用户名: 密码: 验证码:
基于新型纳米结构超级电容器材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类对化石能源的过渡依赖和消耗造成了严重的环境问题和能源危机,为实现可持续发展的能源的开发和利用,新能源和新型能源装置研究引起广泛关注。作为一种能量存储装置,超级电容器具有非常高的功率密度、长循环寿命、充放电速度快、对环境无污染等特点。纳米材料的广泛研究极大地推动了超级电容器等先进储能技术的蓬勃发展。然而,超级电容器材料的导电性能差、局部分散不均匀、与电解液接触面性能不稳定等纳米材料领域常见的问题同样关系着超级电容器基本性能。本论文针对超级电容器中出现的这些问题,以提高材料电导率和构建多孔结构提高比表面为出发点,进行电极材料的设计、合成与性能研究。经过材料的复合和结构的调控,包括过渡金属氧化物、导电聚合物与多孔金属之间的复合和一维线状结构、二维纳米多孔结构和三维大孔结构的设计制备,进一步改善超级电容器材料的电容性能。论文的宗旨是调控材料的导电性和导离子的性能,进而可以有效调节超级电容器的性能。本论文介绍的新型结构材料有望在超级电容器上得到应用,同时我们希望文中所述材料可应用于其他领域并对其他材料的结构调控具有指导意义。本论文主要研究内容如下:
     1、MnO2/PANI复合材料的控制合成及其电化学电容性能研究
     我们通过水溶液/有机溶液界面合成的方法,可控合成了一系列MnO2/PANI复合材料。该材料具有一维连续结构,通过改变溶液的PH值,可以有效的调控材料微观结构和复合材料中MnO2/PANI的含量比例。本工作研究了实验制备复合材料的结构特征和其形成机理。实验结果表明中间产物MnO2在产物结构的形成过程中起着重要的作用。工作还研究了该复合材料在超级电容器方面的性能。结果表明在合适pH下合成的MnO2/PANI复合材料具有最高的电容值207Fg-1,比实验制备的纯MnO2和PANI都要大,且表现出较好的稳定性。该复合材料高的比电容可以归因于PANI的链接和导电剂作用,而具有较好的稳定性,则是因为均匀分散的MnO2具有聚苯胺外壳的保护,从而减弱了在充放电过程中的颗粒团聚。
     2、具有高能量和功率密度的全固态薄膜超级电容器的研究
     便携式和微型化电子器件的快速发展对与之相匹配的能源转换或存储装置的设计和制造提出了新的挑战。本工作设计制备了纳米多孔金属(纳米多孔金NPG)和导电聚合物(聚吡咯PPy)复合薄膜材料(NPG/PPy), PPy均匀的包覆在NPG的表面,具有典型的金属/导电聚合物核壳结构。双连续的开孔结构,具有优良的导电性和连续的纳米孔道,提高了材料的导离子性能,继而提高了材料的利用效率。该材料用于制备一种超薄的柔性固态超级电容器,此电容器是基于一种固态电解液组装而成,NPG作为衬底材料,可提供高的比表面积和优良的导电性,同时可作为集流器,而固态电解液作为电解液和隔膜,简化了电容器组装过程。该固态柔性超级电容器具有较高的功率和能量密度296kW kg-1和27Wh kg"1,高于之前的所有关于PPy的报道,且具有良好的充放电循环特性和柔韧性,有望在便携式电子器件上得到应用。
     3、NPG/金属氧化物薄膜复合材料及其电化学电容性能的研究
     我们通过一种简单的电化学方法制备了纳米多孔金(NPG)/过渡金属氧化物(Cox、RuO2)复合材料,氧化物材料具有连续的层状结构并与NPG形成三明治夹心结构。该材料以NPG为结构支撑和集电器,而过渡金属氧化物提供高的比电容,从而提高材料整体电容。实验结果表明,氧化钴的体积和质量比电容分别达到了598F cm-3和563Fg-1,并且该材料表现出优异的稳定性。
     虽然许多结构材料可以得到高的质量比电容,但是它们的活性材料载量较低,限制了表观电容的提高。比起质量比电容许多应用领域如小尺寸电子产品或传统能量储存装置显然更在意表观电容量。本工作利用独立支撑的NPG电极作为衬底材料,制备NPG/RuO2复合材料,以期获得较大的表观电容。NPG可同时作为集流器和结构支撑材料,Ru02作为电容活性材料。实验结果表明Ru02的电容高达520Fg-1,NPG/RuO2复合材料的表观电容达到了1.5Fcm-2,并且具有优良的倍率性能和较好的稳定性。
     4、MnOx纳米线/大孔金属复合材料及其电化学电容性能研究
     超级电容器因具有高的功率密度、长循环寿命和良好的安全性能被广泛应用于混合电动车能源系统、数字远程通信系统、不间断电源、脉冲激光技术等领域。比起质量比电容许多应用领域更在意高的表观电容量。本工作通过水热合成的方法制备了MnOx纳米线/大孔金属复合材料,该材料使用泡沫镍的网状结构为氧化锰纳米线提供良好的导电性,开孔的三维结构可以提供畅通的电解液通道,为离子传输提供方便。相互缠绕堆积的氧化锰纳米线首先依靠相互之间的联系提供赝电容,继而通过三维网状结构基底完成充放电过程。实验结果表明,MnOx质量比电容为576Fg-1,而本实验所得泡沫镍/MnOx样品的表观电容值达到了7.6Fcm-2,且表现出较好的稳定性。
The extensive dependence on fossil fuels has caused significant environmental pollution as well as energy resource crisis. Sustainable exploration and use of energy source depend on discovery of new energy source and development of novel energy devices. As a kind of energy storage device, supercapacitors have many advantages over conventional batteries:high power density, long cycling stability, fast charge-discharge rate and being environment friendly. Wide research of nanoscale materials has promoted flourish of advanced energy storage technology. However, common problems involved with nanomaterials such as bad structural continuity, conglomeration and structural instability have restricted their application in supercapacitors. This work introduces strategies based on design of porous materials with high area aiming at improve the performance of the supercapacitors. We have conducted the design, synthesis and performance research of the electrode materials containing:the composite of porous metal materials with transition metal oxide and conducting polymers, one dimensional structural composite and macroporous metal/metal oxide hybrid materials. We demonstrate the above composite materials have wide prospect for application in the supercapacitors as well as other similar fields.
     1. Controllable synthesis of MnO2/polyaniline nanocomposite and its electrochemical capacitive property.
     Polyaniline (PANI) and MnO2/PANI composites are simply and controllably fabricated by one-step interfacial polymerization at various pH. The morphologies and components of MnO2/PANI composites are modulated by changing pH of the solution. Formation procedure and capacitive property of the products are investigated by XRD,FTIR, TEM and electrochemical techniques. We demonstrate that MnO2as an intermedia material plays a key role in the formation of sample structures. The MnO2/PANI composites exhibit good cycling stability as well as a high capacitance close to207F g-1. Samples fabricated with the facile one-step method are also expected to be adopted in other field such as catalysis, lithium ion battery and biosensor.
     2. Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities.
     Fast development of portable and miniature electrics desires compatible energy conversion and storage devices. A flexible NPG-PPy composite film was fabricated using a convenient dealloying and electro-polymerization process. The bicontinuous pore/ligament structure provides high electric conductivity as well as improved ionic transferring channels, which increases the efficiency of the active materials. All-solid-state supercapacitors were designed with NPG-PPy films as both electrodes and PVA as both the separator and electrolyte. The symmetric supercapacitor thus-produced offers large specific capacitance, power density and energy density (296kW kg-1and27Wh kg-1), and exhibits almost identical performance at various curvatures, which suggests its wide application prospect in powering wearable/miniaturized electronics.
     3. Electrochemical capacitive behavior of metal oxide and nanoporous gold hybrid structure.
     Cobalt oxide and nanoporous gold (NPG) hybrid films are fabricated by a facile electrochemical technique. Structural morphology, composition and capacitive behavior of the sample have been investigated. The composite film has a sandwich like structure containing NPG film as the inside layer and cobalt oxide films as outside layers. NPG, as a3dimensional interconnected skeleton, can afford electron and ion transfer channels thus improve the efficiency of cobalt oxide. The hybrid films provide high volumetric (598F cm-3) and gravimetric capacitances (563F g-1), additionally exhibit good stibility.
     To improve the apparent capacitance of the supercapacitors, we chose the ideal capacitive material RuO2as the active electrode material. NPG/RuO2composites are synthesized by CV method using NPG as the substrate and the corrent collectors. The gravimetric capacitance of RuO2achieves502F g-1, and the volumetric capacitance of the composite is close to1.5F g-1.
     4. MnOx Nanowires aligned on the macroporous structures with high volumetric electrochemical capacitance.
     Because of their high power densities, long lifespan and safe operation, supercapacitors have been used in the areas of hybrid vehicles, digital telecommunication systems, uninterrupted backup energy systems and pulsed laser techniques. The fast development of electronic techniques such as portable electronics or stationary energy storage devices poses new challenges for the design and fabrication of compatible energy devices with large amount of energy stored per area as well as energy per mass. For this work, we propose a facile hydrothermal synthesis method for MnOx nanowires aligned on Ni foam. As prepared porous nanostructures can provide fast electronic transferring channels and reduce ionic diffusion distance with enlarged electrode/electrolyte contact area. The entangled MnOx nanowires provide high pseudocapacitance, and the porous Ni foam serves as substrate and current collectors. The capacitance per mass and area are estimated as high as576F g-1and7.6F cm-2.
引文
[1]吴宇平,袁翔云,董超,段冀渊,锂离子电池-应用与实践,化学工业出版社,2011.
    [2]王继强,化学与物理电源,国防工业出版社,2008.
    [3]袁国辉,电化学电容器,化学工业出版社,2005.
    [4]邓梅根,电化学电容器电极材料研究,中国科学技术大学出版社,2009.
    [5]阿伦.J.巴德,拉里.R.福克纳,电化学方法-原理和应用,化学工业出版社,2005.
    [6]周仲柏,陈永言,电极过程动力学基础教程,武汉大学出版社,1989.
    [7]C. Arvizzi, M. Mastragotiono, Double layer capacitor's applications. Electrochim Acta.1996,41,21-26.
    [8]E. Frackowiak, F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon 2001,39,937-950.
    [9]D. Qu, H. Shi, Studies of the activated carbons used in double-layer supercapacitors. J. Power Sources 2002,109,403-411.
    [10]J. Lee, S. Yoons, T. Hyeon, Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors. Chem. Commun.1999,21, 2177-2178.
    [11]J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006,313,1760-1763.
    [12]S. Shiraishi, H. Kurihara, A. Oya, Preparation and electric double layer capacitance of mesoporous carbon. Carbon Science 2001,1,133-137.
    [13]T. Momma, Electrochemical modification of active carbon fiber electrode and its application to double-layer capacitor. J. Power Source 1996, 60,249-253.
    [14]M. Ishikawa, A. Sakamoto, M. Morita, Effect of treatment of activated carbon fiber cloth electrodes with cold plasma upon performance of electric double-layer capacitors. J. Power Sources 1996,60,233-238.
    [15]S. Iijima, Helical microtubules of graphitic carbon. Nature 1991,354,56-58.
    [16]S. W. Lee, B-S. Kim, S. Chen, Y. Shao-Horn, Paula T. Hammond, Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications. J. Am. Chem. Soc.2009,131,671-679.
    [17]A. Izadi-Najafabadi, S. Yasuda, K. Kobashi, T. Yamada, D. N. Futaba, H. Hatori, M. Yumura, S. Iijima, and K. Hata, Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density. Adv. Mater.2010,22, E235-E241.
    [18]T. Bordjiba, M. Mohamedi, L. H. Dao, New class of carbon-nanotube aerogel electrodes for electrochemical power sources. Adv. Mater.2008,20,815-819.
    [19]C. Niu, E. K. Sichel, R. Hoch, D. Moy, H. Tennent, High power electrochemical capacitors based on carbon nanotube Electrodes. Appl. Phys. Lett.1997,70, 1480-1482.
    [20]C. Niu, E. K. Sechel, R. Hoch, High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett.1997,70,1480.
    [21]J. R. McDonough, J. W. Choi, Y. Yang, F. La Mantia, Y. Zhang, Y. Cui, Carbon nanofiber supercapacitors with large areal capacitances. Appl. Phys. Lett.2009, 95,243109.
    [22]E. Frackowiak, Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys.2007,9,1774-1785.
    [23]K. H. An, W. S. Kim, Y. S. Park, Y. C. Choi, S. M. Lee, D. C. Chung, D. J. Bae, S. C. Lim, Y. H. Lee, Supercapacitors using single-walled carbon nanotube electrodes. Adv. Mater.2001,13,497-500.
    [24]E. Frackowiak, K. Jurewicz, S. Delpeux, Nanotubular materials for supercapcitors. J. Power Sources 2001,97,822-825.
    [25]E. Frackowiak, K. Metenier, V. Bertagna, Supercapacitor electrodes from multiwalled carbon nanotubes. Appl. Phys. Lett.2000,77,2421-2423.
    [26]V. Gupta, N. Miura, Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors. Electrochim. Acta 2006,52, 1721-1726.
    [27]K. Jurewicz, S. Delpeux, V. Bertagna, F. Beguin, E. Frackowiak, Supercapacitors from nanotubes/polypyrrole composites. Chem. Phys. Lett.2001,347,36-40.
    [28]Q. F. Xiao, X. Zhou, The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor. Electrochim. Acta 2003,48,575-580.
    [29]L. L. Zhang, X. S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc.2009,38,2520-2531.
    [30]Z. Sun, Z. Liu, B. Han, S. Miao, J. Du, Z. Miao, Microstructural and electrochemical characterization of RuO2/CNT composites synthesized in supercritical diethyl amine. Carbon 2006,44,888-893.
    [31]Z. Chen, V. Augustyn, J. Wen, Y. Zhang, M. Shen, B. Dunn, Y. Lu, High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv. Mater.2011,23,791-795.
    [32]F. Teng, S. Santhanagopalan, Y. Wang, D. D. Meng, In-situ hydrothermal synthesis of three-dimensional MnO2-CNT nanocomposites and their electrochemical properties. J. Alloys Compd.2010,499,259-264.
    [33]R. W. Pekala, Organic aerogels from the polycindensation of resorcinol with formaldehyde. Electrochem. Soc.1993,140,446-451.
    [34]W. C. Li, G. Reichenauer, J. Friche, Carbon aerogels derived from cresol-resorcinol supercapacitors. Carbon 2002,40,2955-2959.
    [35]蒋伟阳,孙颖,唐永建,陈志梅.碳气凝胶作为双电层电容器电极材料的研究.高电压技术1997,23,95-96.
    [36]S. T. Mayer, R. W. Pekala, The aerocapacitor:an electrochemical double-layer energy storage device. Electrochem. Soc.1993,140,446-451.
    [37]C. Schmitt, H. Probstle, J. Fricke, Carbon cloth-reinforced and activated carbon aerogel films for supercapacitors. J. Non-Cryst. Solids 2001,285,277-282.
    [38]H. Tamon, H. Ishizaka, T. Yamamoto, Influence of freeze-drying conditions on the mesoporosity of organ gels as carbon precursors. Carbon 2000,38, 1099-1105.
    [39]C. Liu, Z. Yu, D. Neff, A. Zhamu, B. Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett.2010,10,4863-4868.
    [40]X. Du, P. Guo, H. Song, X. Chen, Graphene nanosheets as electrode material for electric double-layer capacitors. Electrochim. Acta 2010,55,4812-4819.
    [41]S. Biswas, L. T. Drzal, Multilayered nano-architecture of variable sized graphene nanosheets for enhanced supercapacitor electrode performance. ACS Appl. Mater. Interfaces 2010,2,2293-300.
    [42]H. M. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang, J. W. Choi, Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett.2011,11, 2472-2477
    [43]Y. Zhu, S. Murali, R. S. Ruoff, Carbon-based supercapacitors produced by activation of graphene. Science 2011,332,1537-1541.
    [44]M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Graphene-based ultracapacitors. Nano Lett.2008,8,3498-3502.
    [45]Sheng Chen, Junwu Zhu, Xiaodong Wu, Qiaofeng Han, and Xin Wang, Graphene Oxide-MnO2 Nanocomposites for Supercapacitors. ACS Nano 2010,4, 2822-2830.
    [46]W. Zhou, J. Liu, T. Yu, Fabrication of Co3O4-reduced graphene oxide scrolls for high-performance supercapacitor electrodes. Phys. Chem. Chem. Phys.2011,13, 14462-14465.
    [47]Z. Wu, W. Ren, D. W. Wang, F. Li, B. Liu, H. M. Cheng, High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 2010,4,5835-5842.
    [48]H. Kim, S. W. Kim, Y. U. Park, H. Gwon, D. H. Seo, Y. Kim, K. Kang, SnO2/graphene composite with high lithium storage capability for lithium rechargeable batteries. Nano Res.2010,3,813-821.
    [49]D. Wang, J. Liu, I. A. Aksay, Ternary self-assembly of ordered metal oxide graphene nanocomposites for electrochemical energy storage. ACS Nano,2010,4, 1587-1595.
    [50]S. Stankovich, D. A. Dikin, G. H. B. Dommett, et al., Graphene-based composite materials. Nature 2006,442,282-286.
    [51]Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano,2010,4,1963-1970.
    [52]J. Xu, K. Wang, S. Z. Zu, B. H. Han, Z. Wei, Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano.2010,4,5019-5026.
    [53]H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, Effect of graphene oxide on the properties of its composite with polyaniline. ACS Appl. Mater. Interfaces 2010,2, 821-828.
    [54]S. Biswas, L. T. Drzal, Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chem. Mater.2010,22,5667-5671.
    [55]A. V. Murugan, T. Muraliganth, A. Manthiram, Rapid, facile microwave solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage. Chem. Mater.2009,21,5004-5006.
    [56]Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, J. Feng, M. Zhang, W. Qian, and F. Wei, A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater.2010,22,3723-3728.
    [57]P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nature Mater. 2008,7,845-854.
    [58]Y. S. Hu, Y. G. Guo, W. Sigle, S. Hore, P. Balaya, J. Maier, Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity. Nature Mater.2006,5,713-717.
    [59]T. Brezesinski, J. Wang, S. H. Tolbert, B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nature Mater.2010,9,146-151.
    [60]X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nature Nanotech.2011,6, 232-236.
    [61]X. Lang, L. Zhang, T. Fujita, Y. Ding, M. Chen, Three-dimensional bicontinuous nanoporous Au/polyaniline hybrid films for high-performance electrochemical supercapacitors. J. Power Sources 2012,197,325-329.
    [62]X. Liu, P. G. Pickup, Ru oxide supercapacitors with high loadings and high power and energy densities. J. Power Sources 2008,176,410-416.
    [63]W. Sugimoto, H. Iwata, K. Yokoshima, Y. Murakami, Y. Takasu, Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy:the origin of large capacitance. J. Phys. Chem. B 2005, 109,7330-7338.
    [64]C. C. Hu, K. H. Chang, M. C. Lin, Y. T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett.2006,6,2690-2695.
    [65]J. W. Long, K. E. Swider, C. I. Merzbacher, D. R. Rolison, Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids:the nature of capacitance in nanostructured materials. Langmuir,1999,15,780-785.
    [66]C. C. Hu, W. C. Chen, Effects of substrates on the capacitive performance of RuOxnH2O and activated carbon-RuOx electrodes for supercapacitors. Electrochim. Acta 2004,49,3469-3477.
    [67]H. Zhou, Z. Zhou, Preparation, structure and electrochemical performances of nanosized cathode active material Ni(OH)2. Solid State Ionics 2005,176, 1909-1914.
    [68]Y. Zhang, Z. Zhou, J. Yan, Electrochemical behaviour of Ni(OH)2 ultrafine powder. J. Power Sources 1998,75,283-287.
    [69]W. K. Hu, X. P. Gao, D. Noreus, T. Burchardt, N. K. Nakstad, Evaluation of nano-crystal sized α-nickel hydroxide as an electrode material for alkaline rechargeable cells. J. Power Sources 2006,160,704-710.
    [70]X. Guan, J. Deng, Preparation and electrochemical performance of nano-scale nickel hydroxide with different shapes. Mater. Lett.2007,61,621-625.
    [71]M. Toupin, T. Brousse, D. Blanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater.2004,16,3184-3190.
    [72]X. Chen, X. Li, Y. Jiang, C.u Shi, X. Li, Rational synthesis of α-MnO2 and γ-Mn2O3 nanowires with the electrochemical characterization of α-MnO2 nanowires for supercapacitor. Solid State Commun.2005,136,94-96.
    [73]D. P. Dubal, D. S. Dhawale, R. R. Salunkhe, V. J. Fulari, C. D. Lokhande, Chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application. J. Alloys Compd.2010,497,166-170.
    [74]D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, S.M. Pawar, C.D. Lokhande, A novel chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application. Appl. Surf. Sci.2010,256,4411-4416.
    [75]C. C. Hu, T. W. Tsou, Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition. Electrochem. Commun.2002,4,105-109.
    [76]K. R. Prasad, N. Miura, Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors. Electrochem. Commun.2004,6, 1004-1008.
    [77]X. Xia, J. Tu, Y. Mai, X. Wang, C. Gu, X. Zhao, Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance. J. Mater. Chem.2011,21,9319-9325.
    [78]R. Tummala, R. K. Guduru, P. S. Mohanty, Nanostructured Co3O4 electrodes for supercapacitor applications from plasma spray technique. J. Power Sources 2012, 209,44-51.
    [79]F. Cao, G. X. Pan, P. S. Tang, H. F. Chen, Hydrothermal-synthesized Co(OH)2 nanocone arrays for supercapacitor application. J. Power Sources 2012,216, 395-399.
    [80]J. Rajeswari, P. S. Kishore, B. Viswanathan, T. K. Varadarajan, One-dimensional MoO2 nanorods for supercapacitor applications. Electrochem. Commun.2009,11, 572-575.
    [81]J. S. Bonso, A. Rahy, S. D. Perera, et al., Exfoliated graphite nanoplatelets-V2O5 nanotube composite electrodes for supercapacitors. J. Power Sources 2012,203, 227-232.
    [82]K. Jeyalakshmi, S. Vijayakumar, S. Nagamuthu, G. Muralidharan,. Effect of annealing temperature on the supercapacitor behaviour of β-V2O5 thin films. Mater. Res. Bull.2013,48,760-766.
    [83]J. M. Luo, B. Gao, X. G. Zhang, High capacitive performance of nanostructured Mn-Ni-Co oxide composites for supercapacitor. Mater. Res. Bull.2008,43, 1119-1125.
    [84]M. T. Lee, J. K. Chang, Y. T. Hsieh, W. T. Tsai, Annealed Mn-Fe binary oxides for supercapacitor applications. J. Power Sources 2008,185,1550-1556.
    [85]C. Guan, X. Li, Z. Wang, X. Cao, C. Soci, H. Zhang, H. J. Fan, Nanoporous walls on macroporous foam:rational design of electrodes to push areal pseudocapacitance. Adv. Mater.2012,24,4186-4190.
    [86]F. Tao, Y. Shen, Y. Liang, H. Li, Synthesis and characterization of Co(OH)2/TiO2 nanotube composites as supercapacitor materials. J. Solid State Electrochem. 2007,11,853-858.
    [87]H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi, Z. Gu, Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett.2008,8,2664-2668.
    [88]L. Yuan, X. H. Lu, Z. L. Wang, Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano,2012,6, 656-661.
    [89]L. Bao. J. Zang, X. Li, Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Nano Lett.2011.11,1215-1220.
    [90]S. H. Mujawar, S. B. Ambade, T. Battumur, R. B. Ambade, S. H. Lee, Electropolymerization of polyaniline on titanium oxide nanotubes for supercapacitor application. Electrochim. Acta 2011,56,4462-4466.
    [91]M. D. Ingram, H. Staesche, K. S. Ryder,'Activated' polypyrrole electrodes for high-power supercapacitor applications. Solid State Ionics 2004,169,51-57.
    [92]S. I. Cho, S. B. Lee, Fast electrochemistry of conductive polymer nanotubes: synthesis, mechanism and application. Acc. Chem. Res.2008,41,699-707.
    [93]L. Nyholm, G. Nystrom, A. Mihranyan, M. Str(?)mme, Toward flexible polymer and paper-based energy storage devices. Adv. Mater.2011,23,3751-3769.
    [94]F. Fusalba, D. Blanger, Electropolymerization of polypyrrole and polyaniline-polypyrrole from organic acidic medium. J. Phys. Chem. B 1999,103, 9044-9054.
    [95]C. Arbizzani, M. Mastragostino, L. Meneghello, Polymer-based redox supercapacitors:a comparative study. Electrochim. Acta 1996,41,21-26.
    [96]C. Downs, J. Nugent, P. M. Ajayan, D. J. Duquette, K. S. V. Santhanam, Efficient polymerization of aniline at carbon nanotube electrodes. Adv. Mater.1999,11, 1028-1031.
    [97]M. Hughes, G. Z. Chen, M. S. P. Shaffer, D. J. Fray, A. H. Windle, Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chem. Mater.2002,14,1610-1613.
    [98]L. Sun, X. Liu, K. K. T. Lau, L.g Chen, W. Gu, Electrodeposited hybrid films of polyaniline and manganese oxide in nanofibrous structures for electrochemical supercapacitor. Electrochim. Acta 2008,53,3036-3042.
    [99]M. Hughes, M. S. P. Shaffer, A. C. Renouf, C. Singh, G. Z. Chen, D. J. Fray, A. H. Windle, Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole. Adv. Mater.2002,14, 382-385.
    [100]Z. Hu, Y. Xie, Y. Wang, L. Mo, Y. Yang, Z. Zhang, Polyaniline/SnO2 nanocomposite for supercapacitor applications. Mater. Chem. Phys.2009,114, 990-995.
    [101]J. Zhang, X. S. Zhao, On the configuration of supercapacitors for maximizing electrochemical performance. ChemSusChem 2012,5,818-841.
    [102]Y. Wang, H. Li, Y. Xia, Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv. Mater.2006,18,2619-2623.
    [103]G. Yang, C.g Xu, H. Li, Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chem. Commun.2008,6537-6539.
    [104]M. Kaempgen, C. K. Chan, J. Ma, Y. Cui, G. Gruner, Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett.2009,9, 1872-1876.
    [105]L. B. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L. F. Cui, Y. Cui, Highly conductive paper for energy-storage devices. Proc. Natl. Acad. Sci.2009, 106,21490.
    [106]L. B.Hu, M. Pasta, F. La Mantia, L. F. Cui, S. Jeong, H. D. Deshazer, J. W. Choi, S. M. Han, Y. Cui, Stretchable, porous, and conductive energy textiles. Nano Lett.2010,10,708-714.
    [107]C. Z. Meng, C. H. Liu, L. Z. Chen, C. H. Hu, S. S. Fan, Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett.2010,10, 4025-4031.
    [108]Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 2010,4,1963-1970.
    [109]J. H. Kim, S. H. Kang, K. Zhu, J. Y Kim, N. R. Neale, A. J. Frank, Ni-NiO core-shell inverse opal electrodes for supercapacitors. Chem. Commun.2011,47, 5214-5216.
    [110]Z. Lu, Z. Chang, W. Z. X. Sun, Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chem. Commun.2011,47,9651-9653.
    [1]K. Wang, J. Huang, Z. Wei, Conducting polyaniline nanowire arrays for high performance supercapacitors. J. Phys. Chem. C 2010,114,8062-8067.
    [2]K. Zhang, L. L. Zhang, X. S. Zhao, J. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater.2010,22,1392-1401.
    [3]J. Huang, S. Virji, B. H. Weiller, R. B. Kaner, Polyaniline nanofibers:Facile synthesis and chemical sensors. J. Am. Chem. Soc.2003,125,314-315.
    [4]D. T. McQuade, A. E. Pullen, T. M. Swager, Conjugated polymer-based chemical sensors. Chem. Rev.2000,100,2537-2574.
    [5]D, Li, J. Huang, R. B. Kaner, Polyaniline nanofibers:A unique polymer nanostructure for versatile applications. Acc. Chem. Res.2009,42,135-145.
    [6]L. Athouel, F. Moser, R. Dugas, O. Crosnier, D. Belanger, T. Brousse, Variation of the MnO? birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte.J. Phys. Chem. C 2008, 112,7270-7277.
    [7]S. Devaraj, N. Munichandraiah, Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. C 2008,112, 4406-4417.
    [8]Q. T. Qu, P. Zhang, B. Wang, Y. H. Chen, S. Tian, Y. P. Wu, R. Holze, Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. J. Phys. Chem. C 2009,113, 14020-14027.
    [9]T. M. Benedetti, F. F. C. Bazito, E. A. Ponzio, R. M. Torresi, Electrostatic layer-by-layer deposition and electrochemical characterization of thin films composed of MnO2 nanoparticles in a room-temperature ionic liquid. Langmuir 2008,2,3602-3610.
    [10]C. Downs, J. Nugent, P. M. Ajayan, D. J. Duquette, K. S. V. Santhanam, Efficient polymerization of aniline at carbon nanotube electrodes. Adv. Mater.1999,11, 1028-1031.
    [11]J. W. Long, M. B. Sassin, A. E. Fischer, D. R. Rolison, Multifunctional MnO2-carbon nanoarchitectures exhibit battery and capacitor characteristics in alkaline electrolytes. J. Phys. Chem. C2009,113,17595-17598.
    [12]S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 2010,4,2822-2830.
    [13]A. K. Cuentas-Gallegos, P. Gomez-Romero, In-situ synthesis of polypyrrole-MnO2-x nanocomposite hybrids. J. New Mat. Electrochem. Systems 2005,8,181-188.
    [14]G. R. Li, Z. P. Feng, Y. N. Ou, D. Wu, R. Fu, Y. X. Tong, Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors. Langmuir 2010,26,2209-2213.
    [15]L. C. Wang, Y. M. Liu, M. Chen, Y. Cao, H. Y. He, K. N. Fan, MnO2 nanorod supported gold nanoparticles with enhanced activity for solvent-free aerobic alcohol oxidation. J. Phys. Chem. C 2008,112,6981-6987.
    [16]A. H. Gemeay, R. G. El-Sharkawy, I. A. Mansour, A. B. Zaki, Catalytic activity of polyaniline/MnO2 composites towards the oxidative decolorization of organic dyes. Appl. Catal. B:Environ.2008,80,106-115.
    [17]A. H. Gemeay, R. G. El-Sharkawy, I. A. Mansour, A. B. Zaki, Preparation and characterization of polyaniline/manganese dioxide composites and their catalytic activity. J. Colloid Interface Sci.2007,308,385-394.
    [18]S. I. A. Razak, A. L. Ahmad, S. H. S. Zein, A. R. Boccaccini, MnO2-filled multiwalled carbon nanotube/polyaniline nanocomposites with enhanced interfacial interaction and electronic properties. Scripta Mater.2009,61, 592-595.
    [19]F. J. Liu, One-step synthesis of MnO2 particles distributed polyaniline-poly(styrene-sulfonic acid). Synth. Met.2009,159,1896-1899.
    [20]M. Sathish, S. Mitani, T. Tomai, I. Honma, MnO2 assisted oxidative polymerization of aniline on graphene sheets:Superior nanocomposite electrodes for electrochemical supercapacitors.J. Mater. Chem.2011,21,16216-16222.
    [21]R. G. Chaudhuri, S. Paria, Core/shell nanoparticles:classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev.2012,112, 2373-2433.
    [22]K. Saha, S. S. Agasti, C. Kim, X. Li, V. M. Rotello, Gold nanoparticles in chemical and biological sensing. Chem. Rev.2012,112,2739-2779.
    [23]J. Huang, R. B. Kaner, A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc.2004,126,851-855.
    [24]J. Huang, R. B. Kaner, Nanofiber formation in the chemical polymerization of aniline:a mechanistic study. Angew. Chem. Int. Ed.2004,43,5817-5821.
    [25]J. R. Miller, P. Simon, Electrochemical capacitors for energy management. Science 2008,321,651.
    [26]P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nature Mater. 2008,7,845.
    [27]W. B. Ni, D. C. Wang, Z. J. Huang, J. W. Zhao, G. Cui, Fabrication of nanocomposite electrode with MnO2/nanoparticles distributed in polyaniline for electrochemical capacitors. Mater. Chem. Phys.2010,124,1151-1154.
    [28]C. Z. Yuan, L. H. Su, B. Gao, X. G. Zhang, Enhanced electrochemical stability and charge storage of MnO2/carbon nanotubes composite modified by polyaniline coating layer in acidic electrolytes. Electrochim. Acta.2008,53, 7039-7047.
    [29]Q. Li, J. H. Liu, J. H. Zou, A. Chunder, Y. Q. Chen, L. Zhai, Synthesis and electrochemical performance of multi-walled carbon nanotube/polyaniline/MnO2 ternary coaxial nanostructures for supercapacitors. J. Power Sources 2011,196, 565-572.
    [30]A. G. MacDiarmid, W. E. Jones, I. D. Norris, J. Gao, A. T. Johnson, N. J. Pinto, J. Hone, B. Han, F. K. Ko, H. Okuzaki, M. Llaguno, Electrostatically-generated nanofibers of electronic polymers. Synth. Met.2001,119,27-30.
    [31]H. X. He, C. Z. Li, N. Tao, Conductance of polymer nanowires fabricated by a combined electrodeposition and mechanical break junction method. J. Appl. Phys. Leet.2001,78,811-813.
    [32]L. P. Pan, L. Pu, Y. Shi, S.Y Song, Z. Xu, R. Zhang, Y. D. Zheng, Synthesis of polyaniline nanotubes with a reactive template of manganese oxide. Adv. Mater. 2007,19,461-464.
    [33]Z. Y. Yuan, Z. Zhang, G. Du., T. Z. Ren, B. L. Su, A simple method to synthesise single-crystalline manganese oxide nanowires. Chem. Phys. Lett.2003,378, 349-353.
    [34]S. Liang, F. Teng, G. Bulgan, R. Zong, Y. Zhu, Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. J. Phys. Chem. C 2008,112, 5307-5315.
    [35]R. Craciun, N. Dulamita, Influence of La2O3 promoter on the structure ofMnOx/SiO2 catalysts. Catal. Lett.1997,46,229-234.
    [36]S. H. Kim, S. J. Kim, S. M. Oh, Preparation of layered MnO2 via thermal decomposition of KMnO4 and its electrochemical characterizations. Chem. Mater. 1999,11,557-563.
    [37]N. Wang, X. Cao, L. He, W. Zhang, L. Guo, C. Chen, R. Wang, S. Yang, One-pot synthesis of highly crystallined β-MnO2 nanodisks assembled from nanoparticles: morphology evolutions and phase transitions. J. Phys. Chem. C 2008,112, 365-369.
    [38]J. Luo, H. T. Zhu, H. M. Fan, J. K. Liang, H. L. Shi, G. H. Rao, J. B. Li, Z. M. Du, Z. X. Shen, Synthesis of single-crystal tetragonal α-MnO2 nanotubes. J. Phys. Chem. C 2008,112,12594-12598.
    [39]E. R. Stobbe, B. A. Boer, J. W. Geus, The reduction and oxidation behaviour of manganese oxides. Catal. Today 1999,47,161-167.
    [40]N. Ballav, High-conducting polyaniline via oxidative polymerization of aniline by MnO2, PbO2 and NH4VO3. Mater. Lett.2004,58,3257-3260.
    [1]S. Park, S. Jayaraman, Smart textiles:wearable electronic systems. MRS Bull. 2003,28.585-591.
    [2]J. Chmiola, C. Largeot, P. L.Taberna, P. Simon, Y. Gogotsi, Monolithic carbide-derived carbon films for micro-supercapacitors. Science 2010,328, 480-483.
    [3]L. B. Hu, H. Wu, F. L. Mantia, Y. Yang, Y Cui, Thin, flexible secondary Li-ion paper batteries. ACS Nano 2010,4,5843-5848.
    [4]S. M. Paek, E. Yoo, I. Honma, Enhanced cyclic performance and lithium storage capacity of SnO/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett.2009,9,72-75.
    [5]L. G. De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, C. W. Zhou, Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 2010,4,2865-2873.
    [6]Q. Wu, Y X. Xu, Z. Y Yao, A. R. Liu, G. Q. Shi, Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 2010,4, 1963-1970.
    [7]J. R. Miller, P. Simon, Electrochemical capacitors for energy management. Science 2008,321,651-652.
    [8]R. F. Service, New supercapacitor promises to pack more electrical punch. Science 2006,313,902.
    [9]J. Chmiola, G. Yushin, Y Gogotsi, C. Portet, P. Simon, P. L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006, 313,1760-1763.
    [10]P. Simon, Y Gogotsi, Materials for electrochemical capacitors. Nature Mater. 2008,7,845-854.
    [11]M. Kaempgen, C. K. Chan, J. Ma, Y. Cui, G Gruner, Printable thin film supercapacitors using single walled carbon nanotubes. Nano Lett.2009,9, 1872-1876.
    [12]P. Sivaraman, R. K. Kushwaha, K. Shashidhara, V. R. Hande, A. P. Thakur, A. B. Samui, M. M. Khandpekar, All solid supercapacitor based on polyaniline and crosslinked sulfonated poly[ether ether ketone]. Electrochim. Acta 2010,55, 2451-2456.
    [13]L. B. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L. F. Cui, Y. Cui, Highly conductive paper for energy-storage devices. Proc. Natl. Acad. Sci.2009,106, 21490.
    [14]L. B.Hu, M. Pasta, F. La Mantia, L. F. Cui, S. Jeong, H. D. Deshazer, J. W. Choi, S. M. Han, Y. Cui, Stretchable, porous, and conductive energy textiles. Nano Lett. 2010,10,708-714.
    [15]C. Z. Meng, C. H. Liu, L. Z. Chen, C. H. Hu, S. S. Fan, Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett.2010,10, 4025-4031.
    [16]M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An, R. S. Ruoff, Graphene-based ultracapacitors. Nano Lett.2008,8,3498-3502.
    [17]J. R. Miller, R. A. Outlaw, B. C. Holloway, Graphene double-layer capacitor with ac line-filtering performance. Science 2010,329,1637-1639.
    [18]D. Pech, M.Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P. L. Taberna, P. Simon, Ultrahigh-power micrometer-sized supercapacitors based on onion-like carbon. Nature Nanotech.2010,5,651-654.
    [19]C. Downs, J. Nugent, P. M. Ajayan, D. J. Duquette, K. S. V. Santhanam, Efficient polymerization of aniline at carbon nanotube electrodes. Adv. Mater.1999,11, 1028-1031.
    [20]M. Hughes, M. S. P. Shaffer, A. C. Renouf, C. Singh, G. Z. Chen, D. J. Fray, A. H. Windle, Electrochemical capacitance of nanocomposite flms formed by coating aligned arrays of carbon nanotubes with polypyrrole. Adv. Mater.2002,14, 382-385.
    [21]C. C. Hu, K. H. Chang, M. C. Lin, Y. T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO for next generation supercapacitors. Nano Lett.2006,6,2690-2695.
    [22]M. Toupin, T. Brousse, D. Belanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater.2004,16, 3184-3190.
    [23]D. Choi, G. E. Blomgren, P. N. Kumta, Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv. Mater.2006,18, 1178-1182.
    [24]L. Nyholm, G. Nystrom, A. Mihranyan, M. Stromme, Toward flexible polymer and paper-based energy storage devices. Adv. Mater.2011,23,3751-3769.
    [25]G. Nystrom, A. Razaq, M. Stromme, L. Nyholm, A. Mihranyan, Ultrafast all-polymer paper-based batteries. Nano Lett.2009,9,3635-3639.
    [26]Y. Ding, Y. J. Kim, J. Erlebacher, Nanoporous gold leaf:"Ancient technology"/advance materials. Adv. Mater.2004,16,1897-1900.
    [27]Y. Ding, M. W. Chen, Nanoporous metals for catalytic and optical applications. MRS Bull.2009,34,569-576.
    [28]M. Schirmeisen, F. Beck, Electrocoating of iron and other metals with polypyrrole. J. Appl. Electrochem.1989,19,401-409.
    [29]E. M. Genies, G. Bidan, Spectroelectrochemical study of polypyrrole films.J. Electroanal. Chem.1983,149,101-113.
    [30]F. Beck, R. Michaelis, F. Schloten, B. Zinger, Filmforming electropolymerization of pyrrole on iron in aqueous oxalic-acid. Electrochim. Acta 1994,39,229-234.
    [31]J. Petitjean, S. Aeiyach, J. C. Lacroix, P. C. Lacaze, Ultra-fast electropolymerization of pyrrole in aqueous media on oxidable metals in a one-step process. J. Electroanal. Chem.1999,478,92-100.
    [32]W. Sugimoto, H. Iwata, K. Yokoshima, Y Murakami, Y Takasu, Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy:the origin of large capacitance. J. Phys. Chem. B 2005, 109,7330-7338.
    [33]X. Y Lang, A. Hirata, T. Fujita, M. W. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nature Nanotech.2011,6, 232-236.
    [1]J. Chmiola, G.Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006,313,1760-1763.
    [2]J. Chmiola, C. Largeot, P. L. Taberna, P. Simon, Y. Gogotsi, Monolithic carbide-derived carbon films for micro-supercapacitors. Science 2010,328, 480-483.
    [3]J. R. Miller, R. A. Outlaw, B. C. Holloway, Graphene double-layer capacitor with ac line-filtering performance. Science 2010,329,1637-1639.
    [4]H. Wang, L. Zhang, X. Tan, C. M. B.Holt, B. Zahiri, B. C. Olsen, D. Mitlin, Supercapacitive properties of hydrothermally synthesized Co3O4 nanostructures. J. Phys. Chem. C 2011,115,17599-17605.
    [5]P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nature Mater. 2008,7,845-854.
    [6]L. Nyholm, G. Nystrom, A. Mihranyan, M. Stromme, Toward flexible polymer and paper-based energy storage devices. Adv. Mater.2011,23, 3751-3769.
    [7]T. Y. Kim, H. W. Lee, M. Stoller, D. R. Dreyer, C. W. Bielawski, R. S. Ruoff, K. S. Suh, High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes. ACS Nano 2011, 5,436-442.
    [8]H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang, S. Wang, Theoretical and experimental specific capacitance of polyaniline in sulfuric acid.J. Power Sources 2009,190,578-586.
    [9]C. C. Hu, K. H. Chang, M. C. Lin, Y. T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett.2006,6,2690-2695.
    [10]C. Downs, J. Nugent, P. M. Ajayan, D. J. Duquette, K. S. V. Santhanam, Efficient polymerization of aniline at carbon nanotube electrodes. Adv. Mater. 1999,11,1028-1031.
    [11]M. Hughes, M. S. P. Shaffer, A. C. Renouf, C. Singh, G. Z. Chen, D. J. Fray, A. H. Windle, Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole. Adv. Mater.2002, 14,382-385.
    [12]Z. S. Wu, D. W. Wang, W. Ren, J. Zhao, G. Zhou, F. Li, H. M. Cheng, Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv. Funct. Mater.2010,20,3595-3602.
    [13]S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 2011,5,2822-2830.
    [14]H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi, Z. Gu, Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett.2008,8,2664-2668.
    [15]J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, H. Gong, H. J. Fan, Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays:a new class of high-performance pseudocapacitive materials. Adv. Mater.2011,23, 2076-2081.
    [16]J. H. Zhong, A. L. Wang, G. R. Li, J. W. Wang, Y. N. Ou, Y. X. Tong, Co3O4/Ni(OH)2 composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications. J. Mater. Chem.2012,22, 5656-5665.
    [17]J. R. McDonough, J. W. Choi, Y. Yang, F. La Mantia, Y. Zhang, Y. Cui, Carbon nanofiber supercapacitors with large areal capacitances. Appl. Phys. Lett.2009,95,243109.
    [18]X. Guan, J. Deng, Preparation and electrochemical performance of nano-scale nickel hydroxide with different shapes. Mater. Lett.2007,61,621-625.
    [19]T. Zhu, J. S. Chen, X. W. Lou, Shape-controlled synthesis of porous Co3O4 nanostructures for application in supercapacitors. J. Mater. Chem.2010,20, 7015-7020.
    [20]M. Toupin, T. Brousse, D. Blanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater.2004,16, 3184-3190.
    [21]C. Guan, X. Li, Z. Wang, X. Cao, C. Soci, H. Zhang, H. J. Fan, Nanoporous walls on macroporous foam:rational design of electrodes to push areal pseudocapacitance. Adv. Mater.2012,24,4186-4190.
    [22]X. Y. Lang, A. Hirata, T. Fujita, M. W. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nature Nanotech.2011,6, 232-236.
    [23]F. H. Meng, Y. Ding, Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities. Adv. Mater.2011,23,4098-4102.
    [24]Z. Zhang, Y. Wang, Z. Qi, W. Zhang, J. Qin, J. Frenzel, Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, and Cu) through chemical dealloying. J. Phys. Chem. C 2009,113,12629-12636.
    [25]Y. Ding, M. W. Chen, Nanoporous metals for catalytic and optical applications. MRS Bull.2009,34,569-576.
    [26]Y. Ding, Y. J. Kim, J. Erlebacher, Nanoporous gold leaf:"ancient technology"/advanced material. Adv. Mater.2004,16,1897-1900.
    [27]J. K. Chang, M. T. Lee, C. H. Huang, W. T. Tsai, Physicochemical properties and electrochemical behavior of binary manganese-cobalt oxide electrodes for supercapacitor applications. Mater. Chem. Phys.2008,108,124.
    [28]L. D. Burke, M. E. Lyons, O. J. Murphy, Formation of hydrous oxide films on cobalt under potential cycling conditions. J. Electroanal. Chem.1982,132, 247-261.
    [29]T.-C. Liu, W.G. Pell, B.E. Conway, Stages in the development of thick cobalt oxide films exhibiting reversible redox behavior and pseudocapacitance. Electrochim. Acta 1999,44,2829-2842.
    [30]D. Barreca, C. Massign, S. Daolio, M. Fabrizio, C. Piccirillo, L. Armelao, E. Tondello, Composition and microstructure of cobalt oxide thin films obtained from a novel cobalt (Ⅱ) precursor by chemical vapor deposition. Chem. Mater. 2001,13,588-593.
    [31]Z. Dong, Y. Fu, Q. Han. Y. Xu, H. Zhang, Synthesis and physical properties of Co3O4 nanowires. J. Phys. Chem. C 2007,111,18475-18478.
    [32]J.C. Dupin, D. Gonbeau, H. Benqlilou-Moudden, Ph. Vinatier, A. Levasseur, XPS analysis of new lithium cobalt oxide thin-films before and after lithium deintercalation. Thin Solid Films 2001,384,23-32.
    [33]S. G. Kandalkar, H.-M. Lee, H. Chae, C.-K. Kim, Structural, morphological, and electrical characteristics of the electrodeposited cobalt oxide electrode for supercapacitor applications. Mater. Res. Bull.2011,46,48-51.
    [1]M. Winter, R. J. Brodd, What are batteries, fuel cells and supercapacitors. Chem. Rev.2004,104,4245-4269.
    [2]A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells. Chem. Rev.2010,110,6595-6663.
    [3]N. S. Choi, Z. Chen, S. A. Freunberger, X. Ji, Y. K. Sun, K. Amine, G. Yushin, L. F. Nazar, J. Cho, P. G. Bruce, Challenges facing lithium batteries and electrical double layer capacitors. Angew. Chem. Int. Ed.2012,51,9994-10024.
    [4]J. R. Miller, P. Simon, Materials science. Electrochemical capacitors for energy management. Science 2008,321,651-652.
    [5]R. Kotz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochem. Acta 2000,45,2483-2498.
    [6]J. Zhang, X. S. Zhao, On the configuration of supercapacitors for maximizing electrochemical performance. ChemSusChem 2012,5,818-841.
    [7]P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nature Mater. 2008,7,845-854.
    [8]C. Li, H. Bai, G. Shi, Conducting polymer nanomaterials:electrosynthesis and applications. Chem. Soc. Rev.2009,38,2397-2409.
    [9]C. C. Hu, K. H. Chang, M. C. Lin, Y. T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett.2006,6,2690-2695.
    [10]Q. Qu, S. Yang, X. Feng,2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors. Adv. Mater.2011,23, 5574-5580.
    [11]Y. F. Yuan, X. H. Xia, J. B. Wu, X. H. Huang, Y. B. Pei, J. L. Yang, S. Y. Guo, Hierarchically porous Co3O4 film with mesoporous walls prepared via liquid crystalline template for supercapacitor application. Electrochem. Commun.2011, 13,1123-1126.
    [12]J. Y. Kim, S.-H. Lee, Y. Yan, J. Oh, K. Zhu, Controlled synthesis of aligned Ni-NiO core-shell nanowire arrays on glass substrates as a new supercapacitor electrode. RSC Adv.2012,2,8281-8285.
    [13]M. Toupin, T. Brousse, D. Belanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater.2004,16, 3184-3190.
    [14]J. Li, W. Zhao, F. Huang, A. Manivannan, N. Wu, Single-crystalline Ni(OH)2 and NiO nanoplatelet arrays as supercapacitor electrodes. Nanoscale 2011,3, 5103-5109.
    [15]F. Cao, G. X. Pan, P. S. Tang, H. F. Chen, Hydrothermal-synthesized Co(OH)2 nanocone arrays for supercapacitor application. J. Power Sources 2012,216, 395-399.
    [16]D. P. Dubal, D. S. Dhawale, R. R. Salunkhe, V. J. Fulari, C. D. Lokhande, Chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application. J. Alloys Compd.2010,497,166-170.
    [17]D. P. Dubal, D. S. Dhawale, R. R. Salunkhe, S. M. Pawar, C. D. Lokhande, A novel chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application. Appl. Surf. Sci.2010,256,4411-4416.
    [18]D. P. Dubal, D. S. Dhawale, R. R. Salunkhe, S. M. Pawar, V. J. Fulari, C. D. Lokhande, A novel chemical synthesis of interlocked cubes of hausmannite Mn3O4 thin films for supercapacitor application. J. Alloys Compd.2009,484, 218-221.
    [19]J.K. Chang, M.T. Lee, W.T. Tsai, In situ Mn K-edge X-ray absorption spectroscopic studies of anodically deposited manganese oxide with relevance to supercapacitor applications. J. Power Sources 2007,166,590-594.
    [20]X. Chen, X. Li, Y. Jiang, C. Shi, X. Li, Rational synthesis of α-MnO2 and γ-Mn2O3 nanowires with the electrochemical characterization of α-MnO2 nanowires for supercapacitor. Solid State Commun.2005,136,94-96.
    [21]L. Yuan, X.-H. Lu, X. Xiao, T. Zhai, J. Dai, F. Zhang, B. Hu, X. Wang, L. Gong. J. Chen, C. Hu, Y. Tong, J. Zhou, Z. L. Wang, Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano,2012, 6,656-661.
    [22]Y. J. Lee, H. W. Park, S. Park, I. K. Song, Electrochemical properties of Mn-doped activated carbon aerogel as electrode material for supercapacitor. Curr. Appl. Phys.2012,12,233-237.
    [23]H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi, Z. Gu, Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett.2008,8,2664-2668.
    [24]K. Rajendra Prasad, N. Miura, Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors. Electrochem. Commun.2004, 6,1004-1008.
    [25]M.-T. Lee, J.-K. Chang, Y.-T. Hsieh, W.-T. Tsai, Annealed Mn-Fe binary oxides for supercapacitor applications. J. Power Sources 2008,185,1550-1556.
    [26]J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, H. Gong, H. J. Fan, Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays:a new class of high-performance pseudocapacitive materials. Adv. Mater.2011,23,2076-2081.
    [27]X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nature Nanotech.2011,6,232-236.
    [28]Z. Lu, Z. Chang, W. Zhu, X. Sun, Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chem. Commun.2011,47,9651-9653.
    [29]C. Guan, X. Li, Z. Wang, X. Cao, C. Soci, H. Zhang, H. J. Fan, Nanoporous walls on macroporous foam:rational design of electrodes to push areal pseudocapacitance. Adv. Mater.2012,24,4186-4190.
    [1]S. Park, S. Jayaraman, MRS Bull.2003,28,585.
    [2]J. Chmiola, C. Largeot, P. L.Taberna, P. Simon, Y. Gogotsi, Science 2010,328, 480.
    [3]L. B. Hu, H. Wu, F. L. Mantia, Y. Yang, Y. Cui, ACS Nano 2010,4,5843.
    [4]S. M. Paek, E. Yoo, I. Honma, Nano Lett.2009,9,72.
    [5]L. G. De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, C. W. Zhou, ACS Nano 2010, 4,2865.
    [6]Q. Wu, Y. X. Xu, Z. Y. Yao, A. R. Liu, G. Q. Shi, ACS Nano 2010,4,1963-1970.
    [7]J. R. Miller, P. Simon, Science 2008,321,651.
    [8]R. F. Service, Science 2006,313,902.
    [9]J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna, Science 2006,313,1760.
    [10]P. Simon, Y. Gogotsi, Nature Mater.2008,7,845.
    [11]M. Kaempgen, C. K. Chan, J. Ma, Y. Cui, G. Gruner, Nano Lett.2009,9,1872.
    [12]P. Sivaraman, R. K. Kushwaha, K. Shashidhara, V. R. Hande, A. P. Thakur, A. B. Samui, M. M. Khandpekar, Electrochim. Acta 2010,55,2451.
    [13]L. B. Hu, J. W. Choi, Y Yang, S. Jeong, F. La Mantia, L. F. Cui, Y Cui, Proc. Natl. Acad. Sci.2009,106,21490.
    [14]L. B.Hu, M. Pasta, F. La Mantia, L. F. Cui, S. Jeong, H. D. Deshazer, J. W. Choi, S. M. Han, Y. Cui, Nano Lett.2010,10,708.
    [15]C. Z. Meng, C. H. Liu, L. Z. Chen, C. H. Hu, S. S. Fan, Nano Lett.2010,10, 4025.
    [16]M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An, R. S. Ruoff, Nano Lett.2008,8, 3498.
    [17]J. R. Miller, R. A. Outlaw, B. C. Holloway, Science 2010,329,1637.
    [18]D. Pech, M.Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P. L. Taberna, P. Simon, Nature Nanotech.2010,5,651.
    [19]C. Downs, J. Nugent, P. M. Ajayan, D. J. Duquette, K. S. V. Santhanam, Adv. Mater.1999,11,1028.
    [20]M. Hughes, M. S. P. Shaffer, A. C. Renouf, C. Singh, G. Z. Chen, D. J. Fray, A. H. Windle,Adv. Mater.2002,14,382.
    [21]C. C. Hu, K. H. Chang, M. C. Lin, Y. T. Wu, Nano Lett.2006,6,2690.
    [22]M. Toupin, T. Brousse, D. Belanger, Chem. Mater.2004,16,3184.
    [23]D. Choi, G. E. Blomgren, P. N. Kumta,Adv. Mater.2006,18,1178.
    [24]L. Nyholm, G. Nystrom, A. Mihranyan, M. Stromme, Adv. Mater.2011, DOI: 10.1002/adma.201004134.
    [25]G. Nystrom, A. Razaq, M. Stromme, L. Nyholm, A. Mihranyan, Nano Lett.2009, 9,3635.
    [26]Y. Ding, Y. J. Kim, J. Erlebacher, Adv. Mater.2004,16,1897.
    [27]Y. Ding, M. W. Chen, MRS Bull.2009,34,569.
    [28]W. Sugimoto, H. Iwata, K. Yokoshima, Y. Murakami, Y. Takasu, J. Phys. Chem. B 2005,109,7330.
    [29]X. Y. Lang, A. Hirata, T. Fujita, M. W. Chen, Nature Nanotech.2011, doi:10.1038/nnano.2011.13.
    (S1)M. Schirmeisen, F. Beck, J. Appl. Electrochem.1989,19,401-409.
    (S2)E. M. Genies, G. Bidan, J. Electroanal. Chem.1983,149,101-113.
    (S3)F. Beck, R. Michaelis, F. Schloten, B. Zinger, Electrochim. Acta 1994,39, 229-234.
    (S4)J. Petitjean, S. Aeiyach, J. C. Lacroix, P. C. Lacaze, J. Electroanal. Chem.1999, 478,92-100.
    (S5)D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P. L. Taberna, P. Simon, Nature Nanotech.2010,5,651-654.
    (S6)C. C. Hu, K. H. Chang, M. C. Lin, Y. T. Wu, Nano Lett.2006,6,2690-2695.
    (S7)D. Choi, G. E. Blomgren, P. N. Kumta,Adv. Mater.2006,18,1178-1182.
    [1]K. Wang, J. Huang, Z. Wei, J. Phys. Chem. C 2010,114,8062-8067.
    [2]K. Zhang, L. L. Zhang, X. S. Zhao, J. Wu, Chem. Mater.2010,22,1392-1401.
    [3]J. Huang, S. Virji, B. H. Weiller, R. B. Kaner, J. Am. Chem. Soc.2003,125, 314-315.
    [4]D. T. McQuade, A. E. Pullen, T. M. Swager, Chem. Rev.2000,100,2537-2574.
    [5]D, Li, J. Huang, R. B. Kaner, Acc. Chem. Res.2009,42,135-145.
    [6]L. Athouel, F. Moser, R. Dugas, O. Crosnier, D. Belanger, T. Brousse, J. Phys. Chem. C 2008,112,7270-7277.
    [7]S. Devaraj, N. Munichandraiah, J. Phys. Chem. C 2008,112,4406-4417.
    [8]Q. T. Qu, P. Zhang, B. Wang, Y. H. Chen, S. Tian, Y. P. Wu, R. Holze, J. Phys. Chem. C 2009,113,14020-14027.
    [9]T. M. Benedetti, F. F. C. Bazito, E. A. Ponzio, R. M. Torresi, Langmuir 2008,2, 3602-3610.
    [10]C. Downs, J. Nugent, P. M. Ajayan, D. J. Duquette, K. S. V. Santhanam, Adv. Mater.1999,11,1028-1031.
    [11]J. W. Long, M. B. Sassin, A. E. Fischer, D. R. Rolison, J. Phys. Chem. C 2009, 113,17595-17598.
    [12]S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, ACS Nano 2010,4,2822-2830.
    [13]A. K. Cuentas-Gallegos, P. Gomez-Romero, J. New Mat. Electrochem. Systems 2005,8,181-188.
    [14]G. R. Li, Z. P. Feng, Y. N. Ou, D. Wu, R. Fu, Y. X. Tong, Langmuir 2010,26, 2209-2213.
    [15]L. C. Wang, Y. M. Liu, M. Chen, Y. Cao, H. Y. He, K. N. Fan, J. Phys. Chem. C 2008,112,6981-6987.
    [16]A. H. Gemeay, R. G. El-Sharkawy, I. A. Mansour, A. B. Zaki, Appl. Catal. B: Environ.2008,80,106-115.
    [17]A. H. Gemeay, R. G. El-Sharkawy, I. A. Mansour, A. B. Zaki, J. Colloid Interface Sci.2007,308,385-394.
    [18]S. I. A. Razak, A. L. Ahmad, S. H. S. Zein, A. R. Boccaccini, Scripta Mater.2009, 61,592-595.
    [19]F. J. Liu, Synth. Met.2009,159,1896-1899.
    [20]M. Sathish, S. Mitani, T. Tomai, I. Honma, J. Mater. Chem.2011,21, 16216-16222.
    [21]R. G. Chaudhuri, S. Paria, Chem. Rev.2012,112,2373-2433.
    [22]K. Saha, S. S. Agasti, C. Kim, X. Li, V. M. Rotello, Chem. Rev.2012,112, 2739-2779.
    [23]J. Huang, R. B. Kaner, J. Am. Chem. Soc.2004,126,851-855.
    [24]J. Huang, R. B. Kaner, Angew. Chem. Int. Ed.2004,43,5817-5821.
    [25]J. R. Miller, P. Simon, Science 2008,321,651.
    [26]P. Simon, Y. Gogotsi, Nature Mater.2008,7,845.
    [27]W. B. Ni, D. C. Wang, Z. J. Huang, J. W. Zhao, G Cui, Mater. Chem. Phys.2010, 124,1151-1154.
    [28]C. Z. Yuan, L. H. Su, B. Gao, X. G. Zhang, Electrochim. Acta.2008,53, 7039-7047.
    [29]Q. Li, J. H. Liu, J. H. Zou, A. Chunder, Y. Q. Chen, L. Zhai, J. Power Sources 2011,196,565-572.
    [30]A. G. MacDiarmid, W. E. Jones, I. D. Norris, J. Gao, A. T. Johnson, N. J. Pinto, J. Hone, B. Han, F. K. Ko, H. Okuzaki, M. Llaguno, Synth. Met.2001,119,27-30.
    [31]H. X. He, C. Z. Li, N. Tao, J. Appl. Phys. Lett.2001,78,811-813.
    [32]L. P. Pan, L. Pu, Y. Shi, S.Y. Song, Z. Xu, R. Zhang, Y. D. Zheng, Adv. Mater. 2007,19,461-464.
    [33]Z. Y. Yuan, Z. Zhang, G. Du., T. Z. Ren, B. L. Su, Chem. Phys. Lett.2003,378, 349-353.
    [34]S. Liang, F. Teng, G. Bulgan, R. Zong, Y Zhu, J. Phys. Chem. C 2008,112, 5307-5315.
    [35]R. Craciun, N. Dulamita, Catal. Lett.1997,46,229-234.
    [36]S. H. Kim, S. J. Kim, S. M. Oh, Chem. Mater.1999,11,557-563.
    [37]N. Wang, X. Cao, L. He, W. Zhang, L. Guo, C. Chen, R. Wang, S. Yang, J. Phys. Chem. C 2008,112,365-369.
    [38]J. Luo, H. T. Zhu, H. M. Fan, J. K. Liang, H. L. Shi, G H. Rao, J. B. Li, Z. M. Du, Z. X. Shen,J.Phys. Chem. C 2008,112,12594-12598.
    [39]E. R. Stobbe, B. A. Boer, J. W. Geus, Catal Today 1999,47,161-167.
    [40]N. Ballav, Mater. Lett.2004,58,3257-3260.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700