用户名: 密码: 验证码:
基于罗氏线圈的行波传变特性与应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子式互感器具有响应频带宽、测量动态范围大、信号传变准确、无铁芯饱和、绝缘特性好等优点,已在智能(数字化)变电站中得到大量应用。这种非常规互感器对测量信号进行就地采样并实现数字化输出,为电压电流信息的数据共享提供了条件,被认为是符合智能电网发展要求的下一代互感器。目前由于对电子式互感器的行波传变特性把握不准,缺乏对后续电路和数据采样传输技术的系统研究,使得电子式互感器只被用于传变工频和一定次谐波量,没有被应用到频率更高的行波信号领域,致使已经实用化的行波故障测距技术和未来可能得以应用的行波保护技术无法应用到智能变电站中。为解决这一问题,本文以罗氏线圈电子式电流互感器为突破口进行分析和研究,完成了以下工作:
     (1)建立了罗氏线圈高频暂态电路模型和后续宽频积分电路模型,深入分析了其对行波信号的传变特性并进行了仿真验证。从罗氏线圈的结构特点和传变原理出发,对影响其传变准确性的干扰因素及电磁屏蔽技术进行了研究,表明其具备准确传变行波信号的能力;建立了罗氏线圈集中参数和分布参数两种高频暂态电路模型,对它们的传递函数和依频特性进行了对比分析,并利用分布参数模型研究了行波到达初始时刻的电压分布特点;对两种模型输入行波信号时的响应特性进行了仿真,分析了它们各自的传变特点,验证了罗氏线圈具有很好的行波传变能力;对罗氏线圈后续放大、积分和滤波电路等进行了建模,其中积分电路采用了无源和有源积分电路相互配合的复合积分方案,以保证后续电路的宽频响应特性;通过对包括罗氏线圈和后续模拟电路的整体模型进行仿真,验证了所建模型满足行波传变的要求。
     (2)在理论分析的基础上,对适合行波信号传变的罗氏线圈进行了参数设计和传感器试制,完成了行波传变特性等方面的试验测试。依据罗氏线圈自积分和微分两种工作模式的不同,对微分型罗氏线圈参数设计方法进行了研究,设计出满足行波传变要求的罗氏线圈物理参数和电气参数并进行了线圈试制;通过搭建不同的测试系统,对试制的罗氏线圈分别进行了稳态响应特性、雷击浪涌响应特性和故障行波响应特性的测试;试验结果表明,罗氏线圈对行波浪涌信号具有优良的传变能力。
     (3)提出了基于罗氏线圈微分输出的行波波头识别新方法。实现行波测距的关键在于准确提取行波浪涌(特别是初始行波)的突变点,而罗氏线圈恰能给出一次信号的微分;因此直接利用其输出的微分行波信号行判断,即可省去积分环节,又能提高行波信号的识别能力。研究了微分行波的信号特点,设计了利用微分行波实现行波故障测距的判据,对基于微分行波的双端法和单端法测距方案进行了仿真,仿真结果验证了方案的可行性。
     (4)根据智能变电站应用行波信号实现故障测距或继电保护功能的技术要求,研究提出行波数据采集和数据传输方案。在分析智能变电站分层结构特点和数据传输模式的基础上,提出了智能变电站行波应用的总体方案构架:针对行波信号采样率要求高、实现难度大的问题,提出了满足行波保护算法要求的最低采样率计算方法;设计了A/D+FPGA+DSP的高速采样电路,并对高速A/D的接线形式进行了分析;研究了IEEE1588在行波应用体系中的数据同步方案,针对同步信号丢失时现有插值同步算法误差较大的问题,提出一种基于调整基准采样时刻的改进插值算法,使同步效果显著提高。
     (5)实现了基于IEC61850标准的行波应用系统的通信建模。智能变电站中的IED之间其通信必须符合IEC61850标准;针对智能变电站行波应用的需要,建立了行波故障测距和行波保护逻辑节点并完善了它们的数据对象;建立了符合IEC61850标准的行波应用体系通信模型;对基于9-2标准的行波采样数据帧格式进行了研究和设计。
Electronic transducers have been widely used in smart substations. They have some excellent characteristics such as wide response frequency band, broad dynamic measurement range, accurate transfer characteristics, non magnetic saturation, better insulation characteristics and so on. These non-traditional transducers can realize local sampling and the digital outputs, which is beneficial to data sharing. They are considered as the next generation of transducers for smart grids. Currently, because of lacking better understanding to both travelling wave transfer characteristics of electronic transducers and data processing techniques, they are only be used for transferring power frequency and some harmonic signals, but not be used for transferring higher frequency travelling wave. Consequently, neither travelling wave fault location nor protection hasn't been used in smart substations. In order to solve the above problems, the following works are investigated in this paper:
     (1) High frequency transient equivalent circuits of Rogowski coils and broadband integrator are established. Their travelling wave transfer characteristics are analyzed and verified by simulations. Based on structure features and induction principle of Rogowski coils, factors influencing transfer accuracy and electromagnetic shield technologies have been discussed. And results reveal Rogowski coils have accurate travelling wave transfer characteristics. Then, two kinds of equivalent circuits, lumped parameters model and distributed parameters model, are built and compared through their transfer functions and frequency response curves. Meanwhile, initial voltage distribution characteristics when travelling wave arrives are analyzed by distributed parameters model. Travelling wave transfer characteristics of two models are simulated and it is proved that Rogowski coils have an excellent response to travelling wave. The following analog circuits of Rogowski coils, including amplifying circuit, integral circuit and filter circuit, are also established. And a compound integral circuit composed of passive integrator and active integrator is designed to ensure an integral broadband response. Eventually, simulations of whole circuit, including Rogowski coils and its following analog circuits, demonstrate that the whole circuit can meet demands of travelling wave transfer.
     (2) Based on theoretical analysis, a special Rogowski coils for transferring travelling wave is developed, and corresponding tests are done. Firstly, based on its two working mode, self-integral and differential, a design method of differential Rogowski coils is proposed. Then, a group of coil's physical and electromagnetic parameters are designed, and according to these parameters, a suitable Rogowski coils is made. Meanwhile, its response characteristics of steady-state, lighting surge, fault generated travelling wave are tested by different testing systems. The experiment results indicate that Rogowski coils have an excellent performance to transfer travelling wave.
     (3) Based on differential characteristics of Rogowski coils, a travelling wave front identification method is proposed. The key to realize fault location is to obtain break-points of travelling wave surge accurately, especially initial surge. Output of Rogowski coils is differential signal, which can be perfectly used for identifying surge's break-point. Using differential outputs of coils directly can improve the ability to identify travelling wave. Meanwhile, integral circuit can be deleted. So, features of differential travelling wave are analyzed firstly. Fault location criterions based on differential travelling wave are designed correspondingly. Finally, the criterions are demonstrated to be feasible by simulations of single-end and double-end fault location.
     (4) In order to realize fault location and protection based on travelling wave in smart substations, schemes of data sampling and transmission are investigated. Based on layered structure features and data transmission mode in smart substations, an overall scheme is proposed. Because of the difficulty to realize a high rate sampling of travelling wave, a method on how to determine the lowest sampling rate which should meet the demand for travelling wave protections is presented. Then, a high-speed sampling circuit composed of a high speed A/D converter, a FPGA and a DSP is designed. A/D converter's connection form is analyzed in the following. Synchronization scheme for travelling wave signals based on UillE1588is investigated. Considering high synchronous error of current interpolation algorithm for travelling wave data, a modified interpolation algorithm is presented by modifying basic sampling time, and is proved to work well.
     (5) The communications of IEDs in smart substation should follow IHC61850. In order to meet application requirements, logical nodes for travelling wave fault location and protection is established and their data objects are completed. The communication model for travelling wave application is established. Based on standard9-2, transfer frame of travelling wave is designed and investigated.
引文
[1]葛耀中.新型继电保护和故障测距的原理与技术(第2版)[M].西安:西安交通大学出版社,2007.
    [2]董新洲,葛耀中,贺家李,等.输电线路行波保护的现状与展望[J].电力系统自动化,2000,24(10):56-61.
    [3]M. Chamia, S. Liberman. Ultra high speed relay for EHV/UHV transmission lines-development, design and application[J]. IEEE Trans. on PAS,1978, 97 (6):2104-2116.
    [4]P. A. Crossly, P. G. Mclaren. Distance protection based on travelling wave[J]. IEEE Trans. on PAS,1983,102 (9):2971-2983.
    [5]徐丙垠.利用暂态行波的输电线路故障测距技术[D].西安:西安交通大学,1991.
    [6]陈平,葛耀中,索南加乐,等.输电线路故障开断暂态行波的传播特性研究[J].中国电机工程学报,2000,20(7):75-78.
    [7]董杏丽,葛耀中,董新洲.基于小波变换的无通道全线速动行波保护[J].电力系统自动化,2001,25(10):18-22.
    [8]J. A. J. Pettinga, J. Siersema. A polyphase 500 kA current measuring system with Rogowski coils[J]. IEE Proceedings,1983,130 (5):360-363.
    [9]D. A. Ward, J. La T. Exon. Using Rogowski coils for transient current measurements[J]. Engineering Science & Education Journal,1993,2 (3): 105-113.
    [10]D.A. Ward, J. La T. Exon. Experience with using Rogowski coils for transient measurements[C]. Pulsed Power Technology, UK, Feb 1992.
    [11]Kojovic. L. Rogowski coils suit relay protection and measurement [J]. Computer Applications in Power,1997,10 (3):47-52.
    [12]Ray. W. F. The use of Rogowski coils for low amplitude current waveform measurement[C]. Measurement Techniques for Power Electronics,1991: 61-65.
    [13]刘延冰,李红斌,余春雨,等.电子式互感器原理、技术及应用[M].北京:科学出版社,2009.
    [14]韩小涛,李伟,尹项根,等.应用电子式电流互感器的变压器差动保护研究[J].中国电机工程学报,2007,27(4):47-53.
    [15]李九虎,郑玉平,古世东,等.电子式互感器在数字化变电站的应用[J].电力系统自动化,2007,31(7):94-98.
    [16]Edward A.. A high-accuracy optical current transducer for electric power systems[J]. IEEE Transactions on Power Delivery,1990,5 (3):105-113.
    [17]杨奇逊.变电站综合自动化技术发展趋势[J].电力系统自动化,1997,21(10):7-9.
    [18]高翔.数字化变电站应用技术[M].北京:中国电力出版社,2008.
    [19]郑新才,施鲁宁,杨光,等.IEC61850标准下采样值传输规范9-1、9-2的对比和分析[J].电力系统保护与控制,2008,36(18):47-50.
    [20]窦晓波.基于IEC61850的新型数字化变电站通信网络的研究与实践[D].南京:东南大学,2006.
    [21]甘磊,张哲,尹项根.基于电容式电压互感器二次信号的行波故障定位方法[J].电网技术,2006,30(3):101-105.
    [22]邹贵彬,高厚磊,许明,徐丙垠.一种高压电网电压行波信号的提取方法.电力系统自动化[J].2009,33(2):71-74.
    [23]季涛.基于暂态行波的配电线路故障测距研究[D].济南:山东大学,2006.
    [24]Lee H., Mousa A. M.. GPS travelling wave fault locator systems:investigation into the anomalous measurements related to lightning strikes[J]. IEEE Transactions on Power Delivery,1996,11 (3):1214-1223.
    [25]J. Zhu, L. Yang, J. Jia, et al. The design of Rogowski coil with wide band using for partial discharge measurements[C]. Proceedings of 2005 international Symposium on Electrical Insulating Materials, Kitakyushu, Japan,2005.
    [26]张红岭,王海明.Rogowski线圈的结构与电磁参数的研究[J].高电压技术,2006,32(6):21-24.
    [27]李维波,毛承雄,李起炎,等.神光Ⅲ强激光能源模块测量线圈研究[J].中国电机工程学报,2003,23(5):53-57.
    [28]李维波,毛承雄,陆继明,等.分布电容对Rogowski线圈动态特性影响研究[J].电工技术学报,2004,19(6):12-17.
    [29]J. Cooper. On the high frequency response of a Rogowski coil[J]. J. Nucl. Energy-Part C,1963,5 (5):285-289.
    [30]Valentinas Dubickas, Hans Edin. High-frequency model of the Rogowski coil with a small number of turns[J]. IEEE Transactions on Instrumentation and Measurement,2007,56 (6):2284-2288.
    [31]张婷,方志,李春,等.自积分式Rogowski线圈的电磁参数对其频带影响的研究[J].电测与仪表,2009,46(3):14-19.
    [32]柯春俊,张国钢,翟小社,等.基于自积分Rogowski线圈的脉冲电流传感器的建模研究[J].电工电能新技术,2010,29(2):67-70.
    [33]ZhuJundong, Zhang Qiaogen, Jia Jiangbo, et al. Design of a Rogowski coil with a magnetic core used for measurements of nanosecond current pulses[J]. Plasma Science & Technology,2006,8 (4):457-460.
    [34]Ray W. F., Hewson C. R.. High performance Rogowski current transducers[C]. IEEE Industry Applications Confer, Roma, Italy,2000 (5):3083-3090.
    [35]张鑫,牟龙华.Rogowski线圈用新型积分电路设计[J].电力自动化设备,2010,30(5):115-117.
    [36]张可畏,王宁,段雄英,等.用于电子式电流互感器的数字积分器[J].中国电机工程学报,2004,24(12):104-107.
    [37]Ray W. F., Davis R. M.. High frequency improvements in wide bandwidth Rogowski transducers[C]. EPE 99 Conference Proc, Lauzanne,1999.
    [38]Mario Chiampi, Gabriella Crotti, Andrea Morando. Evaluation of flexible Rogowski coil performances in power frequency applications[J]. IEEE Transactions on Instrumentation and Measurement,2011,60 (3):854-862.
    [39]童悦,李红斌,张明明,等. 一种全数字化高压电流互感器在线校验系统[J].电工技术学报,2010,25(8):59-64.
    [40]王程远,陈幼平,张冈,等.PCB空心线圈位置误差分析与控制[J].中国电机工程学报,2008,5(25):103-108.
    [41]罗苏南,田朝勃,赵希才.空心线圈电流互感器性能分析[J].中国电机工程学报,2004,4(3):108-113.
    [42]李维波.基于Rogowski线圈的大电流测量传感理论研究与实践[D].武汉:华中科技大学,2005.
    [43]曾祥君,尹项根,林福昌,等.基于行波传感器的输l电线路故障定位方法研究[J].中国电机工程学报,2002,22(6):42-46.
    [44]刘忠战,莫卫东.自励源电子式电流互感器研发中的关键技术[J].电力系统自动化,2009,33(6):67-69.
    [45]Chu Xianghui, Zeng Xiangjun, Deng Feng, et al. Novel PCB sensor based on Rogowski coil for transmission lines fault detection[C]. Power & Energy Society General Meeting (PESGM), Calgary, Canada,2009.
    [46]Chen Qing, Li Hong-bin, Zhang Ming-ming, Liu Yan-bin. Design and characteristics of two Rogowski coils based on printed circuit board[J]. IEEE Transaction on Instrumentation and Measurement,2006,55 (3):939-943.
    [47]李文升.220kV GIS用电子式电流电压互感器在午由数字化变电站中的应用[J].电力系统保护与控制,2010,38(16):157-161.
    [48]W F Ray, C R Hewson, J M Metcalfe. High frequency effeets in current measurement using Rogowski coils[C]. Power Electronics and Applications, Dresden,2005.
    [49]王鹏,张贵新,朱小梅,等.电子式电流互感器温度特性分析[J].电工技术学报,2007,22(10):60-64.
    [50]刘顺华,郭辉进.电磁屏蔽与吸波材料[J].功能材料与器件学报,2002,8(3):213-217.
    [51]赵福辰.电磁屏蔽材料的发展现状[J].材料开发与应用,2001,16(5):29-32.
    [52]王立,张凯,田海涛.电子设备结构设计中的电磁屏蔽技术[J].中国水运,2011,11(2):111-113.
    [53]邹积岩,段雄英,张铁.罗柯夫斯基线圈测量电流的仿真计算及实验研究[J].电工技术学报,2001,16(1):81-84.
    [54]徐雁,朱明钧,郭晓华,等.空心线圈作为保护用电流互感器的理论分析和试验[J].电力系统自动化,2002,26(16):52-55.
    [55]吴涛,周有庆,龚伟.采用PCB平而型空心线圈的电子式电流互感器性能分析[J].电网技术,2010,34(6):210-214.
    [56]翟小社,王颖,林莘.基于Rogowski线圈电流传感器的研制[J].高压电器,2002,38(3):19-22.
    [57]W. Styga, G. Gerdin. High Frequency Rogowski Coil Response Characteristics[J]. IEEE Transaction on Plasma Science,1982,10(1):40-44.
    [58]Yangchun Cheng, Yinghui Yan, Chengrong Li. The high frequency characteristic of wideband Rogowski coil with asymmetric windings[C].2010 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 2010.
    [59]张嘉祥.变压器线圈波过程[M].北京:水利电力出版社,1982
    [60]徐雁,毕然.空心线圈电流传感器对暂态电流响应的仿真分析[J].电工技术学报,2004,19(11):61-65.
    [61]李伟,尹项根,张哲,陈德树,等.用于电子式电流互感器的压频变换积分新方法[J].电力系统自动化,2008,32(8):88-92.
    [62]吴崇吴,陆于平,侯喆.基于时域连续有限冲激响应滤波器的电子互感器采样数据站间同步算法[J].中国电机工程学报,2006,26(12):50-54.
    [63]张可畏,王宁,段雄英,等.用于电子式电流互感器的数字积分器[J].中国电机工程学报,2004,24(12):104-107.
    [64]C R Hewson, W F Ray, J Metcalfe. Optimising high frequency integrator operation of Rogowski current transducers[C]. Power Electronics and Applications,2007, Aalborg.
    [65]郭乐,申狄秋,卢家力.电子式互感器积分方案的比较研究[J].电力系统保护与控制,2010,38(18):111-114.
    [66]张鑫,牟龙华.Rogowski线圈用新型积分电路设计[J].电力自动化设备, 2010,30(5):115-117.
    [67]韩小涛.光电传感数字化及其继电保护技术研究[D].武汉:华中科技大学,2004.
    [68]王宝诚, 王德玉,邬伟扬.罗氏线圈的频率特性分析与传感器的设计方法[J].电工技术学报,2009,24(9):21-27.
    [69]Chris Hewson, William F. Ray. The effect of electrostatic screening of Rogowski coils designed for wide-bandwidth current measurement in power electronic applications[C].35th Annul IEEE Power Electronics Specialists Conference Power Electronics and Applications, Aachen, Germany,2004.
    [70]Mirko Marracci, Bernardo Tellini, Carmine Zappacosta, et al. Critical parameters for mutual inductance between Rogowski coil and primary conductor[J]. IEEE Transactions on Instrumentation and Measurement,2011, 60 (2):635-632.
    [71]王珏,张适昌,严萍,等.用自积分式罗氏线圈测量秒级高压脉冲电流[J].强激光与粒子束,2004,16(3):399-402.
    [72]邓发玉,电子式电流互感器实用化研究和设计[D].西安:西安电子科技大学,2011.
    [73]李维波,毛承雄,陆继明.Rogowski线圈结构电磁参数影响研究[J].高压电器,2004,40(2):94-97.
    [74]Li Weibo, Mao Chengxiong, Lu.Mining, et al. Study of Rogowski coils for measuring pulse currents of the high-power laser source[J]. International Journal of Power and Energy Systems,2005,25 (2):96-101.
    [75]孔庆源,戴敏.冲击电流测量中Rogowski线圈的应用[J].高电压技术2005,31(11):6-7.
    [76]Yi Liu, Fuchang Lin, Qin Zhang, et al. Design and construction of a Rogowski coil for measuring wide pulsed current[J]. IEEE Sensors Journal,2011,11 (1):123-130.
    [77]Turner G. R., Hofsajer I. W.. Rogowski coils for short duration pulsed current measurement[C]. IEEE Industry Applications Conference, African,1999.
    [78]A. Mariscotti, L. Vaccaro. A Rogowski coil for high voltage applications[C].12th IEEE Int. Instrum. Meas. Techn. Conf., Victoria, Canada, 2008:1069-1073.
    [79]梁曦东,陈昌渔,周远翔.高电压工程[M].北京:清华大学出版社,2006.
    [80]Zou Guibin, Gao Houlei. Algorithm for ultra high speed travelling wave protection with accurate fault location[C]. IEEE PES General Meeting, Pittsburgh, USA,2008.
    [81]陈平.输电线路现代行波故障测距及其应用研究[D].西安:西安交通大学,2003.
    [82]林湘宁,刘沛,杨春明,等.基于小波分析的超高压输电线路无通道全线速动保护方案[J].中国电机工程学报,2001,21(6):10-15.
    [83]孙明洁,徐政.电流互感器两种,常用模型的电磁暂态仿真研究[J].浙江理工大学学报,2007,24(2):190-194.
    [84]段建东,张保会.行波启动元件的算法研究[J].中国电机工程学报,2004,24(9):30-36.
    [85]袁兆强 张胤羿.用于行波保护的启动新算法研究[J].三峡大学学报(自然科学版),2008,30(6):52-56.
    [86]杨晓敏,李红艳,王艳丽,等.用小波原理构成继电保护启动元件的研究[J].电力自动化设备,1999,19(4):11-13.
    [87]徐伟宗,唐昆明.基于导数法的故障行波波头识别改进算法[J].电网技术,2010,34(1):198-202.
    [88]董新洲,葛耀中,徐丙垠.利用暂态电流行波的输电线路故障测距研究[J].中国电机工程学报,1999,19(4):76-80.
    [89]曾祥君,尹项根,陈浩,等.新型输电线路故障综合定位系统研究[J].电力系统自动化,2000,24(22):39-44.
    [90]覃剑,陈祥训,郑建超.行波在输电线路上传播的色散研究[J].中国电机工程学报,1999,19(9):27-30.
    [91]谭文恕.变电站通信网络和系统协议IEC61850介绍[J].电网技术,2001,25(9):8-12.
    [92]邱智勇,陈建民,朱炳犬.基于IEC 61850标准的500 kV三层结构数字化变电站建设[J].电力系统自动化,2009,33(12):103-107.
    [93]孙军平,盛万兴,王孙安.新一代变电站自动化网络通信系统研究[J].中国电机工程学报,2003,23(3):16-19.
    [94]国家电网公司.Q/GDW 383-2009智能变电站技术导则[S].2009.
    [95]殷志良,刘万顺,杨奇逊,等.一种遵循IEC 61850标准的合并单元同步的实现新方法[J].电力系统自动化,2004,28(11):57-61.
    [96]胡道徐,李广华.IEC 61850通信冗余实施方案[J].电力系统自动化,2007,31(8):100-103.
    [97]李永丽,李致中,杨维.继电保护装置可靠性及其最佳检修周期的研究[J].中国电机工程学报,2001,21(6):63-65.
    [98]J.J. Kumm, D. Mou. Predicting the optimum routine test interval for protective relays[J]. IEEE Transactions on Power Delivery,1995,10 (2):659-664.
    [99]王睿琛,薛安成,毕天姝,等.继电保护装置时变失效率估算及其区域性差异分析[J].电力系统自动化,2012,36(5):11-15.
    [100]L. Rafael Castro Ferreira, Peter A. Crossley, Ronald N. Allan. The impact of functional integration on the reliability of substation protection and control systems[J]. IEEE Transactions on Power Delivery,2001,16(1):83-88.
    [101]Dallia Morsi AH, Chartered Engineer. Applications of minimal path set and dual fault tree approach for piecewise reliability evaluation of large-scale electrical power systems[C|.12th International Middle-East Power System Conference, Aswan,2008.
    [102]王钢,丁茂生,李晓华.数字继电保护装置可靠性研究[J].电机工程学报,2004,24(7):47-52.
    [103]张沛超,高翔.全数字化保护系统的可靠性及元件重要度分析[J].电机工程学报,2008,28(1):77-82.
    [104]Lars Andersson, Klaus-Peter Brand. Reliability investigations for SA communication architectures based on I EC 61850[C]. IEEE Power Tech, 2005, Russia.
    [105]张沛超,胡炎,侯伟宏.IEC61850全数字化保护系统的分层马尔科夫模型[J].电力自动化设备,30(2):28-32.
    [106]Bin Wang, Zheng Ge, Xinzhou Dong. Performance of process bus communication of transient travelling waves data in smart substation[C].2010 China International Conference on Electricity Distribution, Nanjing, China.
    [107]邹贵彬,高厚磊,江世芳,等.新型暂态行波幅值比较式超高速方向保护[J].中国电机工程学报,2009,29(7):84-90.
    [108]史先好,高厚磊,向珉江,等.IEEE 1588时钟同步协议在数字化变电站中的应用探讨[J].电力自动化设备,2011,31(4):132-145.
    [109]汪祺航,吴在军,赵上林,等.IEEE 1588时钟同步技术在数字化变电站中的应用[J].电力系统保护与控制,2010,38(19):137-141.
    [110]李澄,袁宇波,罗强.基于电子式互感器的数字保护接口技术研究[J].电网技术,2007,31(9):84-87.
    [111]曹团结,尹项根,张哲,等.电子式互感器数据同步的研究[J].电力系统及其自动化学报,2007,19(2):108-113.
    [112]乔洪新,黄少锋,刘勇.基于二次插值理论的电子式互感器数据同步的研究[J].电力系统保护与控制,2009,37(15):48-52.
    [113]徐广辉,李友军,王文龙,等.数字化变电站IED采样数据同步插值的设计[J].电力系统自动化,2009,33(4):49-52.
    [114]周斌,鲁国刚,黄国方,等.基于线性Lagrange插值法的变电站IED采样值接口方法[J].电力系统自动化,2007,31(3):86-90.
    [115]徐光福,陆于平,吴崇昊,等.多采样率信号处理在数字化变电站差动保护中的应用[J].电力系统自动化,2007,31(21):44-48.
    [116]IEC 61850. Communication networks and systems in substations[S].
    [117]Cagil R. Ozansoy, Aladin Zayegh, Akhtar Kalam. The application-view model of the international standard IEC 61850[J]. IEEE Transactions on Power Delivery,2009,24 (3):1132-1139.
    [118]Cagil R. Ozansoy, Aladin Zayegh, Akhtar Kalam. Object modeling of data and dataSets in the International Standard IEC 61850[J]. IEEE Transactions on Power Delivery,2009,24 (3):1140-1147.
    [119]张结.IEC61850的结构化模型分析[J].电力系统自动化,2004,28(18):90-93.
    [120]王德文,朱永利,邸剑.利用IEC 61850/MMS的电力远动实时数据交换新方法[J].中国电机工程学报,2008,28(1):65-70.
    [121]廖泽友,孙莉,贺岑,等.IED遵循IEC61850标准的数据建模[J].继电器,2006,34(20):40-43.
    [122]王丽华,江涛,盛晓红,等.基于IEC 61850标准的保护功能建模分析[J].电力系统自动化,2007,31(2):55-59.
    [123]窦晓波,吴再军,胡敏强!,等.IEC61850标准下合并单元的信息模型与映射实现[J].电网技术,2006,30(2):80-86.
    [124]王晓芳,周有庆,袁旭龙,等.符合IEC 61850标准的数字化线路保护研究[J].电力系统保护与控制,2009,37(4):73-78.
    [125]Mitalkumar G Kanabar, Tarlochan S. Sidhu. Performance of IEC 61850-9-2 process bus and corrective measure for digital relaying[J]. IEEE Transactions on Power Delivery,2011,26 (2):725-735.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700