用户名: 密码: 验证码:
配位修饰的铟硫属化合物的合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无机-有机杂化材料是近年来材料学科中最为活跃的研究领域之一。有机杂化的硫属化合物材料,不仅结构新颖,而且具有独特的物理化学性能,如催化、吸附、离子交换、光电导体、光致发光、非线性光学和半导体性能等,成为人们研究越来越多的功能材料。该类材料通常利用低温溶剂热(或水热)法合成,在有机胺或季铵盐结构导向剂(或模板剂)作用下合成,以MQ4(M=Ga, In, Sn, Sb; Q=S,Se, Te)四面体或MQ_3(M=Sb; Q=S, Se)三角锥为初级建筑单元通过共顶点或共边相连,形成多种多样的金属硫属阴离子结构。在主族硫属化合物合成研究中,开放骨架结构和纳米分子簇的设计与合成是目前研究的前沿和趋势,其中过渡金属配合物修饰的金属硫属化合物一直是研究的焦点,而纳米尺度的超四面体簇及分子轮簇以其新奇的构型与巨大的尺寸,成为当今多金属硫簇向纳米材料发展的一个新的研究方向。在溶剂热合成中,胺体系的选择及离子液体的引入都是制备新型有机-无机杂化材料的关键。本论文以配位修饰的铟硫属化合物的合成为课题,选择1,2-二氨基环己烷(dach)为反应溶剂,通过在反应体系中引入辅助试剂GeO_2和离子液体的方法,合成了配位修饰的新型桥连基团组装的超四面体簇化合物和配位修饰的铟硫属轮状簇合物,讨论了其合成条件、影响化合物结构的因素、热稳定性和光学性质等。主要内容如下:
     一、简单综述了硫属化合物的溶剂热合成方法,有机胺和离子液体在硫属化合物合成中的应用;总结了镓、铟硫属化合物的结构特点;综述了轮状结构簇合物的合成研究进展。
     二、在dach反应溶剂体系中,合成了由配合物连接T4簇组装的超四面体簇T4-complex-T4。在In/S/dach/M(M=Fe, Co)反应体系中,首次合成了由配合物[Fe(dach)_2]~(2+)连接T4簇形成的新型2D超四面体簇合物1,{[In16Fe4S34H2]2[Fe(dach)_2]_3}·4[Fe(dach)_3]·6Hdach·6H_2O和由[Co(dach)_2]~(2+)连接两个T4簇形成的分子簇合物2,{[In_(17)Co_4S_(38)H_3]_2[Co(dach)_2]}·8[Co (dach)_3]·10Hdach·2H_2O。在超四面体簇中,这种以阳离子[M(dach)_2]~(2+)充当配位结构与T4晶簇相结合的结构是首次得到的。而且,过渡金属进入主族金属硫系物结构明显提升了该化合物的光谱性质。
     三、在dach反应溶剂体系中,通过改变辅助介质,得到了由配位小铟硫簇或多硫离子连接的超四面体簇新结构。以L-半胱氨酸(L-cyst.)为硫源,在In/L-cyst./dach/M(M=Ni, Co)反应体系中,引入了GeO_2和离子液体BMIm (IL)两种辅助物质,得到了新的奇特的Tn簇硫属化合物:新的小簇In_4(dach)_4S_6与T3簇组装而成的3D结构3,[In12S20(dach)_2]·H_2dach·[Ni(dach)_3]·3H_2O,1D链状配位聚合物4,[In2S4]·[Ni(dach)_3],多硫离子(S3)~(2–)连接T4簇组装的2D框架结构5,[In_(16)Co_4S_(37)]·2Hdach·4[Co(dach)_3]·dach·5H_2O,Co(II)配合物连接T4簇组装的2D框架结构6[In_(16)Co_4S_(37)]·2Hdach·4[Co(dach)_3]·dach·5H_2O。化合物3是首次合成得到的由新的In_4(dach)_4S_6簇连接体组装T3簇形成3D敞开骨架结构。化合物5是第一个通过多硫负离子连接T4簇的化合物。结果表明:辅助物质引入影响了硫属化合物的结构,GeO_2主要起改变反应体系酸度的作用,离子液体BMIm起了提高介质极性和物质溶解性的作用。
     四、在In/Te/dach反应体系中,合成了稀有的配位修饰的铟-碲轮状簇合物。得到了两个具有纳米轮状结构的铟-碲分子簇合物7,[Mn(dach)_3]_2[In_(18)Te_(30)(dach)_6]·2Hdach·H_2O和8,[Ni(dach)_3]_2[In_(18)Te_(30)(dach)_3]·2Hdach,它们是主族金属硫化物中首次发现的纳米环状分子簇,外径为15.54(1.5nm),内径为8.25,轮状结构是18个铟借助30个碲阴离子桥连形成纳米环结构。研究并分析了纳米轮状结构形成的原因,溶液的酸度的高低是轮状结构形成的另一个重要因素,当高酸性时,大量质子胺的存在,限制了dach的螯合作用,只能得到一个相关的新的1D InTe化合物9,{[Mn(dach)_3_]2[In_5Te_(10)]·2H_2O}∞。
     五、在In/Se/dach反应体系中,合成了配位修饰的铟-硒轮状簇合物。得到了一个罕见的含有两个不同大小的纳米轮状结构的铟-硒分子簇合物10,[Mn(dach)_3]_9[In_(30)Se_(72)(dach)_3]_2[In1_(18)Se_(30)(dach)_6]·2H_2O。这是轮状纳米硒簇中的第一个化合物,外径25.78(约2.58nm)。获得的纳米尺寸的团簇为双层连接的轮状结构,这种结构排列将在光电传感器具有潜在的应用。
Organic-inorganic hybrid materials are one of the most active research fields inmaterials science in recent years. Organic hybrid chalcogenide materials have beenattracted considerable interests not only due to their novel structures but also due totheir unique physical and chemical properties, such as catalysis, adsorption, ionexchange, photoluminescence, nonlinear optics and semiconductor. The syntheses ofthese materials are typically carried out under hydro(solvo)thermal conditions usingstructure directing agent (or template) of the organic amines or quaternary ammoniumsalts. Tetrahedral ortho-anions MQ4(M=Ga, In, Sn, Sb; Q=S, Se, Te) or pyramidanions MQ3(M=Sb; Q=S, Se) as primary building units exhibit a characteristictendency to condense through corner-or edge-sharing to afford a variety of structures ofthe chalcogenidometalate anions. In the research of main group chalcogenides, designand synthesis of open-framework structure and nano clusters is the frontier and trend incurrent research, in which the metal sulfides modified with transition metal coordinationmoieties have been the focus of research. The nanometer supertetrahedral clusters andwheel-like clusters with the novel structure types and sizes are becoming a new researchdirection to the development of nanostructured materials. In the synthetic methods formain group chalcogenides, selecting new amine system and using ionic liquid mediumare very important to prepare new organic-inorganic hybrid materials. The research goalof this work is the synthesis of indium chalcogenide clusters or compounds modified bycoordination complexes. Supertetrahedral cluster compounds with novel linkages andwheel-shaped indium chalcogenide clusters were synthesized by selecting1,2-diaminocyclohexane (dach) as the reaction solvent and chelating agent. The synthesisconditions, influence factors, such as using or without using GeO_2and ionic liquids,compound structure, thermal stability and optical properties were discussed. The maincontents of this thesis are as follows:
     1.The solvothermal synthetic methods of chalcogenide compounds, and the application of organic amine compounds and ionic liquids in the syntheses are brieflyreviewed. The structure characteristics of gallium, indium chalcogenides aresummarized. The research progress in synthesis of wheel-like chalcogenide clusters isalso reviewed
     2. Supertetrahedral cluster compounds with T4-complex-T4structure weresynthesized by metal complex assembly in In/S/dach/M(M=Fe, Co) systems.Compound1{[In_(16)Fe_4S_(34)H_2]_2[Fe(dach)_2]_3}_4[Fe(dach)_3]6Hdach6H_2O is an2Dsupertetrahedral cluster formed from T4clusters connected by [Fe(dach)_2]~(2+), andcompound2{[In_(17)Co_4S_(38)H_3]_2[Co(dach)_2]}·8[Co(dach)_3]10Hdach·2H_2O is a discretemolecular, a [Co(dach)_2]~(2+)bridged two T4clusters. The in-situ formed [Fe(dach)_2]~(2+)complex cations act as linkages joining the T4clusters is the first example for suchcompounds. Furthermore, integrating transition metal complexes into structure of maingroup metal chalcogenides clearly improves the optical functionality of thesecompounds.
     3. Novel supertetrahedral cluster compounds were synthesized in In/S/dach/M(M=Ni, Co) systems, using L-cysteine (L-cyst.) as sulfur source, and two materials (GeO_2and ionic liquid) an auxiliary. The anion of [In12S20(dach)2]·H2dach·[Ni(dach)3]·3H2O(3) is a3-D framework assembled by T3clusters and the linkage of the In4(dach)4S6cluster. The anion of [In_(16)Co_4S_(37)]·2Hdach·4[Co(dach)_3]·dach·5H_2O (5) is a2-Dframework assembled by T4clusters connected by unusual (S3)2–polysulfide ion. Thestructures of other two new compounds,[In2S4]·[Ni(dach)_3](4) and{[In_(16)Co_4S_(34)]_2[Co(dach)_2]_3}·4Hdach·6[Co(dach)_3]·6H_2O (6) are known. The auxiliariesplay an important role in the structural assembly of the Tn clusters, mainly due to theireffects on acidity and polarity of the reaction system and solubility of the reactants orproducts.
     4. Ligand modified new type InTe clusters were synthesized in In/Te/dach systems.They are wheel-shaped indium telluride nano clusters7[Mn(dach)_3]_2[In_(18)Te_(30)(dach)6]·2Hdach·H2O and8[Ni(dach)_3]_2[In_(18)Te_(30)(dach)_3]·2Hdach. A notablefeature of compound7and8is the nano scale ring size (ca.1.5nm). It is notable thatcompound7and8are the first large nanoring compound found for main-group metal chalcogenides, in which the bridge is the inorganic divalent tellurium anion. The dachmolecules play important roles in the formation of the wheel-like topology. The weakacidity is the point for the formation of7and8, because at higher acidity, the dachmolecules are protonated and difficult to coordinate to the In atom. At higher acidity, a1-D compound9{[Mn(dach)_3]_2[In_5Te_(10)]·2H_2O}∞was prepared under similarsolvothermal condition.
     5. Ligand modified InSe wheel-shaped clusters were synthesized in In/Se/dachsystems. The indium selenide10,[Mn(dach_)3]_9[In_(30)Se_(72)(dach)_3]_2[In_(18)Se_(30)(dach)_6]·2H_2O,contains two different size nano wheels and is the first large nanoring compound foundfor InSe clusters, with average outer diameter25.78(2.58nm). The nanoscaleinorganic cluster shows a double-decker ring structure, and the matrix in the singlecrystal might have applications as optical and photoelectron conversion.
引文
[1] Barrer, R. M., J. Chem. Soc.,1948,54,324.
    [2](a) Guisnet, M., Gilson, J.-P., Zeolites for Cleaner Technologies, Vol.3, ImperialCollege Press, New York,2002;(b) Krishna, R., Smit, B., Calero, S., Chem, Soc.Rev.2002,31,185;(c) Corma, A., Garcia, H., Chem, Commun.,2004,1443.
    [3](a) Zheng, N.F.; Bu, X.H.; Wang, B.; Feng, P.Y., Science,2002,298,2366;(b) Parise,J. B., Science,1991,251,293.(c) Li, H.; Laine, A.; O'Keeffe, M.; Yaghi, O. M.,Science,1999,283,1145;
    [4](a) Jiang, T.; Lough, A.; Ozin, G. A.; Bedard, R. L.; Broach, R. J. Mater. Chem.,1998,8,721;(b) Ahari, H.; Lough, A.; Petrov, S.; Ozin, G. A.; Bedard, R. L. J.Mater. Chem.,1999,9,1263;(c) Bedard, R.L.; Wilson, S.T.; Vail, L.D.; Bennett,J.M.; Flanigen, E.M.; in:P.A. Jacobs, R.A. van Santen (Eds.), Zeolites: Facts,Figures, Future, Proceedings of the8th International Zeolite Conference, Elsevier,Amsterdam,1989, p375;(d) Yaghi, O.M.; Sun, Z.; Richardson, D.A.; Groy, T.L.J. Am. Chem. Soc.1994,116,807.
    [5](a) Sheldrick, W.S.; Wachhold, M. Angew. Chem. Int. Ed. Engl.1997,36,206;(b)Rabenau, A. Angew. Chem. Int. Ed. Engl.1985,24,1026;(c) Li, J.; Chen, Z.;Wang,R.-J.; Proserpio, D. M. Coord. Chem. Rev.1999,190–192,707;(d) Dehnen, S.;Melullis, M. Coord. Chem. Rev.2007,251,1259.
    [6](a)Hwang,S.J.;Lyer,R.G.;Trikalitis,P.N.;Ogden,A.G.;Kanatzidis,M.G.Inorg.Chem.,2004,43,2237;(b) Mrotzek,A.;Chung,D.Y.;Ghelani,N.;Hogan,T.;Kanatzidis,M.G. Chem.Eur.J.2001,7,1915;(c) Ding,N.;Kanatzidis,M.G.;Angew.Chem.Int.Ed.,2006,45,1397.
    [7](a)Sheldfick,W.S.;Kaub,J.Z. Anorg.Ally,.Chem.,1986,535,179;(b)Sheldrick,W.S. Z Naturfirsch.,1988,43B,249;(c) Liao,J.H.;Kanatzidis,M.G. J. Am.Chem.Soc.,1990,112,7400;(d) Chou, J.H.;Kanatzidis,M.G.Inorg.Chem.,1994,33,1001;(e) Wood,P.T.;Pennington,W.T.;Kolis,J.W.J. Am.Chem.Soc.,1992,114,9233;(f) Dhingra,S.S.;Haushalter,R.C.Chem.Mater.,1994,6.2376.
    [8](a)Sunshine,S.A.;Kang,D.;Ibers,J.A.J. Am.Chem.Soc.,1987,109,6202;(b) Kanatzidis,M.G.;Chem.Mater.,1990,2,353.
    [9](a)Haushalter,R.C.Chem.Commun.,1987,3,196;(b) Park,C.W.;Salm,R.J.;Ibers,J.A.Angew.Chem.Int.Ed.Engl.,1995,34,1879.
    [10] Warren,C.J.;Haushalter,R.C.;Bocarsly,A.B. J. Alloys Comp.1995,229,175.
    [11](a)Burns,R.C.;Corbett,J.D. Inorg.Chem.,1985,24,1489;(b) Haushalter,R.C.Angew.Chem.,Int.Ed.Engl.,1985,24,432;(C)Haushalter,R.C.Angew.Chem.,Int.Ed.Engl.,1985,24,433.
    [12] Krebs, B., Angew Chem Int Ed Engl.1983,22,113.
    [13](a) Sheldrick, W.S.; Braunbeck, H.G. Z. Naturforsch. Teil B,1992,47,151;(c)Sheldrick, W.S.; Schaaf, B. Z. Naturforsch. Teil B.,1995,49,655;(d) Graf, H.A.;Sch fer, H. Z. Anorg. Allg. Chem.1975,414,211;(e) Eisenmann, B.; Schwerer, H.;Sch fer, H. Mater. Res. Bull.1983,18,383;(f) Brinkmann, C.; Eisenmann, B.;Sch fer, H. ibid.1985,20,299.
    [14](a) Fehlker, A.; Blachnik, R. Z. Anorg. Allg. Chem.2001,627,411;(b) Spetzler, V.;N ther, C.; Bensch, W. Inorg. Chem.2005,44,5805;(c) Powell, A.V.; Boissière, S.Chem. Mater.2000,12,182;(d) Dong, Y.J.; Peng, Q.; Wang, R.J.; Li, Y.D. Inorg.Chem.2003,42,1794;(e) Cahill, C. L.; Gugliotta, B.; Parise, J. B. Chem. Commun.1998,1715;(f) Pitzschke, D.; N ther, C.; Bensch, W. Solid State Sciences2002,4,1167.
    [15](a) Bu, X.H.; Zheng, N.F.; Wang, X.Q.; Wang, B.; Feng, P.Y. Angew. Chem. Int. Ed.2004,43,1502;(b) Li, H.L.; Kim, J.; O'Keeffe, M.; Yaghi, O. M. Angew. Chem. Int.Ed.2003,42,1819;(c) Li, H.L.; Eddaoudi, M.; Laine, A.; O'Keeffe, M.; Yaghi, O.M. J. Am. Chem. Soc.1999,121,6096;(d) Bu, X.H.; Zheng, N.F.; Li, Y.Q.; Feng,P.Y. J. Am. Chem. Soc.2003,125,6024.
    [16] Sheldrick, W. S.; Wachhold, M. Coord. Chem. Rev.1998,176,211.
    [17] Stephan, H.; Kanatzidis, M. G. J. Am. Chem. Soc.1996,118,12226.
    [18](a) Kiebach, R.; Studt, F.; Nather, C.; Bensch, W. Eur. J. Inorg. Chem.2004,2553;(b) Schur, M.; Rijnberk, H.; Nather, C.; Bensch, W. Polyhedron,1999,18,101;(c)Bensch, W.; Nather, C.; Stahler, R. Chem.Commun.2001,477;(d) Vaqueiro, P.;Chippindale, A.M.; Powell, A.V. Inorg.Chem.2004,43,7963;(e) Girard, M.R.; Li,J.; Proserpio, D.M. Main Group Metal Chem.1998,21,231.
    [19](a) Vaqueiro, P. Inorg. Chem.2006,45,4150;(b) Behrens, M.; Scherb, S.; N ther,C.; Bensch, W. Z. Anorg. Allg. Chem.2003,629,1367.
    [20] Zhang, Q.C.; Bu, X.H.; Lin, Z.E.; Biasini, M.; Beyermann, W. P.; Feng, P.Y. Inorg.Chem.2007,46,7262.
    [21](a) Jia, D.-X.; Zhang, Y.; Dai, J.; Zhu, Q.-Y.; Gu, X.-M. Z. Anorg. Allg. Chem.2004,630,313;(b) Jia, D.-X.; Dai, J.; Zhu, Q.-Y.; Zhang, Y.; Gu, X.-M. Polyhedron2004,23,937;(c) Jia, D.-X.; Dai, J.; Zhu, Q.-Y.; Cao, L.-H.; Lin, H.-H. J. SolidState Chem.2005,178,874;(d) Gu, X.-M.; Dai, J.; Jia, D.-X.; Zhang, Y.; Zhu,Q.-Y. Cryst. Growth Des.2005,5,1845;(e) Jia, D.-X.; Zhang, Y.; Dai, J.; Zhu,Q.-Y.; Gu, X.-M.; J. Solid State Chem.2004,177,2477;(f) Jia, D.-X.; Zhao, Q.-X.;Dai, J.; Zhang, Y.; Zhu, Q.-Y. Z. Anorg. Allg. Chem.2006,632,349.
    [22](a) Jia, D.-X.; Zhu, A.-M.; Deng, J.; Zhang, Y. Z. Anorg. Allg. Chem.2007,633,1246;(b) Zhao, Q.X.; Jia, D.X.; Zhang, Y.; Song, L.F.; Dai, J. Inorg. Chim.Acta2007,360,1895;(c) Jia, D.X.; Zhao, Q.X.; Zhang, Y.; Dai, J.; Zuo, J.L. Inorg.Chem.2005,44,8861;(d) Jia, D.-X.; Zhu, Q.-Y.; Dai, J.; Lu, W.; Guo, W.-J. Inorg.Chem.2005,44,819;(e) Jia, D.-X.; Deng, J.; Zhao, Q.-X.; Zhang, Y. J. MolecularStruct.2006,833,114;(f) Jia, D.-X.; Zhao, Q.-X.; Zhang, Y.; Dai, J.; Zhou, J. Eur.J. Inorg. Chem.2006,2760.
    [23] Zhou, J.; Dai, J.; Bian,G.-Q.; Li, C.-Y. Coord. Chem. Rev.2009,253,1221.
    [24](a) Zhou, J.; Bian,G.-Q.; Zhang,Y.; Zhu,Q.-Y.; Li, C.-Y.; Dai, J. Inorg.Chem.2007,46,6347;(b) Zhou, J.; Zhang,Y.; Bian,G.-Q.; Zhu,Q.-Y.; Li, C.-Y.; Dai, J. Cryst.Growth Des.2007,9,1889;(c) Zhou, J.; Zhang,Y.; Bian,G.-Q.; Li, C.-Y.; Chen,X.-X.; Dai, J. Cryst. Growth Des.2008,8,2235.
    [25] Chen, Z.; Li, J.; Chen, F.; Proserpio, D. M. Inorg. Chim.Acta,1998,273,255.
    [26] Li,J.; Chen,Z.; Emge, T.J.; Proserpio, D. M. Inorg. Chim.1997,36,1437.
    [27] Chen, X.A.; Huang, X.Y.; Li, J. Inorg. Chem.2001,40,1341.
    [28](a) Ludwig, R.; Kragl, U. Angew. Chem. Int. Ed.,2007,46,6582.(b) Weingaertner,H. Angew. Chem. Int. Ed.,2008,47,654.
    [29](a)李汝雄.绿色溶剂-离子液体的合成与应用[M].北京:化学工业出版社.2004.(b)邓友全.离子液体-性质、制备与应用[M].北京:中国石化出版社.2006.(c)张锁江,吕兴梅等.离子液体-从基础研究到工业应用[M].北京:科学出版社.2006.
    [30](a) Welton T. Chemical Reviews,1999,99,2071.(b)Antonietti, M.; Kuang, D. B.;Smarsly, B. et al. Angew. Chem. Int. Ed.,2004,43,4988.(c) Huddleston, J. G.;Willauer, H. D.; Swatloski, R. P., et al. Chemical Communications,1998,1765.(d)Klingshirn, M. A.; Spear, S. K.; Holbrey, J. D. et al. Journal of MaterialsChemistry,2005,15,5174.(e) Taubert, A.; Li, Z. Dalton Transactions,2007,723.
    [31](a) Jin, K.; Huang, X. Y.; Pang, L. et al. Chemical Communications,2002,2872.(b)Cooper; E. R.; Andrews, C. D.; Wheatley, P. S., et al. Nature,2004,430,1012.(c)Reichert, W. M.; Holbrey, J. D.; Vigour, K. B., et al. Chemical Communications,2006,4767.(4d) Morris, R. E. Chemical Communications,2009,2990.
    [32](a) Lin, Z. J.; Wragg, D. S.; Morris, R. E. Chemical Communications,2006,2021.(b) Lin, Z. J.; Wragg, D. S.; Warren, J. E., et al. J. Am. Chem. Soc.,2007,129,10334.(c) Lin, Z. J.; Slawin, A. M. Z.; Morris, R. E. J. Am. Chem. Soc.,2007,129,4880.(d) Hai, F. Y.; Lu, Y.; Chen, W.; Wu, Q.; Meng, J.; Wang, X.; Zhang, Z.;Wang. E. Crystal Growth&Design,2011,11,458.
    [33](a) Parnham, E. R.; Morris, R. E. Accounts of Chemical Research,2007,40,1005.(b) Kuhn, P; Antonietti, M.; Thomas, A. Angew. Chem. Int. Ed.,2008,47,3450.(c)Xie, Z. L.; Feng, M. L.; Li, J. R., et al. Inorganic Chemistry Communications,2008,11,1143.(d) Hulvey, Z.; Wragg, D. S.; Lin, Z. J., et al. Dalton Transactions,2009,1131.(e) Martins, G. A. V.; Byrne, P. J.; Allan, P., et al. Dalton Transactions,2010,1758.(f) Wu, G. X.; Wu, H. S.; Zhang, X. M. Dalton Transactions,2010,1179.
    [34] Jiang, J.; Yu, S.-H.; Yao, W.-T.; Ge, H.; Zhang, G.-Z. Chem. Mater.2005,17,6094.
    [35] Zhang,Q.; Chung, I.; Jang, J. I.; Ketterson, J. B.; Kanatzidis, M. G. J. Am. Chem.Soc.2009,131,9896.
    [36] Biswas, K.; Zhang, Q.; Chung, I.; Song, J.-H.; Androulakis, J.; Freeman, A. J.;Kanatzidis; M. G. J. Am. Chem. Soc.2010,132,14760.
    [37] Freudenmann, D.; Feldmann, C. Dalton Trans.2011,40,452–456.
    [38] Xiong, W.-W.; Li, J.-R.; Hu, B.; Tan, B.; Li, R.-F.; Huang, X.-Y. Chem. Sci.2012,3,1200.
    [39](a)Lin, Y.; Dehnen, S. Inorg. Chem.2011,50,7913.(b) Li, J.-R.; Xie, Z.-L.; He,X.-W.; Li, L.-H.; Huang, X.-Y. Angew. Chem. Int. Ed.2011,50,11395.
    [40] Lin, Y.; Massa, W.; Dehnen, S. J. Am. Chem. Soc.2012,134,4497.
    [41](a) Li, H.L.; Kim, J.; Groy, T.L; O’Keeffe M.; Yaghi, O. M. J Am Chem Soc,2001,123,4867.(b) Cheng,W.;Bu,X.H.;Zheng,N.F.;Feng,P. Y. J. Am. Chem.Soc.,2001,123,11506.
    [42] Cahill,C.L.;Ko,Y;Parise,J.B.Chem.Mater.1998,10,19.
    [43] Bu,X.H.;Zheng,N.F.;Li,Y. Q.;Feng, P. Y. J. Am. Chem.Soc.,2002,124,12646
    [44] Vaqueiro,P.;Romero,M.L.J. Am.Chem.Soc.2008,130,9630.
    [45] Xu, G.;Guo,P.;Song,S.;Zhang, H.Chem Inform.2009,40,1153.
    [46](a) Wu, T.; Wang, L.; Bu, X. H.; Chau; V.; Feng, P. Y. J. Am. Chem. Soc.,2010,132,10823.(b) Wu, T.; Bu, X. H.; Zhao, X.; Khazhakyan R.; Feng, P. Y. J. Am. Chem.Soc.,2011,133,9616.
    [47] Vossmeyer, T.;Reck G;Katsikas,L.;Haupt,E.T.K.;Schulz,B.;Weller,H.Science,1995,267,1476.
    [48] Cahill, C. L.; Ko, Y.; Parise, J. B., Chem Mater,1998,10,19.
    [49](a) Cahill, C. L.; Parise,J.B.J. Chem.Soc.,2000,1475.(b) Barron,A.R.Adv.Mater.opt.Electron.,1995,5,245.(c) Birkmire,R. W.;Eser, E.Annu.Rev.Mater.Science.,1997,27,625.
    [50](a) Cheng W., Bu, X. H., Zheng, N. F.; Feng,P. Y. J Am Chem Soc.,2002,124,10268.(b) Bu, X. H.; Zheng, N. F.; Li,Y. Q.; Feng, P. Y., J Am Chem Soc.2002,124,12646
    [51] Zheng, N. F.; Bu, X. H.; Feng, P. Y., Agew Chem.2004,116,4857.
    [52] Cheng W., Bu, X. H., Feng, P. Y., Chem.Commun.2002,1344
    [53] Cheng W., Bu, X.H., Zheng, N.F.; Feng,P.Y. J Am Chem Soc.,2002,124,10268.
    [54] Pitzschke, D.; N ther, C.; Bensch, W., Soild. State. Sciences.2002,4,1167.
    [55] Zheng, N. F.;Bu, X. H.; Feng, P. Y., J Am Chem Soc.2003,125,1138.
    [56] Zhang, Q. C., Bu, X. H., Feng, P. Y., Inorg. Chem.,2006,45,6684.
    [57] Vaqueiro,P.;Romero,M.L.J. Am.Chem.Soc.2008,130,9630.
    [58] Wu, T.; Khazhakyan, R.; Wang, L.; Bu, X.; Zheng, S.-T.; Chau, V.; Feng, P. Angew.Chem.2011,123,2584.
    [59] Zhou,J.;Yin,X.H.;Zhang,F.Inorg.Chem.2010,49,9671-9676.
    [60] Zhou,J.;Bian,G Q.;Zhang,Y;Dai,J.;Cheng,N.Z Anorg.Allg.Chem.2007,633,2701.
    [61] Zhou,J.;Bian,G.Q.;Dai,J.Inorg.Chem.2007,46,15.
    [62](a) Pope, M. T.; Müller, A. Angew. Chem. Int. Ed. Engl.1991,30,34.(b) Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity;Pope, M. T.; Müller, A., Eds.; Kluwer: Dordrecht, the Netherlands,1994.(c)Polyoxometalate Chemistry: From Topology via Self-Assembly to Applications,Pope, M. T.; Müller, A., Eds.; Kluwer: Dordrecht, TheNetherlands,2001.(d) Polyoxometalate Chemistry for Nano-CompositeDesign, Yamase, T.; Pope, M. T., Eds.; Kluwer: Dordrecht, The Netherlands,2002.(e) Bi, L. H.; Zhou, W. H.; Wang, H. Y.; Dong, S. J. Electroanalysis2008,20,996.(f) Petit, C.; Bandosz, T. J. J. Phys. Chem. C.2009,113,3800.(f) Yang, F. C.;Wu, K. H.; Lin, W. P.; Hu, M. K. Microporous Mesoporous Mat.2009,118,467.(g) Müller, A.; Pope, M. T.; Todea, A. M.; Bogge, H.; vanSlageren, J.; Dressel, M.; Gouzerh, P.; Thouvenot, R.; Tsukerblat, B.; Bell, A.Angew. Chem. Int. Ed.2007,46,4477.(h) Nisar, A.; Xu, X. X.; Shen, S. L.; Hu, S.;Wang, X. Adv. Funct. Mater.2009,19,860.(i) Thiel, J.; Ritchie, C.; Streb, C.;Long, D. L.; Cronin, L. J. Am. Chem. Soc.2009,131,4180.
    [63](a)王恩波等,多金属氧簇化学导论,化学工业出版社,2002.(b) Müller, A.;Peters, F.; Pope, M. T.; Gatteschi, D. Chem. Rev.1998,98,239.
    [64] Mezei, G.; C. Zaleski, M.; Pecoraro, V. L. Chem. Rev.2007,107,49335003.
    [65](a) Caneschi, A.; Cornia, A.; Lippard, S. J. Angew. Chem., Int. Ed. Engl.1995,34,467.(b) Taft, K. L.; Delfs, C. D.; Papaefthymou, G. C.; Foner, S.; Gatteschi, D.;Lippard, S. J. J. Am. Chem. Soc.1994,116,823.
    [66](a) King, P.; Stamatatos, T. C.; Abboud, K. A.; Christou, G. Angew. Chem. Int. Ed.2006,45,7379–7383.(b) Westin, L. G.; Kritikos, M.; Caneschi, A. Chem.Commun.2003,1012.
    [67](a)Kemmitt, T.; Al-Salim, N. I.; Gainsford, G. J. Eur. J. Inorg. Chem.1999,1847.(b) Waldmann, O.; Koch, R.; Schromm, S.; Schulein, J.; Muller, P.; Bernt, I.;Saalfrank, R. W.; Hampel, F.; Balthes, E. Inorg. Chem.2001,40,2986.
    [68](a) Ivanov, S. A.; Kozee, M. A.; Merrill, W. A.; Agarwal, S.; Dahl, L. F. J. Chem.Soc., Dalton Trans.2002,4105.(b) Yearwood, B.; Ghazi, S. U.; Heeg, M. J.;Richardson, N.; Oliver,J. P. Organometallics,2000,19,865.
    [69](a) Zhang, C.; Takada, S.; K lzer, M.; Matsumoto, T.; Tatsumi, K. Angew. Chem.Int. Ed.2006,45,3768–3772.(b) Jian, F.-F.; Jiao, K.; Li, Y.; P.-S.; Zhao, L. Lu,-D.Angew. Chem. Int. Ed.2003,42,5722–5724
    [70] Krebs, B.; Paulat, B. Adv. Inorg. Chem. Radiochem.1976,19,239-315
    [71](a) Müller, A.; Krichkemeyer, E.; Dillinger, S.; Bogge, H.; Plass, W.; Proust, A.;Dloczik, L.; Menke, C.; Meyer, J.; Rohlfing, R. Anorg. Allg. Chem.1994,620.599.(b) Müller, A.; Plass, W.; Krichkemeyer, E.; Dillinger, S.; Bogge, H.; Armatage, A.;Proust, A.; Beugholt, C.; Bergmann, U. Angew. Chem. Int. Ed.1994,33,849-851.
    [72] Müller, A.; Krickemeyer, E.; Meyer, J.; Bogge, H.; Peters, F.; Plass, W.; Diemann,E.; Dillinger, S.; Nonnenbruch, F.; Randerath, M.; Menke, C. Angew. Chem. Int. Ed.1995,34,2122.
    [73] Müller, A.; Krickemeyer, E.; B gge, H.; Schmidtmann, M.; Beugholt, C.; K gerler,P.; Lu, C. Angew. Chem. Int. Ed.1998,37,1220.
    [74] Shishido, S.; Ozeki, T. J. Am. Chem. Soc.2008,130,10588.
    [75] Imai, H.; Akutagawa, T.; Kudo, F.; Ito, M.; Toyoda,K.; Noro, S.; Cronin, L.;Nakamura, T. J. Am. Chem. Soc.2009,131,13578.
    [76](a)Roland, C.; André, T. Inorg. Chem.1985,24,4610.(b) Mal, S. S.; Kortz, U.Angew. Chem. Int. Ed.2005,44,3777.(c) Jabbour, D.; Keita, B.; Nadjo, L.; Kortz,U.; Mal, S. S. Electrochem. Commun.2005,7,841.(d) Alam, M. S.; Dremov, V.;Müller, P.; Postnikov, A. V.; Mal, S. S.; Hussain, F.; Kortz, U. Inorg. Chem.2006,45,2868.(e) Chen, L.; Hu, J.; Mal, S. S.; Kortz, U.; Jaensch, H.; Mathys, G.;Richards, R. M. Chem. Eur. J.2009,15,7490.(f) Sib, Sankar. Mal.; Michael, H.Dickman,; Ulrich, Kortz,; Ana, Maria. Todea.; Alice, Merca.; Hartmut, Bigge.;Thorsten, Glaser.; Achim, Müller.; Saritha, Nellutla.; Narpinder, Kaur.; Johan, van.Tol.; Naresh, S. Dalal.; Bineta, Keita.; Louis, Nadjo.; Chem. Eur. J.2008,14,1186.(g) Achim, Müller.; Michael, T. Pope.; Ana, Maria. Todea.; Hartmut, Bogge.; Joris,van. Slageren,; Martin, Dressel.; Pierre, Gouzerh.; Rene, Thouvenot.; Boris,Tsukerblat.; Aidan, Bell. Angew. Chem. Int. Ed.2007,46,4477.
    [77] Müller, A.; Peter, F.; Pope, M. T.; Gattesch, D. Chem.Rev.1998,98,239-272.
    [78](a)Sib, Sankar Mal; Nadeen H. Nsouli; Michael H. Dickman; Ulrich Kortz. DaltonTrans.,2007,2627.(b) Niu, J.; Chen, G.; Zhao, J.; Yu, C.; Ma, P.; Wang; J. Cryst.Growth Des.2010,10,4689.
    [79](a) You, J.-F.; Snyder, B. S.; Holm, R. H. J. Am. Chem. Soc.1988,110,6589.(b)You, J.-F.; Snyder, B. S.; Papaefthymiou, G. C.;R. H. Holm. J. Am. Chem. Soc.1990,112,1067.(c) You, J.-F.; Papaefthymiou, G. C.; Holm, R. H. J. Am. Chem.Soc.1992,114,2697.
    [1](a) Feng, P.; Bu, X.; Zheng, N. Acc. Chem. Res.2005,38,293–303(b) Zheng, N.;Bu, X.; Feng, P. Nature2003,426,428–432.(c) Zheng, N.; Bu, X.; Wang, B.; Feng,P. Science2002,298,2366–2369.(d) Li, H.; Laine, A.; O’Okeeffe, M.; Yaghi, O.M. Science1999,283,1145–1147.(e) Hsu, K. F.; Loo, S.; Guo, F.; Chen, W.; Dyck,J. S.; Uher, C.; Hogan, T.; Polychroniadis, E. K.; Kanatzidis, M. G. Science2004,303,818–821. Bu, X.; Zheng, N.; Feng, P. Chem. Eur. J.2004,10,3356–3362.(f)Li, H.; Eddaoudi, M.; Laine, A.; O’Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc.1999,121,6096–6097. and references therein.
    [2](a) Yaghi, O. M.; Sun, Z.; Richardson, D. A.; Groy, T. L. J. Am. Chem. Soc.1994,116,807–808.(a) Cahill, C. L.; Parise, J. B. Chem. Mater.1997,9,807–811.(b)Ahari, H.; Garcia, A.; Kirkby, S.; Ozin, G. A.; Young, D.; Lough, A. J. J. Chem.Soc., Dalton Trans.1998,2023–2027.(c) Tan, K.; Darovsky, A.; Parise, J. B. J. Am.Chem. Soc.1995,117,7039–7040.(d) Bowes, C. L.; Huynh, W. U.; Kirkby, S. J.;Malek, A.; Ozin, G. A.; Petrov, S.; Twardowski, M.; Young, D.; Bedard, R. L.;Broach, R. Chem. Mater.1996,8,2147–2152.
    [3](a) Ding, N,; Kanatzidis, M. G. Angew. Chem.2006,45,1397–1401.(b) Palchik, O.;Iyer, R. G.; Liao, J. H.; Kanatzidis, M. G. Inorg. Chem.2003,42,5052–5054.(c)Ding, N.; Chung, D.-Y.; Kanatzidis, M. G. Chem. Commun.2004,1170–1171.(d)Rangan, K. K.; Trikalitis, P. N.; Bakas, T.; Kanatzidis. M. G. Chem. Commun.2001,809–810.
    [4](a) Li, H.; Eddaoudi, M.; Laine, A.; O’Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc.1999,121,6096–6097.(b) Li, H.; Laine, A.; O’Okeeffe, M.; Yaghi, O. M. Science1999,283,1145–1147.(c) Li, H.; Kim, J.; Groy, T. L.; O'Keeffe, M.; Yaghi, O. M.J. Am. Chem. Soc.2001,123,4867–4868.(e) Li, H.; Kim, J.; O'Keeffe, M.; Yaghi,O. M. Angew. Chem. Int. Ed.2003,42,1819–1821.
    [5](a) Wang, C.; Li, Y.; Bu, X.; Zheng, N.; Zivkovic, O.; Yang, C. S.; Feng, P. J. Am.Chem. Soc.2001,123,11506–11507.(b) Bu, X.; Zheng, N.; Li, Y.; Feng, P. J. Am.Chem. Soc.2002,124,12646–12647.(c) Wang, C.; Bu, X.; Zheng, N.; Feng, P. J.Am. Chem. Soc.2002,124,10268–10269.(d) Bu, X.; Zheng, N.; Li, Y.; Feng, P. J.Am. Chem. Soc.2003,125,6024–6025.(e) Zheng, N.; Bu, X.; Feng, P. J. Am.Chem. Soc.2003,125,1138–1139.(f) Zheng, N.; Bu, X.; Feng, P. Nature2003,426,428–432.(g) Bu, X.; Zheng, N.; Wang, X.; Wang, B.; Feng, P. Angew. Chem.Int. Ed.2004,43,1502–1505.(h) Bu, X.; Zheng, N.; Feng, P. Chem. Eur. J.2004,10,3356–3362.(i) Zheng, N.; Bu, X.; Feng, P. Angew. Chem. Int. Ed.2004,43,4753–4755.(j) Feng, P.; Bu, X.; Zheng, N. Acc. Chem. Res.2005,38,293–303.(c)Zheng, N.; Bu, X.; Lu, H.; Chen, L.; Feng, P. J. Am. Chem. Soc.2005,127,14990–14991.(k) Wu, T.; Wang, X.; Bu, X.; Zhao, X.; Wang, L.; Feng, P. Angew.Chem. Int. Ed.2009,48,7204–7207.(l) Wang, L.; Wu, T,; Zuo, F.; X.; Zhao, Bu,X.; Wu, J.; Feng, P. J. Am. Chem. Soc.2010,132,3283–3285.(m) Wu, T.; Wang,L.; Bu, X.; Chau, V.; P. Feng, J. Am. Chem. Soc.2010,132,10823–10831.
    [6](a) Cahill, C. L.; Parise, J. B. Chem. Mater.1997,9,807–811.(b) Ahari, H.; Garcia,A.; Kirkby, S.; Ozin, G. A.; Young, D.; Lough, A. J. J. Chem. Soc., Dalton Trans.1998,2023–2027.(c) Tan, K.; Darovsky, A.; Parise, J. B. J. Am. Chem. Soc.1995,117,7039–7040.(d) Bowes, C. L.; Huynh,W. U.; Kirkby, S. J.; Malek, A.; Ozin, G.A.; Petrov, S.; Twardowski, M.; Young, D.; Bedard, R. L.; Broach, R. Chem. Mater.1996,8,2147–2152.
    [7](a) Vaqueiro, P.; Romero, M. L. J. Am. Chem. Soc.2008,130,9630–9631.(b)Vaqueiro, P.; Romero, M. L.; Rowan, B. C.; Richards, B. S. Chem. Eur. J.2010,16,4462–4465.(c) Vaqueiro, P. Dalton Trans.2010,5965–5972.(d) Vaqueiro, P.,Romero, M. L., Inorg. Chem.2009,48,810–812.(e) Vaqueiro, P., Romero, M. L.,Chem. Commun.2007,3282–3284.
    [8](a) Li, J.; Chen, Z.; Wang, R.-J.; Proserpio, D. M. Coord. Chem. Rev.1999,190-192,707.(b) Dehnen, S.; Melullis, M. Coord. Chem. Rev.2007,251,1259–1280.
    [9](a) Zhou, J.; Li, C.-Y.; Zhang, Y.; Dai, J. J. Coord. Chem.2009,253,1221–1247.(b)Zhou, J.; Zhang, Y.; Bian, G.-Q.; Li, C.-Y.; Chen, X.-X.; Dai, J.Cryst. Growth Des.2008,8,2235–2240.(c) Li, C.-Y.; Chen, X.-X.; Zhou, J.; Zhu, Q.-Y.; Lei, Z.-X.;Zhang, Y.; Dai, J. Inorg. Chem.2008,47,8586–8588.(d) Zhou, J.; Bian, G.-Q.;Zhang, Y.; Zhu, Q.-Y.; Li, C.-Y.; Dai, J. Inorg. Chem.2007,46,6347–6352.(e)Zhou, J.; Zhang, Y.; Bian, G.-Q.; Zhu, Q.-Y.; Li, C.-Y.; Dai, J. Cryst. Growth Des.2007,9,1889–1892.(f) Zhou, J.; Bian, G.-Q.; Dai, J.; Zhang, Y.; Tang, A.-B.; Zhu,Q.-Y. Inorg. Chem.2007,46,1541–1543.(g) Gu, X.-M.; Dai, J.; Jia, D.-X.; Zhang,Y.; Zhu, Q.-Y. Cryst. Growth Des.2005,5,1845–1848.
    [10](a) Cooper, E. R.; Andrews, C. D.; Wheatley, P. S.; Webb, P. B.; Wormald, P.;Morris, R. E. Nature2004,430,1012-1016.(b) Lin, Z.; Wragg, D. S.; Warren, J. E.;Morris, R. E. J. Am. Chem. Soc.2007,129,10334-10335.(c) Guloy, A. M.;Ramlau, R.; Tang, Z.; Schnelle, W.; Baitinger, M.; Grin, Y. Nature2006,443,320-323.
    [11](a) Zhang, Q.; Chung, I.; Jang, J. I.; Ketterson, J. B.; Kanatzidis, M. G. J. Am.Chem. Soc.2009,131,9896-9897.(b) Biswas, K.; Zhang, Q.; Chung, I.; Song,J.-H.; Androulakis, J.; Freeman, A. J.; Kanatzidis, M. G. J. Am. Chem. Soc.2010,132,14760-14762.(c) Li, J.-R.; Xie, Z.-L.; He, X.-W.; Li, L.-H.; Huang, X.-Y.Angew. Chem., Int. Ed.2011,50,11395-11399.(d) Biswas, K.; Rao, C. N. R.Chem.-Eur. J.2007,13,6123-6129.(e) Jiang, J.; Yu, S. H.; Yao, W. T.; Ge, H.;Zhang, G. Z. Chem.Mater.2005,17,6094-6107.(f) Jiang, Y.; Zhu, Y. J. J. Phys.Chem. B2005,109,4361-4364.(g) Lin, Y.; Dehnen, S. Inorg. Chem.2011,50,7913-7915.(h) Lin, Y.; Massa, W.; Dehnen. S. J. Am. Chem. Soc.2012,134,4497-4500.(i) Bu, X.; Zheng, N.; Wang, X.; Wang, B.; Feng, P. Angew. Chem., Int.Ed.2004,116,1528-1531.(11) Xiong, W.-W.; Li, J.-R.; Hu, B.; Tan, B.; Li, R.-F.;Huang. X.-Y. Chem. Sci.2012,3,1200-1204
    [12](a) Wu, T.; Khazhakyan, R.; Wang, L.; Bu, X.; Zheng, S.-T.; Chau, V.; P. Feng,Angew. Chem. Int. Ed.2011,50,2536–2539.(b) T. Wu, X. Bu, P. Liao, L. Wang,S.-T. Zheng, R. Ma, P. Feng, J. Am. Chem. Soc.2012,134,3619.
    [13] Lei, Z.-X.; Zhu, Q.-Y.; Zhang, M.-H.; Jiang, J.-B.; Zhang, Y.-P.; Dai, J. Inorg.Chem.2010,49,4385–4387.(b) Zhang, X.; Luo, W.; Zhang, Y.-P.; Jiang, J.-B.;Zhu, Q.-Y.; Dai, J. Inorg. Chem.2011,50,6972–6978.(c) Zhang, Y.-P.; Zhang, X.;Mu, W.-Q.; Luo, W.; Bian, G.-Q.; Zhu, Q.-Y.; Dai, J. Dalton Trans.2011,40,9746-9751.(d) Mu, W.-Q.; Zhu, Q.-Y.; You, L.-S.; Zhang, X;. Luo, W.; Bian, G.-Q.;Dai, J. Inorg. Chem.2012,51,1330–1335.
    [14] Sheldrick, G. M. SHELXS-97, Program for X-ray Crystal Structure Solution,G ttingen University, Germany1997.
    [15] Sheldrick, G. M. SHELXL-97, Program for X-ray Crystal Structure Refinement,G ttingen University, Germany1997.
    [16] Kiebach, R.; Warratz, R.; N ther, C.; Bensch, W. Z. Anorg. Allg.Chem.2009,988–994.
    [17] Hu, J.-S.; Shang, Y.-J.; Yao, X.-Q.; Qin, L.; Li, Z.-Y.; Guo, Z.-J. Zheng, H.-G.; Xue,Z.-L. CrystEngComm2010,10,2676–2684.
    [18](a) Fisher, M. F. Am. J. Phys.,1964,32,343–346;(b) Wendlandt, W. W.; Hecht, H.G. Reflectance Spectroscopy; Interscience Publishers: New York,1966.
    [1](a) Chen, J.; Liao, W.-S.; Chen, X.; Yang, T.; Wark, S. E.; Son, D. H.; Batteas, J. D.;Cremer, P. S. Nano,2009,3,173–180.(b) Chaves-O’Flynn, G. D.; Kent, A. D.;Stein, D. L. Phys. Rev. B2009,79,184421.(c) Zhu, F. Q.; Chern, G. W.;Tchernyshyov, O.; Zhu, X. C.; Zhu, J. G.; Chien,C. L. Phys. Rev. Lett.2006,96,027205.(f) Pauzauskie, P. J.; Sirbuly, D. J.; Yang, P. Phys. Rev. Lett.2006,96,143903-1–143903-4.(e) Zhang, T. Y.; Zhao, W.; Cao, J. C. Phys. Rev. B,2005,72,165310.(f) Baldea, I.; Gupta, A. K.; Cederbaum, L. S.; Moiseyev, N. Phys. Rev. B,2004,69,245311.
    [2](a) Zhang, Z. M.; Li, Y. G.; Yao, S.; Wang, E. B.; Wang, Y. H.; Clérac, R. Angew.Chem., Int. Ed.2009,48,1581-1584.(b) Yao, H. C.; Wang, J. J.; Ma, Y. S.;Waldmann, O.; Du, W. X.; Song, Y.; Li, Y. Z.; Zheng, L. M.; Decurtins S.; Xin, X.Q.Chem. Commun.,2006,1745-1747;(c) Stamatatos, T. C.; Christou, A. G.; Jones,C. M.; O’Callaghan, B. J.; Abboud, K. A.; O’Brien, T. A.; Christou, G. J. Am.Chem. Soc.2007,129,9840-9841.(d) Stamatatos, T. C.; Christou, A. G.; Mukherjee,S.; Poole, K. M.; Lampropoulos, C.; Abboud, K. A.; O’Brien, T. A.; Christou, G.Inorg. Chem.2008,47,9021-9034.(e) Shah, S. J.; Ramsey, C. M.; Heroux, K. J.;O’Brien J. R.;, DiPasquale, A. G.; Rheingold, A. L.; Barco E. del; Hendrickson, D.N. Inorg. Chem.,2008,47,6245;(f) Saalfrank, R. W.; Scheurer, A.; Prakash, R.;Heinemann, F. W.; Nakajima, T.; Hampel, F.; Leppin, R.; Pilawa, B.; Rupp H.;Muller, P. Inorg. Chem.,2007,46,1586;(e) King, P.; Stamatatos, T. C.; Abboud,K. A.; Christou, G. Angew. Chem. Int. Ed.2006,45,7379–7383and referencesthere in.
    [3](a) Fenske, D.; Fischer, A. Angew. Chem., Int. Ed.,1995,34,307-309.(b) Jian, F.-F.;Jiao, K.; Li, Y.; Zhao, P.-S.; Lu, L.-D.Angew. Chem., Int. Ed.,2003,42,5722-5724.(c) Woodward, P.; Dahl, L. F.; Abel, E. W.; Crosse, B. C. J. Am. Chem. Soc.,1965,87,5251-5253.(d) Bettenhausen, M.; Fenske, D. Z. Anorg. Allg. Chem.1999,625,13-14.
    [4](a) Yamase, T.; Yano, Y.; Ishikawa, E. Langmuir2005,21,7823-7832.(b) Müller, A.;Krichemeyer, E.; B gge, H.; Schmidtmann, M.; Beugholt, C.; K¨ogerler P.;Lu, C. Angew. Chem., Int. Ed.,1998,37,1220-1223;(b) Shishido S.; Ozeki, T. J.Am. Chem. Soc.,2008,130,10588.(c) Botar, B.; K gerler, P.; Hill, C. L. J. Am.Chem. Soc.2006,128,5336-5337.
    [5](a) You, J.-F.; Holm, R. H. Inorg. Chem.1991,30,1431-1433.(b) You, J.-F.;Papaefthymiou, G. C.; Holm, R. H. J. Am. Chem. Soc.1992,114,2697-2710.(c)You, J.-F.; Snyder, B. S.; Holm, R. H. J. Am. Chem. Soc.1988,110,6589-6591.
    [6](a) Zheng, N.; Bu, X.; Wang, B.; Feng, P. Science2002,298,2366–2369.(b) Zheng,N.; Bu, X.; Feng, P. Angew. Chem. Int. Ed.2004,43,4753–4755.(c) Feng, P.; Bu,X.; Zheng, N. Acc. Chem. Res.2005,38,293–303.(d) Wu, T.; Wang, X.; Bu, X.;Zhao, X.; Wang, L.; Feng, P. Angew. Chem.2009,121,7340–7343.(e) Wang, L.;Wu, T,; Zuo, F.; X.; Zhao, Bu, X.; Wu, J.; Feng, P. J. Am. Chem. Soc.2010,132,3283–3285.(f) Li, H.; Laine, A.; O’Okeeffe, M.; Yaghi, O. M. Science1999,283,1145–1147.(g) Li, H.; Kim, J.; O'Keeffe, M.; Yaghi, O. M. Angew. Chem. Int. Ed.2003,42,1819–1821.(h) Ding, N,; Kanatzidis, M. G. Angew. Chem.2006,45,1397–1401.(i) Vaqueiro, P.; Romero, M. L. J. Am. Chem. Soc.2008,130,9630–9631and references therein.
    [7](a) Wang, C.; Haushalter, R. C. Inorg.Chem.,1997,36,3806.(b) Li, J.; Chen, Z.;Emge, T. J.; Proserpio, D. M. Inorg.Chem.,1997,36,1437.(c) Zhou, J.; Zhang, Y.;Bian, G.-Q.; Zhu, Q.-Y.; Li, C.-Y.; Dai, J. Cryst. Growth&Design,2007,7,1889.(d) Li, C.-Y.; Chen, X.-X.; Zhou, J.; Zhu, Q.-Y.; Lei, Z.-X.; Zhang, Y.; Dai, J.Inorg.Chem.2008,47,8586.
    [8] Saalfrank, R. W.; Deutscher, C.; Maid, H.; Ako, A. M.; Sperner, S.; Nakajima, T.,Bauer, W.; Hampel, F.; Hess, B. A.;Van, N. J. R.; Hommes, E.; Puchta, R.;Heinemann, F. W. Chemistry-A European Journal,2004,10,1899..
    [9](a) Saňudo, E. C.; Muryn, C. A.; Helliwell, M. A.; Timco, G. A.; Wernsdorfer, W.;Winpenny, R. E. P. Chem. Commun.2007,801.(b) H nisch, C.; Stahl, S. Angew.Chem.2006,45,3202.
    [10](a) Zhou, J.; Dai, J.; Bian, G.-Q.; Li, C.-Y. Coord. Chem. Rev.2009,253,1221–1247.(b) Lei, Z.-X.; Zhu, Q.-Y.; Zhang, M.-H.; Jiang, J.-B.; Zhang, Y.-P.;Dai, J. Inorg. Chem.2010,49,353–355.(c) Lei, Z.-X.; Zhu, Q.-Y.; Zhang, X.; Luo,W.; Mu, W.-Q.; Dai, J. Inorg. Chem.2010,49,4385–4387.(d) Wang, Y.-H.; Zhang,M.-H.; Yan, Y.-M.; Bian, G.-Q.; Zhu, Q.-Y.; Dai, J. Inorg. Chem.2010,49,9731–9733.
    [11] Sheldrick, G. M. SHELXS-97, Program for X-ray Crystal Structure Solution,G ttingen University, Germany1997.
    [12] Sheldrick, G. M. SHELXL-97, Program for X-ray Crystal Structure Refinement,G ttingen University, Germany1997.
    [13](a) Fisher, M. F. Am. J. Phys.,1964,32,343–346;(b) Wendlandt, W. W.; Hecht, H.G. Reflectance Spectroscopy; Interscience Publishers: New York,1966.
    [14] HYPERCHEM, version7.5; Hypercube Inv.: Gainsville, FL,2005;326014256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700