,24(11): 1924-1935.
    [187]Yusuf I, Kharas MG, Chen J, et al. Klf4 is a FoxO target gene that suppresses b cell proliferation[J]. Int Immunol,2008,20(5):671-681.
    [188]Zacharek SJ, Xiong Y, Shumway SD. Negative regulation of TSC1-TSC2 by mammalian d-type cyclins[J]. Cancer Res,2005,65(24):11354-11360.
    [189]Schmidt M, Fernandez de Mattos S, van der Horst A, et al. Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin d[J]. Mol Cell Biol,2002, 22(22):7842-7852.
    [190]Furukawa-Hibi Y, Yoshida-Araki K, Ohta T, et al. FoxO forkhead transcription factors induce g(2)-m checkpoint in response to oxidative stress[J]. J Biol Chem,2002,277(30):26729-26732.
    [191]Kobayashi Y, Furukawa-Hibi Y, Chen C, et al. Sirtl is critical regulator of FoxO-mediated transcription in response to oxidative stress[J]. Int J Mol Med,2005,16(2):237-243.
    [192]O'Brien RM, Streeper RS, Ayala JE, et al. Insulin-regulated gene expression[J]. Biochem Soc Trans,2001,29(Pt 4):552-558.
    [193]Nakae J, Biggs WH,3rd, Kitamura T, et al. Regulation of insulin action and pancreatic β-cell function by mutated alleles of the gene encoding forkhead transcription factor FoxO1[J]. Nat Genet,2002,32(2):245-253.
    [194]Zhang W, Patil S, Chauhan B, et al. FoxO1 regulates multiple metabolic pathways in the liver: Effects on gluconeogenic, glycolytic, and lipogenic gene expression[J]. J Biol Chem,2006, 281(15):10105-10117.
    [195]Altomonte J, Richter A, Harbaran S, et al. Inhibition of FoxO1 function is associated with improved fasting glycemia in diabetic mice[J]. Am J Physio1 Endocrinol Metab,2003,285(4): E718-E728.
    [196]Samuel VT, Choi CS, Phillips TG, et al. Targeting FoxO1 in mice using antisense oligonucleotide improves hepatic and peripheral insulin action[J]. Diabetes,2006,55(7): 2042-2050.
    [197]Herzig S, Long F, Jhala US, et al. Creb regulates hepatic gluconeogenesis through the coactivator pgc-1[J]. Nature,2001,413(6852):179-183.
    [198]Yoon JC, Puigserver P, Chen G, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator pgc-1[J]. Nature,2001,413(6852):131-138.
    [199]Altomonte J, Cong L, Harbaran S, et al. FoxO1 mediates insulin action on apoc-iii and triglyceride metabolism[J]. J Clin Invest,2004,114(10):1493-1503.
    [200]Matsumoto M, Han S, Kitamura T, et al. Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism[J]. J Clin Invest,2006,116(9):2464-2472.
    [201]Kubota N, Tobe K, Terauchi Y, et al. Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory β-cell hyperplasia[J]. Diabetes,2000,49(11):1880-1889.
    [202]Kulkarni RN, Bruning JC, Winnay JN, et al. Tissue-specific knockout of the insulin receptor in pancreatic β cells creates an insulin secretory defect similar to that in type 2 diabetes[J]. Cell, 1999,96(3):329-339.
    [203]Kulkarni RN, Holzenberger M, Shih DQ, et al. B-cell-specific deletion of the IGF1 receptor leads to hyperinsulinemia and glucose intolerance but does not alter β-cell mass[J]. Nat Genet, 2002,31(1):111-115.
    [204]Kitamura T, Nakae J, Kitamura Y, et al. The forkhead transcription factor FoxO1 links insulin signaling to pdxl regulation of pancreatic β cell growth[J]. J Clin Invest,2002,110(12): 1839-1847.
    [205]Hashimoto N, Kido Y, Uchida T, et al. Ablation of pdkl in pancreatic β cells induces diabetes as a result of loss of β cell mass[J]. Nat Genet,2006,38(5):589-593.
    [206]Kitamura YI, Kitamura T, Kruse JP, et al. FoxO1 protects against pancreatic β cell failure through neurod and mafa induction[J]. Cell Metab,2005,2(3):153-163.
    [207]Coleman ME, DeMayo F, Yin KC, et al. Myogenic vector expression of insulin-like growth factor i stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice[J]. J Biol Chem,1995,270(20):12109-12116.
    [208]Hribal ML, Nakae J, Kitamura T, et al. Regulation of insulin-like growth factor-dependent myoblast differentiation by FoxO forkhead transcription factors[J]. J Cell Biol,2003,162(4): 535-541.
    [209]Bodine SC, Stitt TN, Gonzalez M, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo[J]. Nat Cell Biol,2001,3(11): 1014-1019.
    [210]Sandri M, Sandri C, Gilbert A, et al. FoxO transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy[J]. Cell,2004,117(3):399-412.
    [211]Kamei Y, Miura S, Suzuki M, et al. Skeletal muscle FoxO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated type i (slow twitch/red muscle) fiber genes, and impaired glycemic control[J]. J Biol Chem,2004,279(39):41114-41123.
    [212]邹仕庚,王恬,郑春田,等.胰岛素和酶解配方乳对初生仔猪胃肠道生长发育影响的研究[J].动物营养学报,2001,13(1):19-24+35.
    [213]李垚,单安山,李焕江,等.表皮生长因子和胰岛素样生长因子-I对21日龄断奶仔猪胃和小肠发育的作用[J].动物营养学报,2005,1 7(3):44-49.
    [214]Zhou ZQ, Wang T, Pan LM, et al. FoxO4 is the main forkhead transcriptional factor localized in the gastrointestinal tracts of pigs[J]. J Zhejiang Univ Sci B,2007,8(1):39-44.
    [215]Graff P, Amellem O, Seim J, et al. The role of p27 in controlling the oxygen-dependent checkpoint of mammalian cells in late g1 [J]. Anticancer Res,2005,25(3B):2259-2267.
    [216]Fernandez de Mattos S, Essafi A, Soeiro I, et al. Fox03a and bcr-abl regulate cyclin d2 transcription through a stat5/bcl6-dependent mechanism[J]. Mol Cell Biol,2004,24(22): 10058-10071.
    [217]Sabers CJ, Martin MM, Brunn GJ, et al. Isolation of a protein target of the fkbpl2-rapamycin complex in mammalian cells[J]. J Biol Chem,1995,270(2):815-822.
    [218]Hay N, Sonenberg N. Upstream and downstream of mTOR[J]. Genes Dev,2004,18(16): 1926-45.
    [219]Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by frap/mTOR[J]. Genes Dev,2001,15(7):807-826.
    [220]Dennis PB, Jaeschke A, Saitoh M, et al. Mammalian tor:A homeostatic atp sensor[J]. Science, 2001,294(5544):1102-1105.
    [221]Fang Y, Vilella-Bach M, Bachmann R, et al. Phosphatidic acid-mediated mitogenic activation of mTOR signaling[J]. Science,2001,294(5548):1942-1945.
    [222]Peterson RT, Mably JD, Chen JN, et al. Convergence of distinct pathways to heart patterning revealed by the small molecule concentramide and the mutation heart-and-soul[J]. Curr Biol, 2001,11(19):1481-1491.
    [223]Andrade MA, Bork P. Heat repeats in the huntington's disease protein[J]. Nat Genet,1995,11 (2): 115-116.
    [224]Peterson RT, Beal PA, Comb MJ, et al. Fkbpl2-rapamycin-associated protein (frap) autophosphorylates at serine 2481 under translationally repressive conditions[J]. J Biol Chem, 2000,275(10):7416-7423.
    [225]Sekulic A, Hudson CC, Homme JL, et al. A direct linkage between the phosphoinositide 3-kinase-Akt signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells[J]. Cancer Res,2000,60(13):3504-3513.
    [226]Helliwell SB, Wagner P, Kunz J, et al. Tor1 and tor2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast[J]. Mol Biol Cell,1994,5(1): 105-118.
    [227]Hentges KE, Sirry B, Gingeras AC, et al. Frap/mTOR is required for proliferation and patterning during embryonic development in the mouse[J]. Proc Natl Acad Sci U S A,2001, 98(24):13796-13801.
    [228]Wullschleger S, Loewith R, Hall MN. Tor signaling in growth and metabolism[J]. Cell,2006, 124(3):471-484.
    [229]Shaw RJ, Cantley LC. Ras, pi(3)k and mTOR signalling controls tumour cell growth[J]. Nature, 2006,441(7092):424-430.
    [230]Metayer S, Seiliez I, Collin A, et al. Mechanisms through which sulfur amino acids control protein metabolism and oxidative status[J]. J Nutr Biochem,2008,19(4):207-215.
    [231]孟艳,米蕊芳,赵春华.PI3K-Akt-mTOR信号通路在细胞分化中的作用[J].基础医学与临床,2007,(12):1404-1408.
    [232]Hara K, Maruki Y, Long X, et al. Raptor, a binding partner of target of rapamycin (tor), mediates tor action[J]. Cell,2002,110(2):177-189.
    [233]Kim DH, Sarbassov DD, Ali SM, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery[J]. Cell,2002,110(2):163-175.
    [234]Harris TE, Lawrence JC, Jr. Tor signaling[J]. Sci STKE,2003,2003(212):re15.
    [235]Sarbassov DD, Ali SM, Kim DH, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton[J]. Curr Biol,2004,14(14):1296-1302.
    [236]Ali SM, Sabatini DM. Structure of s6 kinase 1 determines whether raptor-mTOR or rictor-mTOR phosphorylates its hydrophobic motif site[J]. J Biol Chem,2005,280(20): 19445-19448.
    [237]Suryawan A, Orellana RA, Fiorotto ML, et al. TRIENNIAL GROWTH SYMPOSIUM:Leucine acts as a nutrient signal to stimulate protein synthesis in neonatal pigs[J]. J Anim Sci,2011, 89(7):2004-2016.
    [238]Escobar J, Frank JW, Suryawan A, et al. Leucine and a-ketoisocaproic acid, but not norleucine, stimulate skeletal muscle protein synthesis in neonatal pigs[J]. J Nutr,2010,140(8): 1418-14124.
    [239]Suryawan A, Jeyapalan AS, Orellana RA, et al. Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORc1 activation [J]. Am J Physiol Endocrinol Metab, 2008,295(4):E868-E875.
    [240]Rhoads JM, Chen W, Gookin J, et al. Arginine stimulates intestinal cell migration through a focal adhesion kinase dependent mechanism[J]. Gut,2004,53(4):514-522.
    [241]Rhoads JM, Liu Y, Niu X, et al. Arginine stimulates Cdx2-transformed intestinal epithelial cell migration via a mechanism requiring both nitric oxide and phosphorylation of p70 s6 kinase[J]. J Nutr,2008,138(9):1652-1657.
    [242]Ban H, Shigemitsu K, Yamatsuji T, et al. Arginine and leucine regulate p70 s6 kinase and 4e-bpl in intestinal epithelial cells[J]. Int J Mol Med,2004,13(4):537-543.
    [243]Yao K, Yin YL, Chu W, et al. Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs[J]. J Nutr,2008,138(5):867-872.
    [244]Brunn GJ, Williams J, Sabers C, et al. Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and ly294002[J]. EMBO J,1996,15(19):5256-5267.
    [245]Gingras AC, Kennedy SG, O'Leary MA, et al.4e-bpl, a repressor of mrna translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway[J]. Genes Dev,1998,12(4): 502-513.
    [246]Neshat MS, Mellinghoff IK, Tran C, et al. Enhanced sensitivity of pten-deficient tumors to inhibition of frap/mTOR[J]. Proc Natl Acad Sci U S A,2001,98(18):10314-10319.
    [2471 Potter CJ, Huang H, Xu T. Drosophila TSC1 functions with TSC2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size[J]. Cell,2001,105(3): 357-368.
    [248]Goncharova EA, Goncharov DA, Eszterhas A, et al. Tuberin regulates p70 s6 kinase activation and ribosomal protein s6 phosphorylation. A role for the TSC2 tumor suppressor gene in pulmonary lymphangioleiomyomatosis (lam)[J]. J Biol Chem,2002,277(34):30958-30967.
    [249]Tabancay AP, Jr., Gau CL, Machado IM, et al. Identification of dominant negative mutants of rheb gtpase and their use to implicate the involvement of human rheb in the activation of p70s6k[J]. J Biol Chem,2003,278(41):39921-39930.
    [250]Rhoads JM, Niu X, Odle J, et al. Role of mTOR signaling in intestinal cell migration[J]. Am J Physiol Gastrointest Liver Physiol,2006,291 (3):G510-G517.
    [251]Dufner A, Thomas G. Ribosomal s6 kinase signaling and the control of translation[J]. Exp Cell Res,1999,253(1):100-109.
    [252]Fingar DC, Salama S, Tsou C, et al. Mammalian cell size is controlled by mTOR and its downstream targets s6kl and 4ebp1/eif4e[J]. Genes Dev,2002,16(12):1472-87.
    [253]Han B, Tong J, Zhu MJ, et al. Insulin-like growth factor-1 (IGF-1) and leucine activate pig myogenic satellite cells through mammalian target of rapamycin (mTOR) pathway[J]. Mol Reprod Dev,2008,75(5):810-817.
    [254]Murakami M, Ichisaka T, Maeda M, et al. mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells[J]. Mol Cell Biol,2004,24(15):6710-6718.
    [255]Coutant A, Rescan C, Gilot D, et al. PI3K-frap/mTOR pathway is critical for hepatocyte proliferation whereas mek/erk supports both proliferation and survival[J]. Hepatology,2002, 36(5):1079-1088.
    [256]Gao N, Flynn DC, Zhang Z, et al. G1 cell cycle progression and the expression of g1 cyclins are regulated by PI3K/Akt/mTOR/p70s6kl signaling in human ovarian cancer cells[J]. Am J Physiol Cell Physiol,2004,287(2):C281-C291.
    [257]Shah OJ, Kimball SR, Jefferson LS. Among translational effectors, p70s6k is uniquely sensitive to inhibition by glucocorticoids[J]. Biochem J,2000,347(Pt 2):389-397.
    [258]Gu L, Gao J, Li Q, et al. Rapamycin reverses npm-alk-induced glucocorticoid resistance in lymphoid tumor cells by inhibiting mTOR signaling pathway, enhancing g1 cell cycle arrest and apoptosis[J]. Leukemia,2008,22(11):2091-2096.
    [259]Opel D, Westhoff MA, Bender A, et al. Phosphatidylinositol 3-kinase inhibition broadly sensitizes glioblastoma cells to death receptor-and drug-induced apoptosis[J]. Cancer Res,2008, 68(15):6271-6280.
    [260]Lafay-Chebassier C, Perault-Pochat MC, Page G, et al. The immunosuppressant rapamycin exacerbates neurotoxicity of αβ peptide[J]. J Neurosci Res,2006,84(6):1323-1334.
    [261]Becker JC, Schrama D, Brocker EB, et al. Kinase inhibitors for the therapy of malignant melanoma[J]. J Dtsch Dermatol Ges,2005,3(10):762-767.
    [262]Shao J, Evers BM, Sheng H. Roles of phosphatidylinositol 3'-kinase and mammalian target of rapamycin/p70 ribosomal protein s6 kinase in k-ras-mediated transformation of intestinal epithelial cells[J]. Cancer Res,2004,64(1):229-235.
    [263]Chiu T, Santiskulvong C, Rozengurt E. Egf receptor transactivation mediates ang ii-stimulated mitogenesis in intestinal epithelial cells through the pi3-kinase/Akt/mTOR/p70s6k1 signaling pathway[J]. Am J Physiol Gastrointest Liver Physiol,2005,288(2):G182-G194.
    [264]Guba M, von Breitenbuch P, Steinbauer M, et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis:Involvement of vascular endothelial growth factor[J]. Nat Med,2002,8(2):128-135.
    [265]Wu G, Morris SM, Jr. Arginine metabolism:Nitric oxide and beyond[J]. Biochem J,1998,336 (Pt 1):1-17.
    [266]Kim SW, McPherson RL, Wu G. Dietary arginine supplementation enhances the growth of milk-fed young pigs[J]. J Nutr,2004,134(3):625-630.
    [267]Windmueller HG, Spaeth AE. Source and fate of circulating citrulline[J]. Am J Physiol,1981, 241(6):E473-E480.
    [268]Ehehalt R, Jochims C, Lehmann WD, et al. Evidence of luminal phosphatidylcholine secretion in rat ileum[J]. Biochim Biophys Acta,2004,1682(1-3):63-71.
    [269]Holtzapple PG, Starr CM, Morck T. Phosphatidylcholine synthesis in the developing small intestine[J]. The Biochemical journal,1980,186(2):399-403.
    [270]Zhan Z, Ou D, Piao X, et al. Dietary arginine supplementation affects microvascular development in the small intestine of early-weaned pigs[J]. J Nutr,2008,138(7):1304-1309.
    [271]Wang WW, Qiao SY, Li DF. Amino acids and gut function[J]. Amino Acids,2009,37(1): 105-110.
    [272]Mueller AR, Platz KP, Heckert C, et al. L-arginine application improves mucosal structure after small bowel transplantation [J]. Transplant Proc,1998,30(5):2336-2338.
    [273]Mueller AR, Platz KP, Schirmeier A, et al. L-arginine application improves graft morphology and mucosal barrier function after small bowel transplantation[J]. Transplant Proc,2000,32(6): 1275-1277.
    [274]Yao K, Guan S, Li T, et al. Dietary 1-arginine supplementation enhances intestinal development and expression of vascular endothelial growth factor in weanling piglets[J]. Br J Nutr,2011, 105(5):703-709.
    [275]DeSchryver-Kecskemeti K, Eliakim R, Carroll S, et al. Intestinal surfactant-like material. A novel secretory product of the rat enterocyte[J]. J Clin Invest,1989,84(4):1355-1361.
    [276]Stremmel W, Hanemann A, Braun A, et al. Delayed release phosphatidylcholine as new therapeutic drug for ulcerative colitis-a review of three clinical trials[J]. Expert Opin Investig Drugs,2010,19(12):1623-1630.
    [277]Ghyczy M, Torday C, Kaszaki J, et al. Oral phosphatidylcholine pretreatment decreases ischemia-reperfusion-induced methane generation and the inflammatory response in the small intestine[J]. Shock,2008,30(5):596-602.
    [278]Wu G, Bazer FW, Davis TA, et al. Arginine metabolism and nutrition in growth, health and disease[J]. Amino Acids,2009,37(1):153-168.
    [279]Mateo RD, Wu G, Bazer FW, et al. Dietary 1-arginine supplementation enhances the reproductive performance of gilts[J]. J Nutr,2007,137(3):652-656.
    [280]Mateo RD, Wu G, Moon HK, et al. Effects of dietary arginine supplementation during gestation and lactation on the performance of lactating primiparous sows and nursing piglets[J]. J Anim Sci,2008,86(4):827-835.
    [281]Davis TA, Nguyen HV, Garcia-Bravo R, et al. Amino acid composition of human milk is not unique[J]. J Nutr,1994,124(7):1126-1132.
    [282]Wu G, Knabe DA. Free and protein-bound amino acids in sow's colostrum and milk[J]. J Nutr, 1994,124(3):415-424.
    [283]Becker RM, Wu G, Galanko JA, et al. Reduced serum amino acid concentrations in infants with necrotizing enterocolitis[J]. J Pediatr,2000,137(6):785-793.
    [284]Wu G, Jaeger L, Bazer F, et al. Arginine deficiency in preterm infants:Biochemical mechanisms and nutritional implications[J]. The Journal of Nutritional Biochemistry,2004,15(8):442-451.
    [285]Wu G, Knabe DA, Kim SW. Arginine nutrition in neonatal pigs[J]. J Nutr,2004,134(Suppl 10): 2783S-2790S; discussion 2796S-2797S.
    [286]Morris SM, Jr. Arginine metabolism:Boundaries of our knowledge[J]. J Nutr,2007,137(Suppl 6):1602S-1609S.
    [287]Li P, Kim SW, Li X, et al. Dietary supplementation with cholesterol and docosahexaenoic acid increases the activity of the arginine-nitric oxide pathway in tissues of young pigs[J]. Nitric Oxide,2008,19(3):259-265.
    [288]Furmaga EM, Cunningham FE, Cushman WC, et al. National utilization of antihypertensive medications from 2000 to 2006 in the veterans health administration:Focus on thiazide diuretics[J]. J Clin Hypertens (Greenwich),2008,10(10):770-778.
    [289]Wu G, Knabe DA. Arginine synthesis in enterocytes of neonatal pigs[J]. Am J Physiol,1995, 269(3Pt2):R621-R629.
    [290]Wu G. Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs[J]. Am J Physiol,1997,272(6 Pt 1):G1382-G1390.
    [291]Wu G, Bazer F, Davis T, et al. Important roles for the arginine family of amino acids in swine nutrition and production[J]. Livestock Science,2007,112(1-2):8-22.
    [292]Rhoads JM, Plunkett E, Galanko J, et al. Serum citrulline levels correlate with enteral tolerance and bowel length in infants with short bowel syndrome[J]. J Pediatr,2005,146(4):542-547.
    [293]Crenn P, Messing B, Cynober L. Citrulline as a biomarker of intestinal failure due to enterocyte mass reduction[J]. Clin Nutr,2008,27(3):328-339.
    [294]Hu CA, Khalil S, Zhaorigetu S, et al. Human delta1-pyrroline-5-carboxylate synthase:Function and regulation[J]. Amino Acids,2008,35(4):665-672.
    [295]Wu G, Bazer FW, Cudd TA, et al. Pharmacokinetics and safety of arginine supplementation in animals[J]. J Nutr,2007,137(6 Suppl 2):1673S-1680S.
    [296]Castillo L, Chapman TE, Yu YM, et al. Dietary arginine uptake by the splanchnic region in adult humans[J]. Am J Physiol,1993,265(4 Pt 1):E532-E539.
    [297]Grillo MA, Lanza A, Colombatto S. Transport of amino acids through the placenta and their role[J]. Amino Acids,2008,34(4):517-523.
    [298]Li H, Meininger CJ, Kelly KA, et al. Activities of arginase i and ii are limiting for endothelial cell proliferation[J]. Am J Physiol Regul Integr Comp Physiol,2002,282(1):R64-R69.
    [299]O'Quinn PR, Knabe DA, Wu G. Arginine catabolism in lactating porcine mammary tissue[J]. J Anim Sci,2002,80(2):467-474.
    [300]Wu G, Knabe DA, Flynn NE, et al. Arginine degradation in developing porcine enterocytes[J]. Am J Physiol,1996,271(5 Pt 1):G913-G919.
    [301]Li H, Meininger CJ, Hawker JR, Jr., et al. Regulatory role of arginase i and ii in nitric oxide, polyamine, and proline syntheses in endothelial cells[J]. Am J Physiol Endocrinol Metab,2001, 280(1):E75-E82.
    [302]Odenlund M, Holmqvist B, Baldetorp B, et al. Polyamine synthesis inhibition induces s phase cell cycle arrest in vascular smooth muscle cells[J]. Amino Acids,2009,36(2):273-282.
    [303]Orlando GF, Wolf G, Engelmann M. Role of neuronal nitric oxide synthase in the regulation of the neuroendocrine stress response in rodents:Insights from mutant mice[J]. Amino Acids,2008, 35(1):17-27.
    [304]Wu G, Bazer FW, Hu J, et al. Polyamine synthesis from proline in the developing porcine placenta[J]. Biol Reprod,2005,72(4):842-850.
    [305]Fang YZ, Yang S, Wu G. Free radicals, antioxidants, and nutrition[J]. Nutrition,2002,18(10): 872-879.
    [306]Bassit RA, Curi R, Costa Rosa LF. Creatine supplementation reduces plasma levels of pro-inflammatory cytokines and pge2 after a half-ironman competition [J]. Amino Acids,2008, 35(2):425-431.
    [307]Gualano B, Novaes RB, Artioli GG, et al. Effects of creatine supplementation on glucose tolerance and insulin sensitivity in sedentary healthy males undergoing aerobic training[J]. Amino Acids,2008,34(2):245-250.
    [308]Jobgen WS, Fried SK, Fu WJ, et al. Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates[J]. J Nutr Biochem,2006,17(9):571-588.
    [309]Wu G, Meininger CJ. Regulation of nitric oxide synthesis by dietary factors[J]. Annu Rev Nutr, 2002,22:61-86.
    [310]Flynn NE, Meininger CJ, Haynes TE, et al. The metabolic basis of arginine nutrition and pharmacotherapy[J]. Biomed Pharmacother,2002,56(9):427-438.
    [311]Wu G, Bazer FW, Tuo W, et al. Unusual abundance of arginine and ornithine in porcine allantoic fluid[J]. Biol Reprod,1996,54(6):1261-1265.
    [312]Ramaekers P, Kemp B, van der Lende T. Progenos in sows increases number of piglets born.[J]. Journal of Animal Science,2006,84:394-394.
    [313]Wu GY, Bazer FW, Datta S, et al. Intrauterine growth retardation in livestock:Implications, mechanisms and solutions[J]. Archiv Fur Tierzucht-Archives of Animal Breeding,2008,51: 4-10.
    [314]Greenberg SS, Lancaster JR, Xie J, et al. Effects of no synthase inhibitors, arginine-deficient diet, and amiloride in pregnant rats[J]. Am J Physiol,1997,273(3 Pt 2):R1031-R1045.
    [315]Vosatka RJ, Hassoun PM, Harvey-Wilkes KB. Dietary l-arginine prevents fetal growth restriction in rats[J]. Am J Obstet Gynecol,1998,178(2):242-246.
    [316]Zeng X, Wang F, Fan X, et al. Dietary arginine supplementation during early pregnancy enhances embryonic survival in rats[J]. J Nutr,2008,138(8):1421-1425.
    [317]Xiao XM, Li LP. L-arginine treatment for asymmetric fetal growth restriction[J]. Int J Gynaecol Obstet,2005,88(1):15-18.
    [318]Wilkinson DL, Bertolo RF, Brunton JA, et al. Arginine synthesis is regulated by dietary arginine intake in the enterally fed neonatal piglet[J]. Am J Physiol Endocrinol Metab,2004,287(3): E454-E462.
    [319]Flynn NE, Wu G. An important role for endogenous synthesis of arginine in maintaining arginine homeostasis in neonatal pigs[J]. Am J Physiol,1996,271(5 Pt 2):R1149-R1155.
    [320]Cheng X, Liu FL, Zhang J, et al. Egb761 protects motoneurons against avulsion-induced oxidative stress in rats[J]. J Brachial Plex Peripher Nerve Inj,2010,5(1):12-19.
    [321]Palacin M, Estevez R, Bertran J, et al. Molecular biology of mammalian plasma membrane amino acid transporters[J]. Physiol Rev,1998,78(4):969-1054.
    [322]Wang J, Chen L, Li P, et al. Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation[J]. J Nutr,2008,138(6):1025-1032.
    [323]Tan B, Li XG, Kong X, et al. Dietary l-arginine supplementation enhances the immune status in early-weaned piglets[J]. Amino Acids,2009,37(2):323-31.
    [324]Frank JW, Escobar J, Nguyen HV, et al. Oral n-carbamylglutamate supplementation increases protein synthesis in skeletal muscle of piglets[J]. J Nutr,2007,137(2):315-319.
    [325]Kim SW, Wu G. Regulatory role for amino acids in mammary gland growth and milk synthesis[J]. Amino Acids,2009,37(1):89-95.
    [326]Brunton JA, Bertolo RF, Pencharz PB, et al. Proline ameliorates arginine deficiency during enteral but not parenteral feeding in neonatal piglets[J]. Am J Physiol,1999,277(2 Pt 1): E223-E231.
    [327]Alican I, Kubes P. A critical role for nitric oxide in intestinal barrier function and dysfunction[J]. Am J Physiol,1996,270(2 Pt 1):G225-G237.
    [328]Kanwar S, Wallace JL, Befus D, et al. Nitric oxide synthesis inhibition increases epithelial permeability via mast cells[J]. Am J Physiol,1994,266(2 Pt 1):G222-G229.
    [329]McCafferty DM, Mudgett JS, Swain MG, et al. Inducible nitric oxide synthase plays a critical role in resolving intestinal inflammation[J]. Gastroenterology,1997,112(3):1022-1027.
    [330]Corl BA, Odle J, Niu X, et al. Arginine activates intestinal p70(s6k) and protein synthesis in piglet rotavirus enteritis[J]. J Nutr,2008,138(1):24-29.
    [331]谭碧娥,李新国,孔祥峰,等.精氨酸对早期断奶仔猪肠道生长、组织形态及Il-2基因表达水平的影响[J].中国农业科学,2008,(09):2783-2788.
    [332]Sukhotnik I, Mogilner J, Krausz MM, et al. Oral arginine reduces gut mucosal injury caused by lipopolysaccharide endotoxemia in rat[J]. J Surg Res,2004,122(2):256-262.
    [333]Schleiffer R, Raul F. Prophylactic administration of 1-arginine improves the intestinal barrier function after mesenteric ischaemia[J]. Gut,1996,39(2):194-198.
    [334]Ersin S, Tuncyurek P, Esassolak M, et al. The prophylactic and therapeutic effects of glutamine-and arginine-enriched diets on radiation-induced enteritis in rats[J]. J Surg Res,2000,89(2): 121-125.
    [335]Gurbuz AT, Kunzelman J, Ratzer EE. Supplemental dietary arginine accelerates intestinal mucosal regeneration and enhances bacterial clearance following radiation enteritis in rats[J]. J Surg Res,1998,74(2):149-154.
    [336]Grimble GK. Adverse gastrointestinal effects of arginine and related amino acids[J]. J Nutr, 2007,137(6 Suppl 2):1693S-1701S.
    [337]Samuel AZ, Harish JA, Douglas DM, et al. Plasma 1-arginine concentrations in premature infants with necrotizing enterocolitis[J]. J Pediatr,1997,131(2):226-232.
    [338]Wu G, Jaeger LA, Bazer FW, et al. Arginine deficiency in preterm infants:Biochemical mechanisms and nutritional implications[J]. J Nutr Biochem,2004,15(8):442-451.
    [339]Rutherford RAD, McCarthy A, Sullivan MHF, et al. Nitric oxide synthase in human placenta and umbilical cord from normal, intrauterine growth-retarded and pre-eclamptic pregnancies [J]. Br J Pharmacol,1995,116(8):3099-3109.
    [340]Greenberg SS, Lancaster JR, Xie JM, et al. Effects of no synthase inhibitors, arginine-deficient diet, and amiloride in pregnant rats[J]. Am J Physiol Regul Integr Comp Physiol,1997,273(3): R1031-R1045.
    [341]Karowicz-Bilinska A, Kowalska-Koprek U, Suzin J, et al. Nitric oxide activity in women with intrauterine growth restriction treated by 1-arginine[J]. Ginekol Pol,2003,74(8):612-7.
    [342]Casanello P, Sobrevia L. Intrauterine growth retardation is associated with reduced activity and expression of the cationic amino acid transport systems y(+)/hcat-1 and y(+)/hcat-2b and lower activity of nitric oxide synthase in human umbilical vein endothelial cells[J]. Circ Res,2002, 91(2):127-134.
    [343]Casanello P, Krause B, Torres E, et al. Reduced 1-arginine transport and nitric oxide synthesis in human umbilical vein endothelial cells from intrauterine growth restriction pregnancies is not further altered by hypoxia[J]. Placenta,2009,30(7):625-633.
    [344]Payne JA, Alexander BT, Khalil RA. Decreased endothelium-dependent no-cgmp vascular relaxation and hypertension in growth-restricted rats on a high-salt diet[J]. Hypertension,2004, 43(2):420-427.
    [345]Neri I, Mazza V, Galassi MC, et al. Effects of 1-arginine on utero-placental circulation in growth-retarded fetuses[J]. Acta Obstetricia Et Gynecologica Scandinavica,1996,75(3): 208-212.
    [346]Lampariello C, De Blasio A, Merenda A, et al. Use of arginine in intruterine growth retardation (IUGR). Authors' experience[J]. Minerva Ginecol,1997,49(12):577-81.
    [347]Winer N, Branger B, Azria E, et al. L-arginine treatment for severe vascular fetal intrauterine growth restriction:A randomized double-bind controlled trial[J]. Clin Nutr,2009,28(3): 243-248.
    [348]Karowicz-Bilinska A, Kedziora-Kornatowska K, Bartosz G. Indices of oxidative stress in pregnancy with fetal growth restriction[J]. Free Radic Res,2007,41(8):870-873.
    [349]Karowicz-Bilinska A, Kowalska-Koprek U, Suzin J, et al. Total antioxidative activity measured by abts method in pregnant women treated with l-arginine for IUGR[J]. Ginekol Pol,2003, 74(10):1130-1136.
    [350]De Boo HA, Van Zijl PL, Smith DEC, et al. Arginine and mixed amino acids increase protein accretion in the growth-restricted and normal ovine fetus by different mechanisms[J]. Pediatr Res,2005,58(2):270-277.
    [351]Wright MM, Howe AG, Zaremberg V. Cell membranes and apoptosis:Role of cardiolipin, phosphatidylcholine, and anticancer lipid analogues[J]. Biochem Cell Biol,2004,82(1):18-26.
    [352]Cui Z, Houweling M. Phosphatidylcholine and cell death[J]. Biochim Biophys Acta,2002, 1585(2-3):87-96.
    [353]Vance DE, Walkey CJ, Cui Z. Phosphatidylethanolamine n-methyltransferase from liver[J]. Biochimica et Biophysica Acta,1997,1348(1-2):142-150.
    [354]James SJ, Miller BJ, Basnakian AG, et al. Apoptosis and proliferation under conditions of deoxynucleotide pool imbalance in liver of folate/methyl deficient rats[J]. Carcinogenesis,1997, 18(2):287-293.
    [355]Budowski P, Kafri I, Sklan D. Utilization of choline from crude soybean lecithin by chicks.2. Absorption measurements [J]. Poult Sci,1977,56(3):754-757.
    [356]Lipstein B, Bornstein S, Budowski P. Utilization of choline from crude soybean lecithin by chicks.1. Growth and prevention of perosis[J]. Poult Sci,1977,56(1):331-336.
    [357]Miller DL. Health benefits of lecithin and choline[J]. Cereal Foods World,2002,47(5): 178-184.
    [358]蔡惠罗,李清焕,刁凤英,等.大豆磷脂对老龄大鼠单胺氧化酶、血小板、动脉内膜的影响[J].动物学报,1991,37(3):276-280.
    [359]Toker A. Phosphoinositides and signal transduction[J]. Cell Mol Life Sci,2002,59(5):761-79.
    [360]van Blitterswijk WJ, van der Luit AH, Veldman RJ, et al. Ceramide:Second messenger or modulator of membrane structure and dynamics?[J]. Biochem J,2003,369(Pt 2):199-211.
    [361]Pike LJ. Lipid rafts:Bringing order to chaos[J]. J Lipid Res,2003,44(4):655-667.
    [362]Schneiter R, Brugger B, Sandhoff R, et al. Electrospray ionization tandem mass spectrometry (esi-ms/ms) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane[J]. J Cell Biol,1999,146(4):741-754.
    [363]Cui Z, Houweling M, Chen MH, et al. A genetic defect in phosphatidylcholine biosynthesis triggers apoptosis in Chinese hamster ovary cells[J]. J Biol Chem,1996,271(25):14668-71.
    [364]Zhang XH, Zhao C, Seleznev K, et al. Disruption of gl-phase phospholipid turnover by inhibition of ca2+-independent phospholipase a2 induces a p53-dependent cell-cycle arrest in gl phase[J]. J Cell Sci,2006,119(Pt6):1005-1015.
    [365]Baburina I, Jackowski S. Apoptosis triggered by l-o-octadecyl-2-o-methyl-rac-glycero-3-phosphocholine is prevented by increased expression of ctp:Phosphocholine cytidylyltransferase[J]. J Biol Chem,1998,273(4):2169-2173.
    [366]Boggs KP, Rock CO, Jackowski S. Lysophosphatidylcholine and 1-o-octadecyl-2-o-methyl-rac-glycero-3-phosphocholine inhibit the CDP-choline pathway of phosphatidylcholine synthesis at the ctp:Phosphocholine cytidylyltransferase step[J]. J Biol Chem,1995,270(13):7757-7764.
    [367]Zaremberg V, McMaster CR. Differential partitioning of lipids metabolized by separate yeast glycerol-3-phosphate acyltransferases reveals that phospholipase d generation of phosphatidic acid mediates sensitivity to choline-containing lysolipids and drugs[J]. J Biol Chem,2002, 277(41):39035-39044.
    [368]Wieder T, Orfanos CE, Geilen CC. Induction of ceramide-mediated apoptosis by the anticancer phospholipid analog, hexadecylphosphocholine[J]. J Biol Chem,1998,273(18):11025-11031.
    [369]Mimeault M. New advances on structural and biological functions of ceramide in apoptotic/necrotic cell death and cancer[J]. FEBS Lett,2002,530(1-3):9-16.
    [370]Holmes-McNary MQ, Loy R, Mar MH, et al. Apoptosis is induced by choline deficiency in fetal brain and in pc12 cells[J]. Brain Res Dev Brain Res,1997,101(1-2):9-16.
    [371]Yen C-L, Mar M-H, Zeisel SH. Choline deficiency-induced apoptosis in pc12 cells is associated with diminished membrane phosphatidylcholine and sphingomyelin, accumulation of ceramide and diacyglycerol, and activation of a caspase[J]. Faseb Journal,1999,13(1):135-142.
    [372]Stahlhut M, Sandvig K, van Deurs B. Caveolae:Uniform structures with multiple functions in signaling, cell growth, and cancer[J]. Exp Cell Res,2000,261(1):111-118.
    [373]Gajate C, Mollinedo F. The antitumor ether lipid et-18-och(3) induces apoptosis through translocation and capping of Fas/CD95 into membrane rafts in human leukemic cells[J]. Blood, 2001,98(13):3860-3863.
    [374]van der Luit AH, Budde M, Verheij M, et al. Different modes of internalization of apoptotic alkyl-lysophospholipid and cell-rescuing lysophosphatidylcholine[J]. Biochem J,2003,374(Pt 3):747-753.
    [375]van der Luit AH, Budde M, Ruurs P, et al. Alkyl-lysophospholipid accumulates in lipid rafts and induces apoptosis via raft-dependent endocytosis and inhibition of phosphatidylcholine synthesis[J]. J Biol Chem,2002,277(42):39541-39547.
    [376]Gajate C, Fonteriz RI, Cabaner C, et al. Intracellular triggering of Fas, independently of fasl, as a new mechanism of antitumor ether lipid-induced apoptosis[J]. Int J Cancer,2000,85(5): 674-82.
    [377]Shafer SH, Williams CL. Non-small and small cell lung carcinoma cell lines exhibit cell type-specific sensitivity to edelfosine-induced cell death and different cell line-specific responses to edelfosine treatment[J]. Int J Oncol,2003,23(2):389-400.
    [378]Ruiter GA, Zerp SF, Bartelink H, et al. Anti-cancer alkyl-lysophospholipids inhibit the phosphatidylinositol 3-kinase-Akt/PKB survival pathway[J]. Anticancer Drugs,2003,14(2): 167-173.
    [379]Ruiter GA, Zerp SF, Bartelink H, et al. Alkyl-lysophospholipids activate the sapk/jnk pathway and enhance radiation-induced apoptosis[J]. Cancer Res,1999,59(10):2457-2463.
    [380]Aroca JD, Sanchez-Pinera P, Corbalan-Garcia S, et al. Correlation between the effect of the anti-neoplastic ether lipid l-o-octadecyl-2-o-methyl-glycero-3-phosphocholine on the membrane and the activity of protein kinase ca[J]. Eur J Biochem,2001,268(24):6369-6378.
    [381]Gajate C, Santos-Beneit A, Modolell M, et al. Involvement of c-jun nh2-terminal kinase activation and c-jun in the induction of apoptosis by the ether phospholipid 1-o-octadecyl-2-o-methyI-rac-glycero-3-phosphocholine[J]. Mol Pharmacol,1998,53(4): 602-612.
    [382]Wilson TA, Meservey CM, Nicolosi RJ. Soy lecithin reduces plasma lipoprotein cholesterol and early atherogenesis in hypercholesterolemic monkeys and hamsters:Beyond linoleate[J]. Atherosclerosis,1998,140(1):147-153.
    [383]Huang J, Yang D, Gao S, et al. Effects of soy-lecithin on lipid metabolism and hepatic expression of lipogenic genes in broiler chickens[J]. Livestock Science,2008,118(1-2):53-60.
    [384]Ristic Medic D, Ristic V, Tepsic V, et al. Effect of soybean leci-vita product on serum lipids and fatty acid composition in patients with elevated serum cholesterol and triglyceride levels[J]. Nutrition Research,2003,23(4):465-477.
    [385]Iwata T, Hoshi S, Takehisa F, et al. The effect of dietary safflower phospholipid and soybean phospholipid on plasma and liver lipids in rats fed a hypercholesterolemic diet[J]. J Nutr Sci Vitaminol (Tokyo),1992,38(5):471-479.
    [386]Spilburg CA, Goldberg AC, McGill JB, et al. Fat-free foods supplemented with soy stanol-lecithin powder reduce cholesterol absorption and ldl cholesterol[J]. J Am Diet Assoc, 2003,103(5):577-581.
    [387]Medic DR, Ristic V, Tepsic V, et al. Effect of soybean leci-vita product on serum lipids and fatty acid composition in patients with elevated serum cholesterol and triglyceride levels[J]. Nutrition Research,2003,23(4):465-477.
    [388]da Costa KA, Cochary EF, Blusztajn JK, et al. Accumulation of 1,2-sn-diradylglycerol with increased membrane-associated protein kinase c may be the mechanism for spontaneous hepatocarcinogenesis in choline-deficient rats[J]. The Journal of biological chemistry,1993, 268(3):2100-2105.
    [389]Lieber CS, DeCarli LM, Mak KM, et al. Attenuation of alcohol-induced hepatic fibrosis by polyunsaturated lecithin[J]. Hepatology,1990,12(6):1390-1398.
    [390]Lieber CS, Leo MA, Aleynik SI, et al. Polyenylphosphatidylcholine decreases alcohol-induced oxidative stress in the baboon[J]. Alcohol Clin Exp Res,1997,21(2):375-379.
    [391]Barrios JM, Lichtenberger LM. Role of biliary phosphatidylcholine in bile acid protection and nsaid injury of the ileal mucosa in rats[J]. Gastroenterology,2000,118(6):1179-1186.
    [392]Venneman NG, Petruzzelli M, van Dijk JE, et al. Indomethacin disrupts the protective effect of phosphatidylcholine against bile salt-induced ileal mucosa injury[J]. European Journal of Clinical Investigation,2006,36(2):105-112.
    [393]Overland M, Tokach MD, Cornelius SG, et al. Lecithin in swine diets:Ii. Growing-finishing pigs[J].J Anim Sci,1993,71(5):1194-1197.
    [394]Jones DB, Hancock JD, Nelssen JL, et al. Effects of lecithin and lysolecithin on the digestibility of fat sources in diets for weanling pigs, in Swine Day.1989, Kansas State University. Agricultural Experiment Station and Cooperative Extension Service:Manhattan, KS. p.74-76.
    [395]Overland M, Tokach MD, Cornelius SG, et al. Lecithin in swine diets:I. Weanling pigs[J]. J Anim Sci,1993,71(5):1187-1193.
    [396]Jones DB, Hancock JD, Harmon DL, et al. Effects of exogenous emulsifiers and fat sources on nutrient digestibility, serum lipids, and growth performance in weanling pigs[J]. Journal of Animal Science,1992,70(11):3473-3482.
    [397]欧明敏,李小林.日粮中添加浓缩大豆卵磷脂对断奶仔猪生产性能的影响[J].广东饲料,1999,(6):23.
    [398]张兆琴,徐占云,秦睿玲,等.日粮中添加大豆卵磷脂对断奶仔猪的影响研究[J].西北农业学报,2006,15(1):36-39.
    [399]Overland M, Sundstol F. Effects of lecithin on fat utilization by weanling pigs[J]. Livestock Production Science,1995,41(3):217-224.
    [400]王晓刚,张海云,姚五四.磷脂添加在生长肥育猪饲料中的效果[J].饲料与畜牧,2002,(2):13-14.
    [401]刘玉芝,王根宇,高明.卵磷脂对泌乳母猪育仔性能和乳成分的影响研究[J].安徽农业科学,2008,36(22):9531-9532.
    [402]Ergaz Z, Avgil M, Ornoy A. Intrauterine growth restriction-etiology and consequences:What do we know about the human situation and experimental animal models?[J]. Reprod Toxicol,2005, 20(3):301-322.
    [403]Mandruzzato G, Antsaklis A, Botet F, et al. Intrauterine restriction (IUGR)[J]. J Perinat Med, 2008,36(4):277-281.
    [404]Bauer R, Gedrange T, Bauer K, et al. Intrauterine growth restriction induces increased capillary density and accelerated type i fiber maturation in newborn pig skeletal muscles[J]. J Perinat Med,2006,34(3):235-242.
    [405]杜伟,王恬.乳源性生物活性肽对新生IUGR仔猪肝脏抗氧化功能的影响[J].畜牧与兽医,2007,39(11):12-14.
    [406]石现瑞,霍永久,王恬,等.子宫内发育迟缓对新生仔猪胰腺和胃发育的影响[J].家畜生态学报,2005,26(1):26-31.
    [407]Bauer R, Walter B, Hoppe A, et al. Body weight distribution and organ size in newborn swine (sus scrofa domestica) -- a study describing an animal model for asymmetrical intrauterine growth retardation[J]. Exp Toxicol Pathol,1998,50(1):59-65.
    [408]Botero D, Lifshitz F. Intrauterine growth retardation and long-term effects on growth[J]. Curr Opin Pediatr,1999,11(4):340-347.
    [409]Chatelain P. Children born with intra-uterine growth retardation (IUGR) or small for gestational age (sga):Long term growth and metabolic consequences[J]. Endocr Regul,2000,34(1):33-36.
    [410]Kjellmer I, Liedholm M, Sultan B, et al. Long-term effects of intrauterine growth retardation[J]. Acta Paediatr Suppl,1997,422:83-84.
    [411]Reynolds RM, Phillips DI. Long-term consequences of intrauterine growth retardation[J]. Horm Res,1998,49 Suppl 2:28-31.
    [412]Henriksen T. Foetal nutrition, foetal growth restriction and health later in life[J]. Acta Paediatr Suppl,1999,88(429):4-8.
    [413]Fattal-Valevski A, Leitner Y, Geva R, et al. The effect of intrauterine growth restriction on the development and health of children[J]. Nutr Health,2001,15(3-4):169-175.
    [414]Valsamakis G, Kanaka-Gantenbein C, Malamitsi-Puchner A, et al. Causes of intrauterine growth restriction and the postnatal development of the metabolic syndrome[J]. Ann N Y Acad Sci, 2006,1092:138-147.
    [415]Widdowson EM. Intra-uterine growth retardation in the pig. I. Organ size and cellular development at birth and after growth to maturity[J]. Biol Neonate,1971,19(4):329-340.
    [416]Burke C, Sinclair K, Cowin G, et al. Intrauterine growth restriction due to uteroplacental vascular insufficiency leads to increased hypoxia-induced cerebral apoptosis in newborn piglets[J]. Brain Res,2006,1098(1):19-25.
    [417]吴信,孔祥峰,林波,等.猪——研究人类营养代谢和医药的新宠[J].现代生物医学进展,2007,7(10):1574-1577.
    [418]Bauer R, Walter B, Brust P, et al. Impact of asymmetric intrauterine growth restriction on organ function in newborn piglets[J]. Eur J Obstet Gynecol Reprod Biol,2003,110 Suppl 1:S40-9.
    [419]Poore KR, Fowden AL. The effects of birth weight and postnatal growth patterns on fat depth and plasma leptin concentrations in juvenile and adult pigs[J]. J Physiol,2004,558(Pt 1): 295-304.
    [420]Guilloteau P, Zabielski R, Hammon HM, et al. Nutritional programming of gastrointestinal tract development. Is the pig a good model for man?[J]. Nutr Res Rev,2010,23(1):4-22.
    [421]Schoknecht P, Ebner S, Skottner A, et al. Exogenous insulin-like growth factor-i increases weight gain in intrauterine growth-retarded neonatal pigs[J]. Pediatr Res,1997,42(2):201-207.
    [422]赵念,张莉莉,金融,等.添加酪蛋白酶解物对宫内生长迟缓仔猪肠道生长发育的影响[J].畜牧兽医学报,2008,39(5):594-600.
    [423]赵念,薛萍,杜伟,等.添加胰岛素对新生宫内生长迟缓仔猪肠道生长发育的影响[J].畜牧与兽医,2008,40(7):52-55.
    [424]Poore K, Fowden A. The effect of birth weight on glucose tolerance in pigs at 3 and 12 months of age[J]. Diabetologia,2002,45(9):1247-1254.
    [425]Poore KR, Fowden AL. Insulin sensitivity in juvenile and adult large white pigs of low and high birthweight[J]. Diabetologia,2004,47(2):340-348.
    [426]Quon MJ. Limitations of the fasting glucose to insulin ratio as an index of insulin sensitivity[J]. Journal of Clinical Endocrinology & Metabolism,2001,86(10):4615-4617.
    [427]Setia S, Sridhar M, Bhat V, et al. Insulin sensitivity and insulin secretion at birth in intrauterine growth retarded infants[J]. Pathology,2006,38(3):236-238.
    [428]Geremia C, Cianfarani S. Laboratory tests and measurements in children born small for gestational age (sga)[J]. Clinica Chimica Acta,2006,364(1-2):113-123.
    [429]Cutfield WS, Jefferies CA, Jackson WE, et al. Evaluation of homa and quicki as measures of insulin sensitivity in prepubertal children[J]. Pediatric Diabetes,2003,4(3):119-125.
    [430]Rehfeldt C, Kuhn G. Consequences of birth weight for postnatal growth performance and carcass quality in pigs as related to myogenesis[J]. J Anim Sci,2006,84(Suppl):E113-E123.
    [431]Chen R, Yin Y, Pan J, et al. Expression profiling of IGFs and IGF receptors in piglets with intrauterine growth restriction[J]. Livestock Science,2011,136(2-3):72-75.
    [432]Quiniou N, Dagorn J, Gaudre D. Variation of piglets' birth weight and consequences on subsequent performance[J]. Livest Prod Sci,2002,78(1):63-70.
    [433]Bee G. Effect of early gestation feeding, birth weight, and gender of progeny on muscle fiber characteristics of pigs at slaughter[J]. J Anim Sci,2004,82(3):826-836.
    [434]Gondret F, Lefaucheur L, Juin H, et al. Low birth weight is associated with enlarged muscle fiber area and impaired meat tenderness of the longissimus muscle in pigs[J]. J Anim Sci,2006, 84(1):93-103.
    [435]Wolter BF, Ellis M, Corrigan BP, et al. The effect of birth weight and feeding of supplemental milk replacer to piglets during lactation on preweaning and postweaning growth performance and carcass characteristics[J]. J Anim Sci,2002,80(2):301-308.
    [436]Gondret F, Lefaucheur L, Louveau I, et al. Influence of piglet birth weight on postnatal growth performance, tissue lipogenic capacity and muscle histological traits at market weight[J]. Livest Prod Sci,2005,93(2):137-146.
    [437]Breier BH, Vickers MH, Ikenasio BA, et al. Fetal programming of appetite and obesity[J]. Mol Cell Endocrinol,2001,185(1-2):73-79.
    [438]Hediger ML, Overpeck MD, Maurer KR, et al. Growth of infants and young children born small or large for gestational age:Findings from the third national health and nutrition examination survey[J]. Arch Pediatr Adolesc Med,1998,152(12):1225-1231.
    [439]Fluharty FL, McClure KE. Effects of dietary energy intake and protein concentration on performance and visceral organ mass in lambs[J]. J Anim Sci,1997,75(3):604-610.
    [440]Flecknell PA, Wootton R, John M, et al. Pathological features of intra-uterine growth retardation in the piglet:Differential effects on organ weights[J]. Diagn Histopathol,1981,4(4):295-298.
    [441]Bauer R, Walter B, Bauer K, et al. Intrauterine growth restriction reduces nephron number and renal excretory function in newborn piglets[J]. Acta Physiol Scand,2002,176(2):83-90.
    [442]Schell TC, Lindemann MD, Kornegay ET, et al. Effectiveness of different types of clay for reducing the detrimental effects of aflatoxin-contaminated diets on performance and serum profiles of weanling pigs[J].J Anim Sci,1993,71(5):1226-1231.
    [443]Whang KY, Easter RA. Blood urea nitrogen as an index of feed efficiency and lean growth potential in growing-finishing swine[J]. Asian-Australasian Journal of Animal Sciences,2000, 13(6):811-816
    [444]de Boo HA, Harding JE. Protein metabolism in preterm infants with particular reference to intrauterine growth restriction[J]. Arch Dis Child Fetal Neonatal Ed,2007,92(4):F315-E319.
    [445]Garlick PJ, Fern M, Preedy VR. The effect of insulin infusion and food intake on muscle protein synthesis in postabsorptive rats[J]. Biochem J,1983,210(3):669-676.
    [446]White MF, Kahn CR. The insulin signaling system[J]. J Biol Chem,1994,269(1):1-4.
    [447]Park MS, Yang YX, Shinde PL, et al. Effects of dietary glucose inclusion on reproductive performance, milk compositions and blood profiles in lactating sows[J]. J Anim Physiol Anim Nutr (Berl),2010,94(5):677-684.
    [448]Snoeck A, Remacle C, Reusens B, et al. Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas[J]. Biol Neonate,1990,57(2):107-118.
    [449]Atinmo T, Baldijao C, Pond WG, et al. Maternal protein malnutrition during gestation alone and its effects on plasma insulin levels of the pregnant pig, its fetuses and the developing offspring[J]. J Nutr,1976,106(11):1647-1653.
    [450]Limesand SW, Jensen J, Hutton JC, et al. Diminished β-cell replication contributes to reduced β-cell mass in fetal sheep with intrauterine growth restriction[J]. Am J Physiol Regul Integr Comp Physiol,2005,288(5):R1297-R1305.
    [451]Jaquet D, Gaboriau A, Czernichow P, et al. Relatively low serum leptin levels in adults born with intra-uterine growth retardation[J]. Int J Obes Relat Metab Disord,2001,25(4):491-495.
    [452]Jaquet D, Leger J, Levy-Marchal C, et al. Ontogeny of leptin in human fetuses and newborns: Effect of intrauterine growth retardation on serum leptin concentrations[J]. J Clin Endocrinol Metab,1998,83(4):1243-1246.
    [453]Pighetti M, Tommaselli GA, D'Elia A, et al. Maternal serum and umbilical cord blood leptin concentrations with fetal growth restriction[J]. Obstet Gynecol,2003,102(3):535-543.
    [454]Yajnik CS, Lubree HG, Rege SS, et al. Adiposity and hyperinsulinemia in indians are present at birth[J]. J Clin Endocrinol Metab,2002,87(12):5575-5580.
    [455]Cetin I, Morpurgo PS, Radaelli T, et al. Fetal plasma leptin concentrations:Relationship with different intrauterine growth patterns from 19 weeks to term[J]. Pediatr Res,2000,48(5): 646-651.
    [456]Jaquet D, Leger J, Tabone MD, et al. High serum leptin concentrations during catch-up growth of children born with intrauterine growth retardation[J]. J Clin Endocrinol Metab,1999,84(6): 1949-1953.
    [457]Shekhawat PS, Garland JS, Shivpuri C, et al. Neonatal cord blood leptin:Its relationship to birth weight, body mass index, maternal diabetes, and steroids[J]. Pediatr Res,1998,43(3):338-343.
    [458]Yu HP, Hsieh YC, Suzuki T, et al. Mechanism of the nongenomic effects of estrogen on intestinal myeloperoxidase activity following trauma-hemorrhage:Up-regulation of the pi-3k/Akt pathway[J]. J Leukoc Biol,2007,82(3):774-780.
    [459]Wu CH, Motohashi T, Abdel-Rahman HA, et al. Free and protein-bound plasma estradiol-17β during the menstrual cycle[J]. J Clin Endocrinol Metab,1976,43(2):436-445.
    [460]Ojeda NB, Grigore D, Robertson EB, et al. Estrogen protects against increased blood pressure in postpubertal female growth restricted offspring[J]. Hypertension,2007,50(4):679-685.
    [461]Cummings SR, Duong T, Kenyon E, et al. Serum estradiol level and risk of breast cancer during treatment with raloxifene[J]. JAMA,2002,287(2):216-220.
    [462]Walker MP, DiAugustine RP, Zeringue E, et al. An IGF1/insulin receptor substrate-1 pathway stimulates a mitotic kinase (cdk1) in the uterine epithelium during the proliferative response to estradiol[J]. J Endocrinol,2010,207(2):225-235.
    [463]Audy MC, Vacher P, Duly B.17 β-estradiol stimulates a rapid Ca2+ influx in lncap human prostate cancer cells[J]. Eur J Endocrinol,1996,135(3):367-373.
    [464]Chen Z, Yuhanna IS, Galcheva-Gargova Z, et al. Estrogen receptor a mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen[J]. J Clin Invest,1999,103(3): 401-406.
    [465]Ansar Ahmed S, Dauphinee MJ, Talal N. Effects of short-term administration of sex hormones on normal and autoimmune mice[J]. J Immunol,1985,134(1):204-210.
    [466]McGlone JJ, Salak JL, Lumpkin EA, et al. Shipping stress and social status effects on pig performance, plasma cortisol, natural killer cell activity, and leukocyte numbers[J]. J Anim Sci, 1993,71(4):888-896.
    [467]Becker BA, Nienaber JA, Christenson RK, et al. Peripheral concentrations of cortisol as an indicator of stress in the pig[J]. Am J Vet Res,1985,46(5):1034-1038.
    [468]Poore KR, Fowden AL. The effect of birth weight on hypothalamo-pituitary-adrenal axis function in juvenile and adult pigs[J]. J Physiol,2003,547(Pt 1):107-116.
    [469]Molvarec A, Tam(?)si L, Losonczy G, et al. Circulating heat shock protein 70 (hspala) in normal and pathological pregnancies[J]. Cell Stress Chaperones,2010,15(3):237-247.
    [470]Kiang JG, Tsokos GC. Heat shock protein 70 kda:Molecular biology, biochemistry, and physiology[J]. Pharmacol Ther,1998,80(2):183-201.
    [471]Bellmann K, Jaattela M, Wissing D, et al. Heat shock protein hsp70 overexpression confers resistance against nitric oxide[J]. FEBS Lett,1996,391(1-2):185-188.
    [472]Sepponen K, Poso AR. The inducible form of heat shock protein 70 in the serum, colon and small intestine of the pig:Comparison to conventional stress markers[J]. Vet J,2006,171(3): 519-524.
    [473]Wright BH, Corton JM, El-Nahas AM, et al. Elevated levels of circulating heat shock protein 70 (hsp70) in peripheral and renal vascular disease[J]. Heart Vessels,2000,15(1):18-22.
    [474]Liu YX, Li NN, You L, et al. Hsp70 is associated with endothelial activation in placental vascular diseases[J]. Molecular Medicine,2008,14(9-10):561-566.
    [475]El-Said MH, Mohamad NABDEL G, Ahmd S. Serum heat shock protein 70 levels in pre-eclampsia and adverse pregnancy outcomes[J]. Med J Cairo Univ,2009,77(1):409-415.
    [476]Blake MJ, Udelsman R, Feulner GJ, et al. Stress-induced heat shock protein 70 expression in adrenal cortex:An adrenocorticotropic hormone-sensitive, age-dependent response[J]. Proc Natl Acad Sci U S A,1991,88(21):9873-9877.
    [477]David JC, Grongnet JF, Lalles JP. Weaning affects the expression of heat shock proteins in different regions of the gastrointestinal tract of piglets[J]. J Nutr,2002,132(9):2551-2561.
    [478]Wu G. Intestinal mucosal amino acid catabolism[J]. J Nutr,1998,128(8):1249-1252.
    [479]Aw TY. Intestinal glutathione:Determinant of mucosal peroxide transport, metabolism, and oxidative susceptibility[J]. Toxicol Appl Pharmacol,2005,204(3):320-328.
    [480]Skrzypek T, Valverdepiedra J, Skrzypek H, et al. Intestinal villi structure during the development of pig and wild boar crossbreed neonates[J]. Livestock Science,2007,109(1-3): 38-41.
    [481]D'Inca R, Gras-Le Guen C, Che L, et al. Intrauterine growth restriction delays feeding-induced gut adaptation in term newborn pigs[J]. Neonatology,2011,99(3):208-216.
    [482]D'Inca R, Kloareg M, Gras-Le Guen C, et al. Intrauterine growth restriction modifies the developmental pattern of intestinal structure, transcriptomic profile, and bacterial colonization in neonatal pigs[J].J Nutr,2010,140(5):925-931.
    [483]Wang X, Wu W, Lin G, et al. Temporal proteomic analysis reveals continuous impairment of intestinal development in neonatal piglets with intrauterine growth restriction[J]. J Proteome Res,2010,9(2):924-935.
    [484]Jiang R, Chang X, Stoll B, et al. Dietary plasma protein reduces small intestinal growth and lamina propria cell density in early weaned pigs[J]. J Nutr,2000,130(1):21-26.
    [485]Li H, Sui C, Kong F, et al. Expression of hsp70 and jnk-related proteins in human liver cancer: Potential effects on clinical outcome[J]. Dig Liver Dis,2007,39(7):663-670.
    [486]Padmini E, Vijaya Geetha B, Usha Rani M. Pollution induced nitrative stress and heat shock protein 70 overexpression in fish liver mitochondria[J]. Sci Total Environ,2009,407(4): 1307-1317.
    [487]Martin GR, Wallace LE, Sigalet DL. Glucagon-like peptide-2 induces intestinal adaptation in parenterally fed rats with short bowel syndrome[J]. Am J Physiol Gastrointest Liver Physiol, 2004,286(6):G964-G972.
    [488]Taqi E, Wallace LE, de Heuvel E, et al. The influence of nutrients, biliary-pancreatic secretions, and systemic trophic hormones on intestinal adaptation in a roux-en-y bypass model[J]. J Pediatr Surg,2010,45(5):987-995.
    [489]Miyazawa K, Aso H, Kanaya T, et al. Apoptotic process of porcine intestinal m cells[J]. Cell Tissue Res,2006,323(3):425-432.
    [490]Danilenko DM, Ring BD, Tarpley JE, et al. Growth factors in porcine full and partial thickness burn repair. Differing targets and effects of keratinocyte growth factor, platelet-derived growth factor-bb, epidermal growth factor, and neu differentiation factor[J]. Am J Pathol,1995,147(5): 1261-1277.
    [491]Ueda T, Aozasa K, Tsujimoto M, et al. Prognostic significance of ki-67 reactivity in soft tissue sarcomas[J]. Cancer,1989,63(8):1607-1611.
    [492]Hong MY, Turner ND, Carroll RJ, et al. Differential response to DNA damage may explain different cancer susceptibility between small and large intestine[J]. Exp Biol Med,2005,230(7): 464-471.
    [493]Yin FG, Liu YL, Yin YL, et al. Dietary supplementation with astragalus polysaccharide enhances ileal digestibilities and serum concentrations of amino acids in early weaned piglets[J]. Amino Acids,2009,37(2):263-270.
    [494]Yin ST, Tang ML, Deng HM, et al. Epigallocatechin-3-gallate induced primary cultures of rat hippocampal neurons death linked to calcium overload and oxidative stress[J]. Naunyn Schmiedebergs Arch Pharmacol,2009,379(6):551-564.
    [495]Song L, Zhang B, Feng Y, et al. A role for forkhead box al in acute lung injury[J]. Inflammation,2009,32(5):322-332.
    [496]Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature,1970,227(5259):680-685.
    [497]Gluckman PD, Harding JE. The physiology and pathophysiology of intrauterine growth retardation[J], Horm Res,1997,48(Suppl 1):11-16.
    [498]Dalcik C, Filiz S, Filiz TM, et al. Immunohistochemical analysis of neural cell adhesion molecule (n-cam) and pan-cadherin in the small intestine of intrauterine growth-retarded newborn rats caused by maternal protein malnutrition[J]. Acta Histochem,2003,105(2):183-90.
    [499]Qiu XS, Huang TT, Deng HY, et al. Effects of early nutrition intervention on IGF1, IGFBP3, intestinal development, and catch-up growth of intrauterine growth retardation rats[J]. Chin Med Sci J,2004,19(3):189-192.
    [500]Trahair JF, DeBarro TM, Robinson JS, et al. Restriction of nutrition in utero selectively inhibits gastrointestinal growth in fetal sheep[J]. J Nutr,1997,127(4):637-641.
    [501]Cellini C, Xu J, Buchmiller TL. Effect of esophageal ligation on small intestinal development in normal and growth-retarded fetal rabbits[J]. J Pediatr Gastroenterol Nutr,2006,43(3):291-298.
    [502]Che L, Thymann T, Bering SB, et al. IUGR does not predispose to necrotizing enterocolitis or compromise postnatal intestinal adaptation in preterm pigs[J]. Pediatr Res,2010,67(1):54-59.
    [503]Buddington RK, Malo C. Intestinal brush-border membrane enzyme activities and transport functions during prenatal development of pigs[J]. J Pediatr Gastroenterol Nutr,1996,23(1): 51-64.
    [504]Lackeyram D, Yang C, Archbold T, et al. Early weaning reduces small intestinal alkaline phosphatase expression in pigs[J]. J Nutr,2010,140(3):461-468.
    [505]Zhang Y, Shao JS, Xie QM, et al. Immunolocalization of alkaline phosphatase and surfactant-like particle proteins in rat duodenum during fat absorption [J]. Gastroenterology, 1996,110(2):478-488.
    [506]Geddes K, Philpott DJ. A new role for intestinal alkaline phosphatase in gut barrier maintenance[J]. Gastroenterology,2008,135(1):8-12.
    [507]Karademir Catalgol B, Ozden S, Alpertunga B. Effects of trichlorfon on malondialdehyde and antioxidant system in human erythrocytes[J]. Toxicol In Vitro,2007,21(8):1538-1544.
    [508]Loguercio C, Di Pierro M. The role of glutathione in the gastrointestinal tract:A review[J]. Ital J Gastroenterol Hepatol,1999,31(5):401-407.
    [509]Meister A. New aspects of glutathione biochemistry and transport--selective alteration of glutathione metabolism[J]. Nutr Rev,1984,42(12):397-410.
    [510]Wang Y, Walsh SW. Increased superoxide generation is associated with decreased superoxide dismutase activity and mrna expression in placental trophoblast cells in pre-eclampsia[J]. Placenta,2001,22(2-3):206-212.
    [511]Nassi N, Ponziani V, Becatti M, et al. Anti-oxidant enzymes and related elements in term and preterm newborns[J]. Pediatr Int,2009,51(2):183-187.
    [512]Richir MC, Siroen MP, van Elburg RM, et al. Low plasma concentrations of arginine and asymmetric dimethylarginine in premature infants with necrotizing enterocolitis[J]. Br J Nutr, 2007,97(5):906-911.
    [513]Upperman JS, Potoka D, Grishin A, et al. Mechanisms of nitric oxide-mediated intestinal barrier failure in necrotizing enterocolitis[J]. Semin Pediatr Surg,2005,14(3):159-166.
    [514]Hallemeesch MM, Janssen BJA, de Jonge WJ, et al. No production by cnos and inos reflects blood pressure changes in lps-challenged mice[J]. Am J Physiol Endocrinol Metab,2003, 285(4):E871-E875.
    [515]Richir MC, Siroen MP, van Elburg RM, et al. Low plasma concentrations of arginine and asymmetric dimethylarginine in premature infants with necrotizing enterocolitis[J]. Br J Nutr, 2007,97(5):906-911.
    [516]Beckmann RP, Mizzen LE, Welch WJ. Interaction of hsp 70 with newly synthesized proteins: Implications for protein folding and assembly[J]. Science,1990,248(4957):850-854.
    [517]Schlesinger MJ. Heat shock proteins[J]. J Biol Chem,1990,265(21):12111-12114.
    [518]Jin M, Otaka M, Okuyama A, et al. Association of 72-kda heat shock protein expression with adaptation to aspirin in rat gastric mucosa[J]. Dig Dis Sci,1999,44(7):1401-1407.
    [519]Tsukimi Y, Nakai H, Itoh S, et al. Involvement of heat shock proteins in the healing of acetic acid-induced gastric ulcers in rats[J]. J Physiol Pharmacol,2001,52(3):391-406.
    [520]Konturek JW, Fischer H, Konturek PC, et al. Heat shock protein 70 (hsp70) in gastric adaptation to aspirin in helicobacter pylori infection[J]. J Physiol Pharmacol,2001,52(1):153-164.
    [521]Ohkawara T, Nishihira J, Takeda H, et al. Protective effect of geranylgeranylacetone on trinitrobenzene sulfonic acid-induced colitis in mice[J]. Int J Mol Med,2006,17(2):229-234.
    [522]Haynes TE, Li P, Li X, et al. L-glutamine or 1-alanyl-l-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes[J]. Amino Acids,2009,37(1):131-142.
    [523]Hou Y, Wang L, Ding B, et al. Dietary a-ketoglutarate supplementation ameliorates intestinal injury in lipopolysaccharide-challenged piglets[J]. Amino Acids,2010,39(2):555-564.
    [524]Malyshev I, Manukhina EB, Mikoyan VD, et al. Nitric oxide is involved in heat-induced hsp70 accumulation[J]. FEBS Lett,1995,370(3):159-162.
    [525]Zheng HC, Sun JM, Wei ZL, et al. Expression of Fas ligand and caspase-3 contributes to formation of immune escape in gastric cancer[J]. World J Gastroenterol,2003,9(7):1415-1420.
    [526]Keku TO, Lund PK, Galanko J, et al. Insulin resistance, apoptosis, and colorectal adenoma risk[J]. Cancer Epidemiol Biomarkers Prev,2005,14(9):2076-2081.
    [527]Shehadeh N, Sukhotnik I, Shamir R. Gastrointestinal tract as a target organ for orally administered insulin[J]. J Pediatr Gastroenterol Nutr,2006,43(3):276-281.
    [528]Marandi S, De Keyser N, Saliez A, et al. Insulin signal transduction in rat small intestine:Role of MAP kinases in expression of mucosal hydrolases[J]. Am J Physiol Gastrointest Liver Physiol,2001,280(2):G229-G240.
    [529]Skolnik EY, Lee CH, Batzer A, et al. The sh2/sh3 domain-containing protein grb2 interacts with tyrosine-phosphorylated IRS1 and SHC:Implications for insulin control of ras signalling[J]. EMBO J,1993,12(5):1929-19236.
    [530]Xu RJ, Wang F, Zhang SH. Postnatal adaptation of the gastrointestinal tract in neonatal pigs:A possible role of milk-borne growth factors[J]. Livestock Production Science,2000,66(2): 95-107.
    [531]Dignass AU, Sturm A. Peptide growth factors in the intestine[J]. Eur J Gastroenterol Hepatol, 2001,13(7):763-770.
    [532]Pearson PY, O'Connor DM, Schwartz MZ. Novel effect of leptin on small intestine adaptation[J]. J Surg Res,2001,97(2):192-195.
    [533]Denger S, Reid G, Brand H, et al. Tissue-specific expression of human era and erβ in the male[J]. Molecular and Cellular Endocrinology,2001,178(1-2):155-160.
    [534]Hisamoto K, Ohmichi M, Kurachi H, et al. Estrogen induces the Akt-dependent activation of endothelial nitric-oxide synthase in vascular endothelial cells[J]. J Biol Chem,2001,276(5): 3459-3467.
    [535]Tang W, Pettersson H, Norlin M. Involvement of the PI3K/Akt pathway in estrogen-mediated regulation of human cyp7bl:Identification of cyp7bl as a novel target for PI3K/Akt and mapk signalling[J]. J Steroid Biochem Mol Biol,2008,112(1-3):63-73.
    [536]Pullen N, Thomas G. The modular phosphorylation and activation of p70s6k[J]. FEBS Lett, 1997,410(1):78-82.
    [537]Roos S, Jansson N, Palmberg I, et al. Mammalian target of rapamycin in the human placenta regulates leucine transport and is down-regulated in restricted fetal growth[J]. The Journal of Physiology,2007,582(1):449-459.
    [538]Roos S, Powell TL, Jansson T. Placental mTOR links maternal nutrient availability to fetal growth[J]. Biochem Soc Trans,2009,37(Pt 1):295-298.
    [539]Matsuzaki H, Ichino A, Hayashi T, et al. Regulation of intracellular localization and transcriptional activity of FoxO4 by protein kinase b through phosphorylation at the motif sites conserved among the FoxO family[J]. J Biochem,2005,138(4):485-491.
    [540]Wu G, Davis PK, Flynn NE, et al. Endogenous synthesis of arginine plays an important role in maintaining arginine homeostasis in postweaning growing pigs[J]. J Nutr,1997,127(12): 2342-2349.
    [541]Shulman RJ. Oral insulin increases small intestinal mass and disaccharidase activity in the newborn miniature pig[J]. Pediatr Res,1990,28(2):171-175.
    [542]Bertolo RF, Pencharz PB, Ball RO. Organ and plasma amino acid concentrations are profoundly different in piglets fed identical diets via gastric, central venous or portal venous routes[J]. J Nutr,2000,130(5):1261-1266.
    [543]Bidlingmeyer BA, Cohen SA, Tarvin TL. Rapid analysis of amino acids using pre-column derivatization[J]. J Chromatogr,1984,336(1):93-104.
    [544]孔祥峰,尹富贵,刘合军,等.早期断奶仔猪生理生化参数和脏器指数的变化[J].中国实验动物学报,2006,14(4):298-302.
    [545]Wu X, Ruan Z, Gao Y, et al. Dietary supplementation with 1-arginine or n-carbamylglutamate enhances intestinal growth and heat shock protein-70 expression in weanling pigs fed a corn-and soybean meal-based diet[J]. Amino Acids,2010,39(3):831-839.
    [546]Ahima RS, Osei SY. Leptin signaling[J]. Physiol Behav,2004,81(2):223-241.
    [547]Van Goudoever JB, Sulkers EJ, Halliday D, et al. Whole-body protein turnover in preterm appropriate for gestational age and small for gestational age infants:Comparison of [15n]glycine and [1-(13)c]leucine administered simultaneously[J]. Pediatr Res,1995,37(4 Pt 1): 381-388.
    [548]Silfverstolpe G, Johnson P, Samsice G, et al. Effects induced by two different estrogens on serum individual phospholipids and serum lecithin fatty acid composition[J]. Horm Metab Res, 1981,13(3):141-145.
    [549]Attig L, Djiane J, Gertler A, et al. Study of hypothalamic leptin receptor expression in low-birth-weight piglets and effects of leptin supplementation on neonatal growth and development[J]. Am J Physiol Endocrinol Metab,2008,295(5):E1117-E1125.
    [550]Ashworth CJ, Finch AM, Page KR, et al. Causes and consequences of fetal growth retardation in pigs[J]. Reprod Suppl,2001,58:233-246.
    [551]卢伟,田明亮,王子荣,等.胎盘效率与宫内发育迟缓仔猪关系研究[J].新疆农业大学学报,2010,(04):307-311.
    [552]Foxcroft GR, Dixon WT, Novak S, et al. The biological basis for prenatal programming of postnatal performance in pigs[J]. J Anim Sci,2006,84 Suppl:E105-E112.
    [553]Cianfarani S, Geremia C, Scott CD, et al. Growth, IGF system, and cortisol in children with intrauterine growth retardation:Is catch-up growth affected by reprogramming of the hypothalamic-pituitary-adrenal axis?[J]. Pediatr Res,2002,51(1):94-99.
    [554]Phillips DI, Barker DJ, Fall CH, et al. Elevated plasma cortisol concentrations:A link between low birth weight and the insulin resistance syndrome?[J]. J Clin Endocrinol Metab,1998,83(3): 757-760.
    [555]Fattal-Valevski A, Toledano-Alhadef H, Golander A, et al. Endocrine profile of children with intrauterine growth retardation[J]. J Pediatr Endocrinol Metab,2005,18(7):671-676.
    [556]Strinic T, Roje D, Marusic J, et al. Cord blood cortisol level is lower in growth-restricted newborns[J]. Journal of Obstetrics and Gynaecology Research,2007,33(2):144-150.
    [557]Wu T, Tanguay RM. Antibodies against heat shock proteins in environmental stresses and diseases:Friend or foe?[J]. Cell Stress Chaperones,2006,11(1):1-12.
    [558]Voss MR, Stallone JN, Li M, et al. Gender differences in the expression of heat shock proteins: The effect of estrogen[J]. Am J Physiol Heart Circ Physiol,2003,285(2):H687-H692.
    [559]Roeder LM, Chow BF. Maternal undernutrition and its long-term effects on the offspring[J]. Am J Clin Nutr,1972,25(8):812-821.
    [560]Dulloo AG, Jacquet J, Seydoux J, et al. The thrifty 'catch-up fat' phenotype:Its impact on insulin sensitivity during growth trajectories to obesity and metabolic syndrome[J]. Int J Obes (Lond), 2006,30 Suppl 4:S23-S35.
    [561]Dulloo AG. Thrifty energy metabolism in catch-up growth trajectories to insulin and leptin resistance [J]. Best Pract Res Clin Endocrinol Metab,2008,22(1):155-171.
    [562]Eriksson J, Forsen T, Tuomilehto J, et al. Effects of size at birth and childhood growth on the insulin resistance syndrome in elderly individuals[J]. Diabetologia,2002,45(3):342-348.
    [563]Tosh DN, Fu Q, Callaway CW, et al. Epigenetics of programmed obesity:Alteration in IUGR rat hepatic IGF1 mrna expression and histone structure in rapid vs. Delayed postnatal catch-up growth[J]. Am J Physiol Gastrointest Liver Physiol,2010,299(5):G1023-G1029.
    [564]Jones RH, Ozanne SE. Fetal programming of glucose-insulin metabolism[J]. Mol Cell Endocrinol,2009,297(1-2):4-9.
    [565]Stoffers DA, Desai BM, DeLeon DD, et al. Neonatal exendin-4 prevents the development of diabetes in the intrauterine growth retarded rat[J]. Diabetes,2003,52(3):734-40.
    [566]Law CM, Gordon GS, Shiell AW, et al. Thinness at birth and glucose tolerance in seven-year-old children[J]. Diabet Med,1995,12(1):24-9.
    [567]Zou J, Salminen WF, Roberts SM, et al. Correlation between glutathione oxidation and trimerization of heat shock factor 1, an early step in stress induction of the hsp response[J]. Cell Stress Chaperones,1998,3(2):130-141.
    [568]Hnat M, Meadows J, Brockman D, et al. Heat shock protein-70 and 4-hydroxy-2-nonenal adducts in human placental villous tissue of normotensive, preeclamptic and intrauterine growth restricted pregnancies [J]. Am J Obstet Gynecol,2005,193(3):836-840.
    [569]Noda M, Yamashita S, Takahashi N, et al. Switch to anaerobic glucose metabolism with nadh accumulation in the β-cell model of mitochondrial diabetes. Characteristics of βHC9 cells deficient in mitochondrial DNA transcription[J]. J Biol Chem,2002,277(44):41817-41826.
    [570]Sakai K, Matsumoto K, Nishikawa T, et al. Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic β-cells[J]. Biochem Biophys Res Commun,2003,300(1): 216-222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700