用户名: 密码: 验证码:
麻竹转录因子D1SCL6和D1AP2功能研究及叶片miRNA的分离鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麻竹(Dendrocalamus latiflorus)是我国南方广泛栽培的重要竹种之一,具有食用、材用、绿化等多种用途,经济价值极高。植物基因的表达受到转录前、转录以及翻译水平等多个层的精准调控,研究竹子基因表达调控的机理对于深入了解竹子的生命现象,更好地开发利用竹子资源具有重要价值。转录因子参与基因转录水平的调控,miRNA参与转录后调控,二者都是植物基因表达调控的重要方式。本研究以麻竹为对象,针对SCL6和AP2这两个植物特有的转录因子进行了研究,同时开展了麻竹叶片miRNA的分析研究,并对其部分新miRNA的表达进行了分析探讨。主要研究成果如下:
     (1)利用RT-PCR和RACE方法,从麻竹叶片中克隆到与其生长发育密切相关的转录因子基因DlSCL6和DlAP2。DlSCL6基因cDNA全长2006bp,5′非编码区(UntranslatedRegions,UTR)124bp,3′UTR266bp,含有一个1611bp的开放阅读框(Open ReadingFrame,ORF),编码536个氨基酸;DlAP2基因cDNA全长1731bp,其中5′UTR81bp,3′UTR186bp,ORF1464bp,共编码487个氨基酸。
     (2)分别构建了DlSCL6基因的正义和反义表达载体,利用农杆菌介导法转化模式植物拟南芥(Arabidopsis thaliana),并对抗性植物进行RT-PCR鉴定,分别获得了DlSCL6基因的正义、反义转基因株系。对转基因植株表型观察显示,转正义DlSCL6基因植株营养期延长,开花延迟,植株粗壮高大,莲座叶数量增加;而转入反义基因的植株开花提前,植株瘦弱,且莲座叶数量明显减少。转反义DlSCL6基因植株表型与矮牵牛(Petuniahybrida)、拟南芥中ham基因功能缺失的表型类似,这意味着DlSCL6基因与拟南芥等植物中HAM亚家族基因具有类似功能,可能在竹子维持顶端分生组织分生活性中发挥重要作用。
     (3)将DlAP2基因构建到pCAMBIA1300载体的多克隆位点,形成DlAP2基因的过量表达载体,利用农杆菌介导法成功获得了转DlAP2基因的拟南芥植株,并利用RT-PCR方法证明DlAP2基因在转基因植株中稳定表达。与野生型拟南芥相比,转DlAP2基因植株开花提前,表明DlAP2可能具有促进麻竹开花的功能。
     (4)构建了麻竹叶片miRNA文库,利用Solexa高通量测序技术测序得到11513607条序列,去除低质量序列、5′端污染、3′端接头缺失、插入片段缺失、polyA片段以及小于18nt的序列后,得到干净序列(clean reads)10593305条。应用生物信息学分析技术预测得到165种候选的miRNA,其中与已知的其他物种miRNA同源性较高的保守miRNA有84种(其中miRNA54种,miRNA*30种),分别属于17个已知的miRNA家族;非保守的新miRNA共81种(其中miRNA76种,miRNA*5种)。搜索比对麻竹EST数据库和毛竹CDS数据库,对麻竹新miRNA的靶基因进行预测,得到靶基因176个,其中37个来自麻竹EST数据库,139个来自毛竹基因组CDS数据。
     (5)根据获得麻竹叶片新miRNA序列特征,设计高度特异的反转录茎环引物,对表达量较高的30种新miRNA进行了qRT-PCR检测。结果表明,所检测miRNA的溶解曲线均高度特异,表明其在麻竹叶片中是真实存在的,并非背景信号。采用qRT-PCR方法对这30种新miRNA在不同光照环境下的表达差异分析表明:在强光胁迫下(1200μmol/m2/s1), dla-miRC18、 dla-miRC27、 dla-miRC27-3p的表达明显上调,其中dla-miRC27-5p的上调幅度最大(达到对照的15倍),而dla-miRC1、dla-miRC19和dla-miRC28的表达明显下调(62%-76%);黑暗条件下,这些miRNA的表达变化相对较小,仅有dla-miRC1和dla-miR22的上调幅度比较明显(是对照的4倍左右),dla-miRC5、dla-miRC17和dla-miRC29的下调幅度达到50%-72%。由此表明,在麻竹的光信号转导、光胁迫反应等相关基因的表达中,这些miRNA可能发挥着重要调节作用。
     麻竹DlSCL6和DlAP2基因在模式植物拟南芥中的表达表明:这两个基因均对植物从营养生长向生殖生长的转换过程具有调控作用,为进一步深入研究竹子开花机理奠定了基础。对麻竹叶片miRNA的分离鉴定,获得了81条麻新的miRNA,并对部分新miRNA在不同光环境下的表达差异进行了研究,为进一步研究竹子miRNA功能奠定了基础。
Ma bamboo (Dendrocalamus latiflorus) is one of the most widely cultivated bamboospecies with high economic value in the south of China, which has a variety of uses for food,timber and afforestation. The regulation of gene expression in plant precisely occurred at thelevels of transcription and translation. Research on bamboo mechanism of gene expressionregulation is of great value for deeper understanding of the phenomenon of bamboo life andbetter development and utilization of bamboo resources. Transcription factor (TF) andmiRNAs, which involved in the gene regulation at transcription and post-transcription levelsrespectively, are two important ways of controlling gene expression in plants. In this paper,two plant-specific transcription factors (SCL6and AP2) from ma bamboo were studied. At thesame time, isolation and identification of miRNAs from leaves of ma bamboo were carried outthrough deep sequencing, the expression of some novel miRNAs were further analyzed byusing qRT-PCR. The main research results are as follows:
     (1) Two plant-specific TF genes DlSCL6and DlAP2were cloned from ma bamboo leavesusing RT-PCR and RACE methods. The cDNA of DlSCL6is2006bp in full length including124bp in5' UTR,266bp in3' UTR, and an ORF of1611bp which encodes536amino acids.The cDNA of DlAP2is1731bp in full length and consists of a5' UTR of81bp, a3' UTR of186bp and an ORF of1464bp which encodes487amino acids.
     (2) Expression vectors of sense and antisense DlSCl6gene were constructed, and transformedinto Arabidopsis thaliana mediated by Agrobacterium tumefaciens respectively. Then thetransgenic plants were identified by RT-PCR method. Phenotype observation showed: thattransgenics plants with sense DlSCL6gene had prolonged vegetative growth period, delayedblooming, stronger stem, and more rosette leaves, while the transgenics of antisense DlSCL6geneshowed opposite phenotypes: such as ealier precocious flowering, weaker stem and less rosetteleaves. All of these phenotypes are similar to the phenotypes of ham deficient mutant in A.thalianaand petunia. All of this results indicated that DlSCL6has similar function with HAM genes in A.thaliana and petunia, and maybe play important roles in the maintenance of bamboo stem apicalmeristem (SAM).
     (3) Overexpression vector of DlAP2gene was constructed, and transformed intoA.thaliana by Agrobacterium-mediated method. The transgenic plants were selected byHygromycin B, and DlAP2was proved expression at transcription level by RT-PCR method.The transgenic plants bloomed earlier than that of wild type, which indicated that DlAP2maysplays a role as blooming promoter.
     (4) The miRNA library was constructed with leaves of ma bamboo using Illumina kit.11513607raw reads were obtained using Solexa high-throughput sequencing technology. Afterremoving the sequences of low quality,5'end of pollution,3' end joint deletion, insertion,polyA and less than18nt sequence,10593305clean reads was left. Bioinformatics methodswere used to forecast possible miRNAs, and total165candidate miRNA was identified, whichincuded84conversed miRNAs (54mature miRNAs and30star miRNAs) belongs to17converse miRNA families and84novel miRNAs (76mature miRNAs and5star miRNAs).Based on two data sets of CDS for moso genome and ESTs for ma bamboo,176potentialtargets for81novel miRNAs were forecasted.
     (5) Highly specific stem-loop reverse primers were designed according to the miRNAssequences, and30higher expression novel miRNAs were detected by qRT-PCR methods.Highly specific dissolution curves indicated that these miRNAs were really exist in ma bamboo.Further analysis for the expression of these miRNAs in leaves under different light conditionsshowed that dla-miRC18, dla-miRC27and dla-miRC27-3p were upregulated significantlyunder high light tress (1200μmol/m2/s1), in which dla-miRC18was the hightest one with up to15times compared to that of control, whilt dla-miRC1, dla-miRC19and dla-miRC28weredownregulated, decreased by62%-76%. Under dark conditions for24h, only dla-miRC1anddla-miR22were significantly upregulated, about4times of the control, contrarily dla-miRC5,dla-miRC17and dla-miRC29downregulated significantly (decreased by50%-72%). All theresults above indicated that these miRNAs might play important roles in genes regulationinvolved in light signal transduction and light stress.
     The expression of DlSCL6and DlAP2in Arabidopsis thaliana showed that both DlSCL6and DlAP2gene play roles in the control of transition from vegetative growth to reproductivegrowth, which provides some reference for the mechanism study on bamboo blossom.81newmiRNAs were identificated from bamboo leaves, and the expression changes of30novelmiRNAs under different light conditons were studied, which lays a foundation for further studyon their functions.
引文
Abe H, Yamaguchi-Shinozaki K, Urao T, et al. Role of Arabidopsis MYC and MYB homologs in drought andabscisic acid-regulated gene expression. Plant Cell,1997,9(10):1859~1868.
    Adai A, Johnson C, Mlotshwa S, et al. Computational prediction of miRNAs in Arabidopsis thaliana.Genome Res,2005,15(1):78~91.
    Aida M, Beis D, Heidstra R, et al. The PLETHORA genes mediate patterning of the Arabidopsis root stemcell niche. Cell,2004,119(1):109~120.
    Allen E, Xie Z, Gustafson AM, et al. MicroRNA-directed phasing during trans-acting siRNA biogenesis inPlants. Cell,2005,121(2):207~221.
    Ambros V. The functions of animal microRNA. Nature,2004,431(7006):350~355.
    Arazi T, Talmor-Neiman M, Stav R, et al. Cloning and characterization of micro-RNAs from moss. Plant J,2005,43(6):837~848.
    Aukerman MJ, Sakai H. Regulation of flowering time and floral organ identity by a MicroRNA and itsAPETALA2-like target genes. Plant Cell,2003,15(11):2730~2741.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell,2004,116(2):281~297.
    Baumberger N, Baulcombe DC. Arabidopsis ARGONAUTE1is an RNA slicer that selectively recruitsmicroRNAs and short interfering RNAs. PNAS,2005,102(33):11928~11933.
    Benjamin F, Tanja S, Corinna T, et al. The Arabidopsis GRAS protein SCL14interacts with class II TGAtranscription factors and ss essential for the activation of stress-inducible promoters. Plant Cell,2008,20(11):3122~3135.
    Bolle C, Koncz C, Chua NH. PAT1, a new member of the GRAS family, is involved in phytochrome A signaltransduction. Genes Dev,2000,14(10):1269~1278.
    Bolle C. The role of GRAS proteins in plant signal transduction and development. Planta,2004,218,683~692.
    Carra A, Mica E, Gambino G, et al. Cloning and characterization of small non-coding RNAs from grape.Plant J,2009,59(5):750~763.
    Castoldi M, Schmidt S, Benes V, et al. An array-based method for microRNA exlocked nucleic acid captureprobes. Nat Protoc,2008,3(2):321~329.
    Chen C, Ridzon DA, Gurgler KJ, et al. Real-time quantification of microRNAs by stem-loop RT-PCR.Nucleic Acids Res,2005,33(20): e179.
    Chen X, Wang Z, Wang X, et al. Isolation and characterization of GoRAV, a novel gene encoding aRAV-type protein in Galegae orientalis. Genes Genet Syst,2009,84(2):101~109.
    Chen X. A microRNA as a translational repressor of APETALA2in Arabidopsis flower development.Science,2004,303(5666):2022~2025.
    C'hen X. microRNA biogenesis and function in plants. FEBS Lett,2005,579(26):5923~5931.
    Ciceri P, Gianazza E, Lazzari B, et al. Phosphorylation of Opaque2changes diurnally and impacts its DNAbinding activity. Plant Cell,1997,9(1):97~108.
    Cordelia B. The role of GRAS proteins in plant signal transduction and development. Planta,2004,218(5):683~692.
    Cui HC, Hao YL, Mikhail K, et al. Genome-wide direct target analysis reveals a role for SHORT-ROOT inroot vascular patterning through cytokinin homeostasis. Plant Physiol,2011,157(11):1221~1231.
    Cullen BR. Viruses and microRNAs. Nat Genet2006,38: S25~S30.
    Day RB, Tanabe S, Koshioka M, et al. Two rice GRAS family genes responsive toN-acetylchitooligosaccharide elicitor are induced by phytoactive gibberellins:evidence for cross-talkbetween elicitor and gibberellin signaling in rice cells. Plant Mol Biol,2004,54(2):261~272.
    Dhondt S, Coppens F, De Winter F. SHORT-ROOT and SCARECROW regulate leaf growth in Arabidopsisby stimulating S-phase progression of the cell cycle. Plant Physiology,2010,154(3):1183~1195.
    Di Laurenzio L, Wysocka-Diller J, Malamy JE, et al. The SCARECROW gene regulates an asymetric celldivision that is essential for generating the radial organization of the Arabidopsis root. Cell,1996,86(3),423~433.
    Dill A, Jung HS, Sun TP. The DELLA motif is essential for gibberellin-induced degradation of RGA. PNAS,2001,98(24):14162~14167.
    Doench JG, Petersen CP, Sharp PA. siRNAs can function as miRNAs. Genes Dev,2003,17(5):438~442.
    Dubouzet J, Sakuma Y, Ito Y, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activatorsthat function in drought-, high-salt and cold-responsive gene expression. Plant J,2003,33(4):751~763.
    Elliott RC, Betzner AS, Huttner E, et al. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis withpleiotropic roles in ovule development and floral organ growth. Plant Cell,1996,8(2):155~168.
    Engstrom EM, Andersen CM, Gumulak-Smith J,et al. Arabidopsis homologs of the petunia hairy meristemgene are required for maintenance of shoot and root indeterminacy. Plant Physiol,2011,155(2):735~750.
    Floyd SK, Bowman JL. Gene regulation: ancient microRNA target sequences in plants. Nature,2004,428(6982):485~486.
    Fode B, Siemsen T, Thurow C, et al. The Arabidopsis GRAS protein SCL14interacts with class II TGAtranscription factors and is essential for the activation of stress inducible promoters. Plant Cell,2008,20(11):3122~3135.
    Fu X, Richards DE, Ait-Ali T, et al. Gibberellin-mediated proteasome-dependent degradation of the barleyDELLA protein SLN1repressor. Plant Cell,2002,14(12):3191~3200.
    Fu XY, Zhang Z, Peng RH, et al. Isolation and characterizaiton of a novel cDNA encoding ERF/AP2-typetranscription factor OsAP25from Oryza Sativa L. Biotechnol lett,2007,29(8):1293~1299.
    Fujimoto SY, Ohta M, Usui A, et al. Arabidopsis ethylene-responsive rlement binding factors act astranscriptional activators or repressors of GCC Box-mediated gene expression. Plant Cell,2000,12(3):393~404.
    Gao ZM, Li XP, Li LL, et al. An effective method for total RNA isolation from bamboo. Chinese ForestryScience and Technology,2006,5(3):52~54.
    Gil-Humanes J, Pistón F, Martín A, et al. Comparative genomic analysis and expression of theAPETALA2-like genes from barley, wheat, and barley-wheat amphiploids. BMC Plant Biol,2009,9(1):1~13.
    Gill G. Regulation of the initiation of eukaryotic transcription. Essays Biochem,2001,37:33~43.
    Greb T, Clarenz O, Schafer E, et al. Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsisreveals a conserved control mechanism for axillary meristem formation. Genes Dev,2003,17(9):1175~1187.
    Griffiths-Jones S, Saini HK, van Dongen S, et al. miRBase: tools for microRNA genomics. Nucleic AcidsRes,2008,36(1): D154~D158.
    Gu YQ, Wildermuth MC, Chakravarthy S, et al. Tomato transcription factors pti4, pti5, and pti6activatedefense responses when expressed in Arabidopsis. Plant Cell,2002,14(4):817~831.
    Gustafson-Brown C, Savidge B, Yanofsky MF. Regulation of the Arabidopsis floral homeotic geneAPETALA1. Cell,1994,76(1):131~143.
    Hammell M, Long D, Zhang L, et al. miRWIP: microRNA target prediction based on microRNA-containingribonucleoprotein-enriched transcripts. Nat Methods,2008,5(9):813~819.
    Heery DM, Kalkhoven E, Hoare S, et al. A signature motif in transcriptional co-activators mediates bindingto nuclear receptors. Nature,1997,387(6634):733~736.
    Heidstra R, Welch D, Scheres B. Mosaic analyses using marked activation and deletion clones dissectArabidopsis SCARECROW action in asymmetric cell division. Genes Dev,2004,18(16):1964~1969.
    Helariutta Y, Fukaki H, Wysocka-Diller J, et al. The SHORT-ROOT gene controls radial patterning of theArabidopsis root through radial signaling. Cell,2000,101(5):555~567.
    Hurst HC. Transciption factors I: bZIP proteins. Protein Profile,1994,1(2):123~168.
    Ikeda A, Ueguchi-tanaka M, Sonoda Y, et al. Slender rice, a consititutive gibberellin response mutant, iscaused by a null mutation of SLR1gene, an ortholog of the height-regulating gene GAI/RA/RHT/D8.Plant Cell,2001,13(5):999~1010.
    Itoh H, Ueguchi-Tanaka M, Sato Y, et al. The gibberellin signaling pathway is regulated by the appearanceand disappearance of SLENDER RICE1in nuclei. Plant Cell,2002,14(1):57~70.
    Jofuku KD, den Boer BG, Van Montagu M, et al. Control of Arabidopsis flower and seed development bythe hometotic gene APETAL2. Plant Cell,1994,6(9):1211~1225.
    Jofuku KD, Omidyar PK, Gee Z, et al. Control of seed mass and seed yield by the floral homeotic geneAPETALA2. PANS,2005,102(8):3117~3122.
    Keck E, McSteen P, Carpenter R, et al. Separation of genetic functions controlling organ identity in flowers.EMBO J,2003,22(5):1058~1066.
    Kizis D, Pages M. Maize DRE-binding proteins DBF1and DBF2are involved in rab17regulation throughthe drought-responsive element in an ABA-dependent pathway. Plant J,2002,20(6):679~689.
    Klimczak LJ, Collinge MA, Farini D, et al. Reconstitution of Arabidopsis casein kinase II from recombinantsubunits and phosphorylation of transcription factor GBF1. Plant Cell,1995,7(1):105~115.
    Klinge B, Uberlacker B, Korfhage C, et al. ZmHox: a novel class of maize homeobox gene. Plant Mol Biol,1996,30(3):439~453.
    Klucher KM, Chow H, Reiser L, et al. The AINTEGUMENTA gene of Arabidopsis required for ovule andfemale gametophyte development is related to the floal homeotic gene APETALA2. Plant Cell,1996,8(2):137~153.
    Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data.Nucleic Acids Res.,2011,39(1): D152~D157.
    Kunst L, Klenz JE, Martinez-Zapater J, et al. AP2gene determines the identity of perianth organs in flowersof Arabidopsis thaliana. Plant Cell,1989,1(12):1195~1208.
    Kurihara Y, TAKASHI Y, Watanabe Y. The interaction between DCL1and HYL1is important for efficientand precise processing of pri-miRNA in plant microRNA biogenesis. RNA,2006,12(2):206~212.
    Lau NC, Lim LP, Weinstein EG, et al. An abundant class of tiny RNAs with probable regulatory roles inCaenorhabditis slegans. Science,2001,294(5543):858~862.
    Leave C, Xie Z, Kasschau K D, et al.Cleavage of Scarecrow-like mRNA targets directed by a class ofArabidopsis miRNA. Science,2002,297(5589):2053~2056.
    Lee RC, Feinbaum RL, Ambros V. The C.elegans hererochronic gene lin-4encodes small RNAs withantisense complementarity to lin-14. Cell,1993,75(5):843~854.
    Lee S, Cheng H, King KE, et al. Gibberellin regulates Arabidopsis seed germination via RGL2, aGAI/RGA-like gene whose expression is up-regulated following imbibitions. Genes Deve,2002,16(5):646~658.
    Leonard DP, Joanna WW, Christine C, et al. The GRAS gene family in Arabidopsis: sequencecharacterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J,1999,18(1):111~119.
    Levesque MP, Vernoux T, Busch W, et al. Whole-genome analysis of the SHORT-ROOT developmentalpathway in Arabidopsis. PLoS Biol,2006,4(5): e143.
    Li CW, Su RC, Cheng CP, et al. Tomato RAV transcription factor is a pivotal modulator involved in theAP2/EREBP-mediated defense pathway. Plant Physiol,2011,156(1):213~227.
    Li W, Cui X, Meng Z, et al. Transcriptional regulation of Arabidopsis MIR168a and argonaute1homeostasisin abscisic acid and abiotic stress responses. Plant Physiol,2012,158(3):1279~1292.
    Li WX, Oono Y, Zhu J, et al. The Arabidopsis NFYA5transcription factor is regulated transcriptionally andposttranscriptionally to promote drought resistance. Plant Cell,2008,20(8):2238~2251.
    Li X, Qian Q, Fu Z, et al. Control of tillering in rice. Nature,2003,422(6932):618~621.
    Li YF, Zheng Y, Jagadeeswaran G, et al. Characterization of small RNAs and their target genes in wheatseedlings using sequencing-based approaches. Plant Sci,2013,203-204:17~24.
    Lim J, Jung JW, Lim CE, et al. Conservation and diversification of SCARECROW in maize. Plant Mol Biol,2005,59(4):619~630.
    Liu YG, Chen Y. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flankingsequences. Biotechniques,2007,43(5):649~650.
    Livak KJ, Schmittgen DT. Analysis of relative gene expression data using real-time quantitative PCR and the2–ΔΔCtmethod. Methods,2001,25(4):402~408.
    Llave C, Kasschau KD, Rector MA, et al. Endogenous and silencing-associated small RNAs in plants. PlantCell,2002,14(7),1605~1619.
    Lobbes D, Rallapalli G, Schmidt DD, et al. SWRRATE:a new player on the plant microRNA scene. EMBORep,2006,7(10):1052~1058.
    Lu S, Sun YH, Shi R, et al. Novel and mechanical stress-responsive microRNAs in Populus Trichocarpathat are absent from Arabidopsis. Plant Cell,2005,17(8):2186~2203.
    Lv S, Nie X, Wang L, et al. Identification and characterization of microRNAs from barley (Hordeum vulgareL.) by high-throughput sequencing. Int J Mol Sci,2012,13(3):2973~2984.
    Mallory AC, Bartel DP, Bartel B. MicroRNA-directed regulation of Arabidopsis auxin response factor17isessential for proper development and modulates expression of earlay auxin ersponse genes. Plant Cell,17(5):1360~1375.
    Martin C, Paz-Ares J. MYB transcription factors in plants. Trends Genet,1997,13(2):67~73.
    Mi-Hyun L, Bohye K, Sang-Kee S, et al. Large-scale analysis of the GRAS gene family in Arabidopsisthaliana. Plant Mol Biol,2008,67(6):659~670.
    Nakajima K, Sena G, Nawy T. Intercellular movement of the putative transcription factor SHR in rootpatterning. Nature,2001,413(6853):261~264.
    Nantel A, Quatrano RS. Characterization of three rice basic leucine zipper factors, including two inhibitorsof EmBP-1DNA-binding activity. J Biol Chem,1996,271(49):31296~31305.
    Navarro L, Dunoyer P, Jay F, et al. A plant miRNA contributes to antibacterial resistance by repressing auxinsignaling. Science,2006,312(5772):436~439.
    Nilsson L, Carlsbecker A, Sundas-Larsson A, et al. APETALA2like genes from Picea abies show functionalsimilarities to their Arabidopsis homologues. Planta,2007,225(3):589~602.
    Oh IH, Reddy EP. The myb gene family in cell growth, differentiation and apoptosis. Oncogene,1999,18(19):3017~3033.
    Ohto M, Fischer RL, Goldberg RB, et al. Control of seed mass by APETALA2. PNAS,2005,102(8):3123~3128.
    Park JM, Park CJ, Lee SB, et al. Overexpression of the tobacco Tsi1gene encoding an EREBP/AP2-typetranscription factor enhances resistance against pathogen attack and osmotic stress in tobacco. PlantCell,2001,13(5):1035~1046.
    Park W, Li J, Song R, et al. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act inmicroRNA metabolism in Arabidopsis thaliana. Curr Biol,2002,12(17):1484~1495.
    Patschinsky T, Hunter T, Esch FS, et al. Analysis of the sequence of amino acids surrounding sites oftyrosine phosphorylation. PNAS,1982,79(4):973~977.
    Peng J, Carol P, Richards DE, et al. The Arabidopsis GAI gene defines a signalling pathway that negativelyregulates gibberellin responses. Genes Dev,1997,11(23):3194~3205.
    Peng J, Richards DE, Hartley NM, et al.‘Green revolution’ genes encode mutant gibberellin responsemodulators. Nature,1999,400(6471):256~261.
    Peng Z, Lu T, Li L, et al. Genome-wide characterization of the biggest grass, bamboo, based on10,608putative full-length cDNA sequences. BMC Plant Biol,2010,10:116.
    Peng Z, Lu Y, Li L, et al. The draft genome of the fast-growing non-timber forest species moso bamboo(Phyllostachys heterocycla). Nature Genet,2013,45(4):456~461.
    Pfeffer S, Sewer A, Lagos-Quintana M, et al. Identification of microRNAs of the herpesvirus family. NatMethods,2005,2(4):269~276.
    Pysh LD, Wysocka-Diller J, Camilleri C, et al. The GRAS gene family in Arabidopsis: sequencecharacterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J,1999,18(1):111~119.
    Qi Y, Denli AM, Hannon GJ. Biochemical specialization within Arabidopsis RNA silencing pathways. MolCell,2005,19(3):421~428.
    Qin Y, Duan Z, Xia X, et al. Expression of profiles of Precursor and mature microRNAs under dehydrationand high salinity shock in Populus euphratica. Plant Cell Rep,2011,30(10):1893~1907.
    Raikhel N. Nuclear targeting in plants. Plant Physiol,1992,100(4):1627~1232.
    Ramachandran V, Chen X. Small RNA metabolism in Arabidosis. Trends Plant Sci,2008,13(7):368~374.
    Reinhart BJ, Slack FJ, Basson MR, et al. The21-nucleotide let-7RNA regulates developmental miRNA andviruses timing in Caenorhabditis elegans. Nature,2000,403(6772):901~906.
    Reinhart BJ, Weistein EG, Rhoades MW, et al. microRNAs in plants, Genes Dev,2002,16(13):1616~1626.
    Rhoades MW, Reinhart BJ, Lim LP, et al. Prediction of plant microRNA targets. Cell,2002,110(4):513~520.
    Riechmann JL, Meyerowi EM. The AP2/EREBP family of plant transcription factors. Biological chemistry,1998,397(6):633~654.
    Rounsley SD, Ditta GS, Yanofsky MF. Diverse roles for MADS box genes in Arabidopsis development. PlantCell,1995,7(8):1259~1269.
    Rubio-Somaza I, Cuperus JT, Weigel D, et al. Regulation and functional specialization of small RNA-targetnodes during plant development. Curr Opin Plant Biol,2009,12(5):622~627.
    Sabatini S, Heidstra R, Wildwater M, et al. SCARECROW is involved in positioning the stem cell niche inthe Arabidopsis root meristem. Genes Dev,2003,17(3):354~358.
    Schmid M, Uhlenhaut NH, Godard F, et al. Dissection of floral induction pathways using global expressionanalysis. Development,2003,130(24):6001~6012.
    Schulze S, Schafer BN, Parizotto EA, et al. LOST MERISTEMS genes regulate cell differentiation ofcentral zone descendants in Arabidopsis shoot meristems. Plant J,2010,64(4):668~678.
    Sempere LF, Freemantle S, Pitha-Rowe I, et al. Expression profiling of mammalian microRNAs uncovers asubset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation.Genome Biol,2004,5(3): R13.
    Shi R, Chiang VL. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques,2005,39(4):519~525.
    Silverstone AL, Ciampaglio CN, Sun TP. The Arabidopsis RGA gene encodes a transcriptional regulatorrepressing the gibberellin signal transduction pathway. Plant Cell,1998,10(2):155~169.
    Singh KB. Transcriptional regulation in plants: The importance of combinatorial control. Plant Physiol,1998,118(4):1111~1120.
    Song C, Fang J, Li X, et al. Identification and characterization of27conserved microRNAs in citrus. Planta,2009,230(4):671~685.
    Song L, Han MH, Lesicka J, et al. Arabidopsis primary microRNA processing proteins HYL1and DCL1define a nuclear body distinct from the Cajal body. PNAS,2007,104(13):5437~5442.
    Stam M, Mol JNM, Kooter JM. The silence of genes in transgenic plants. Annals of Botany,1997,79:3~12.
    Stuurman J, Jaggi F, Kuhlemeier C. Shoot meristem maintenance is controlled by a GRAS-gene mediatedsignal from differentiating cells. Genes Dev,2002,16(17):2213~2218.
    Takatsuji H. Zinc-finger transctiption factors in plant. Cell Mol Life Sci,1998,54(6):583~596.
    Tian C, Wan P, Sun S, et al. Genome-wide analysis of the GRAS gene family in rice and Arabidopsis. PlantMol Biol,2004,54(4):519~532.
    Toledo-Ortiz G, Huq E, Quail PH. The Arabidopsis ba-sic/helix-loop-helix transcription factor family. PlantCell,2003,15(8):1749~1770.
    Torres-Galea P, Hang LF, Chua NH, et al. The GRAS protein SCL13is a positive regulator ofphytochromedependent red light signaling, but can also modulate phytochrome A responses. Mol GenetGenomics,2006,276(1):13~30.
    Tournier B, Sanchez-Ballesta MT, Jones B, et al. New members of the tomato ERF family show specificexpression pattern and diverse DNA-binding capacity to the GCC box element. FEBS Lett,2003,550(1~3):149~154.
    Tyler L, Thomas SG, Hu J, et al. DELLA proteins and gibberellin-regulated seed germination and floraldevelopment in Arabidopsis. Plant Physiol,2004,135(2):1008~1019.
    Varallyay E, Burgyan J, Havelda Z. MicroRNA detection by northern blotting using locked nucleic acidprobes. Nat Protoc,2008,3(2):190~196.
    Wang JW, Wang LJ, Mao YB, et al. Control of root cap formation by microRNA-targeted auxin responsefactors in Arabidopsis. Plant Cell,2005,17:2202~2216.
    Wang L, Mai YX, Zhang YC, et al. MicroRNA171c-Targeted SCL6-II, SCL6-III, and SCL6-IV GenesRegulate Shoot Branching in Arabidopsis. Mol Plant,2010,3(5):794~806.
    Wang XJ, Reyes JL, Chua NH, et al. Prediction and identification of Arabidopsis thaliana microRNAs andtheir mRNA targets. Genome biol,2004,5(9): R65.
    Wen CK, Chang C. Arabidopsis RGL1encodes a negative regulator of gibberellin responses. Plant Cell,2002,14(1):87~100.
    Woo HR, Kim JH, Kim J, et al. The RAV1transcription factor positively regulates leaf senescence inArabidopsis. J Exp Bot,2010,61(14):3947~3957.
    Wu G, Park MY, Conway SR, et al. The sequential action of miR156and miR172regulates developmentaltiming in Arabidopsis. Cell,2009,138(4):750~759.
    Wu MF, Tian Q, Reed JW. Arabidopsis microRNA167controls patterns of ARF6and ARF8expression, andregulates both female and male reproduction. Development,2006,133:4211~4218.
    Xie Z, Allen E, Fahlgren N, et al. Expression of Arabidopsis miRNA genes. Plant Physiol,2005,138(4):2145~2154.
    Yang Z, Tian L, Latoszek-Green M, et al. Arabidopsis ERF4is a transcriptional repressor capable ofmodulating ethylene and abscisic acid responses. Plant Mol Biol,2005,58(4):585~596.
    Yi R, Zhu Z, Hu J, et al. Identification and expression analysis of microRNAs at the grain filling stage inRice (Oryza sativa L.)via deep sequencing. PLoS One,2013.8(3): e57863.
    Zanca AS, Vicentini R, Ortiz-Morea FA, et al. Identification and expression analysis of microRNAs andtargets in the biofuel crop sugarcane. BMC Plant Biol,2010,10(1):260.
    陈东亮,彭镇华,高志民.毛竹PeAP2基因及其启动子的克隆与表达初步分析.林业科学研究,2013,26(4):200~204.
    甘小洪.毛竹茎秆纤维细胞的发育生物学研究.南京林业大学博士学位论文.2005.
    高志民,范少辉,高健,等.基于CTAB法提取毛竹基因组DNA的探讨.林业科学研究,2006,19(6):725~728.
    高志民,刘颖丽,李雪平,等.一个绿竹MADS-box基因的克隆与序列分析.分子生物育种,2007,5(6):866~870.
    高志民,彭镇华,李雪平,等.毛竹苯丙氨酸解氨酶基因的克隆及组织特异性表达分析.林业科学研究,2009,22(3):449~453.
    江泽慧.世界竹藤.沈阳:辽宁科学技术出版社,2002.
    江泽慧.竹类植物基因组学研究进展.林业科学,2012,48(1):159~166.
    李彩丽.毛竹细胞骨架微观蛋白基因PeTua3和PeTub3研究.中国林业科学研究院博士学位.2012.
    任磊,王雁,周琳,等.牡丹PsAP2基因的克隆及表达.林业科学,2011,47(9):50~56.
    时宿妹,张越,张传宇,等.2种微小RNA实时定量PCR检测方法的比较.生物技术通讯,2010,2(13):377~384.
    宿红艳,周盛梅,王磊,等.草莓APETALA2同源基因的克隆及表达分析.西北植物学报,2005,25(10):1937~1942.
    唐美芳.水稻APETALA2基因组基因的表达特性分析.西北农林科技大学硕士学位论文.2007.
    王关林,方宏筠.植物基因工程.科学出版社,2009.
    杨丽.毛竹抗逆相关基因PeZFP和PeMYB基因的克隆及PeZFP基因功能验证.浙江农林大学硕士学位论文.2011.
    张妍,刘瀛,孙丰宾,等.白桦APETAL2(AP2)转录因子基因的分离及其表达.林业科学研究,2012,25(2):254~260.
    张岩.小佛肚竹BvCIGR2基因的克隆、表达及转基因拟南芥植株的筛选.浙江林学院硕士学位论文.2009.
    赵奇,王台,魏小弟. AP2基因在高等植物花器官发育中的作用概述.热带农业科学,25(3):50~56.
    郑波,毛竹紫黄质脱环氧化酶基因的克隆与功能研究.中国林业科学研究院硕士学位论文.2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700